Liberal Arts and Sciences to learn in English

2019

英語で学ぶ全学共通科目
Contents

2 Message from the Director
3 Courses / 授業科目一覧
18 Syllabi / 授業内容
347 Time table / 時間割
353 Instructors / 教員紹介
Message from the Director

Against a background of ongoing technological advancement and the drive for globalization, our current era is characterized by rapid social change. Students living through this time are expected to help shape the future of our societies. The Institute for Liberal Arts and Sciences was established in April 2013 with a view to educating those students to become globally oriented individuals who can function effectively anywhere in the world by exercising their broad perspectives, extensive knowledge, and unparalleled creativity. The Institute aspires to “teach the basic knowledge and methodologies that are common among a wide range of cross-disciplinary fields and foster rich humanity by providing students with opportunities to come into contact with advanced learning and culture” (Article 3, Kyoto University Institute for Liberal Arts and Sciences Regulations).

Throughout its more than 100-year history, Kyoto University has fostered a tradition of academic freedom under the banner of “self-teaching and self-learning” based on dialogue. At the core of this time-honored tradition is the immutable conviction that learning is a process of uncovering hitherto unrecognized issues through self-thinking, experience, and free dialogue, and of opening up new intellectual horizons by inquiring into humanity, society, and natural phenomena according to fundamental principles. Of course, it is also important to have an attitude of respectfully learning from the wisdom of those who have come before us. In addition, I expect our students to aim higher in their endeavors to investigate the unknown and create something new. To this end, it is necessary to shift the direction of advanced learning away from efficient absorption of existing knowledge and toward creation of new knowledge through intensive research. “Self-teaching and self-learning” based on dialogue is a new intellectual habit of learning that must be acquired, and one that will make it possible to take the first step into academia. The primary goal of Kyoto University’s liberal arts and sciences programs is to create an intellectual space that is free, open, and conducive to the taking of that initial step.

Rapid progress in academic research means that specialized fields are becoming increasingly segmented. Meanwhile, the global community is being confronted with issues that involve different specialized fields. In order to resolutely tackle these issues, it is not enough to merely study one’s specialized subjects; one must have a broad knowledge base which enables events to be observed from various perspectives. We hope that students from different faculties will come together to freely discuss and learn the knowledge and ideas that underpin the wide variety of subjects concerning humanity, society, and nature that are offered in our liberal arts and sciences courses. Our goal is to see our students enhance their own education while deepening their mutual ties with others.

For students to be able to play active roles in the global arena, it is also important to communicate and live in harmony with people from around the globe with different values, cultures, and lifestyles. To address this fundamental requirement, the Institute emphasizes education in English and other languages through such measures as improving the quality and quantity of classes taught in English by foreign faculty members. We have also introduced support programs for students who wish to study abroad so that they can explore their potential in the international arena.

The Institute will remain committed to providing students with quality liberal arts and sciences education through close collaboration with all of Kyoto University’s faculties and the generous cooperation of its graduate schools, research institutes, and centers. It is our sincere hope that students will learn a great deal from our intellectually stimulating classes, taught by highly enthusiastic teachers, and through candid, unconstrained discussion with fellow students, and that they will enhance their capabilities before launching themselves into the big, wide world that awaits them.

Hisashi Miyagawa
Director
Institute for Liberal Arts and Sciences
<table>
<thead>
<tr>
<th>Lecture code</th>
<th>Course title</th>
<th>Instructor</th>
<th>No. of credits</th>
<th>No. of weekly time blocks</th>
<th>Semester</th>
<th>Day/Period</th>
<th>Target year</th>
<th>Eligible students</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>H150001</td>
<td>Logic I-E2: Sentential Logic and Deductions</td>
<td>BROWN, John</td>
<td>2</td>
<td>1</td>
<td>1st</td>
<td>Wed/1</td>
<td>Mainly 1st & 2nd</td>
<td>All</td>
<td>19</td>
</tr>
<tr>
<td>H156001</td>
<td>Logic II-E2: Quantificational Logic and Deductions</td>
<td>BROWN, John</td>
<td>2</td>
<td>1</td>
<td>2nd</td>
<td>Wed/1</td>
<td>Mainly 1st & 2nd</td>
<td>All</td>
<td>20</td>
</tr>
<tr>
<td>H149001</td>
<td>The History of Eastern Thought I-E2</td>
<td>CATT · Adam Alvah</td>
<td>2</td>
<td>1</td>
<td>1st</td>
<td>Wed/2</td>
<td>All</td>
<td>Liberal Arts</td>
<td>21</td>
</tr>
<tr>
<td>H150002</td>
<td>Science of Religion I-E2</td>
<td>CATT · Adam Alvah</td>
<td>2</td>
<td>1</td>
<td>2nd</td>
<td>Wed/2</td>
<td>All</td>
<td>Liberal Arts</td>
<td>22</td>
</tr>
<tr>
<td>H151001</td>
<td>History of Modern Science-E2</td>
<td>D’SOUZA, Rohan Ignatious</td>
<td>2</td>
<td>1</td>
<td>1st</td>
<td>Tue/3</td>
<td>All</td>
<td>All</td>
<td>23</td>
</tr>
<tr>
<td>H154001</td>
<td>Philosophy of Modern Science-E2</td>
<td>D’SOUZA, Rohan Ignatious</td>
<td>2</td>
<td>1</td>
<td>2nd</td>
<td>Tue/3</td>
<td>All</td>
<td>All</td>
<td>24</td>
</tr>
<tr>
<td>H159001</td>
<td>Theories of Religion in the Social Sciences-E2</td>
<td>Julius Bautista</td>
<td>2</td>
<td>1</td>
<td>1st</td>
<td>Tue/4</td>
<td>Mainly 1st & 2nd</td>
<td>Liberal Arts</td>
<td>25</td>
</tr>
<tr>
<td>H161001</td>
<td>Japanese Philosophy I-E2</td>
<td>PASCA, Roman</td>
<td>2</td>
<td>1</td>
<td>1st</td>
<td>Wed/2</td>
<td>All</td>
<td>All</td>
<td>26</td>
</tr>
<tr>
<td>H162001</td>
<td>Japanese Philosophy II-E2</td>
<td>PASCA, Roman</td>
<td>2</td>
<td>1</td>
<td>2nd</td>
<td>Wed/2</td>
<td>All</td>
<td>All</td>
<td>27</td>
</tr>
<tr>
<td>H163001</td>
<td>Philosophy of Nature I-E2</td>
<td>PASCA, Roman</td>
<td>2</td>
<td>1</td>
<td>1st</td>
<td>Wed/3</td>
<td>All</td>
<td>All</td>
<td>28</td>
</tr>
<tr>
<td>H164001</td>
<td>Philosophy of Nature II-E2</td>
<td>PASCA, Roman</td>
<td>2</td>
<td>1</td>
<td>2nd</td>
<td>Wed/3</td>
<td>All</td>
<td>All</td>
<td>29</td>
</tr>
<tr>
<td>H281001</td>
<td>Japanese History I-E2</td>
<td>VAN STEENPAAL · Niels</td>
<td>2</td>
<td>1</td>
<td>1st</td>
<td>Tue/2</td>
<td>All</td>
<td>All</td>
<td>30</td>
</tr>
<tr>
<td>H281002</td>
<td>Japanese History I-E2</td>
<td>KNAUDT · Tille</td>
<td>2</td>
<td>1</td>
<td>1st</td>
<td>Tue/2</td>
<td>All</td>
<td>All</td>
<td>31</td>
</tr>
<tr>
<td>H281003</td>
<td>Japanese History I-E2</td>
<td>KNAUDT · Tille</td>
<td>2</td>
<td>1</td>
<td>1st</td>
<td>Wed/2</td>
<td>All</td>
<td>All</td>
<td>31</td>
</tr>
<tr>
<td>H282001</td>
<td>Japanese History II-E2</td>
<td>VAN STEENPAAL · Niels</td>
<td>2</td>
<td>1</td>
<td>2nd</td>
<td>Tue/2</td>
<td>All</td>
<td>All</td>
<td>32</td>
</tr>
<tr>
<td>H282002</td>
<td>Japanese History II-E2</td>
<td>KNAUDT · Tille</td>
<td>2</td>
<td>1</td>
<td>2nd</td>
<td>Tue/2</td>
<td>All</td>
<td>All</td>
<td>33</td>
</tr>
<tr>
<td>H282003</td>
<td>Japanese History II-E2</td>
<td>KNAUDT · Tille</td>
<td>2</td>
<td>1</td>
<td>2nd</td>
<td>Wed/2</td>
<td>All</td>
<td>All</td>
<td>33</td>
</tr>
<tr>
<td>H275001</td>
<td>Western History I-E2</td>
<td>BHATTE · Pallavi Kamlakar</td>
<td>2</td>
<td>1</td>
<td>1st</td>
<td>Tue/2</td>
<td>All</td>
<td>All</td>
<td>34</td>
</tr>
<tr>
<td>H275002</td>
<td>Western History I-E2</td>
<td>BHATTE · Pallavi Kamlakar</td>
<td>2</td>
<td>1</td>
<td>1st</td>
<td>Fri/2</td>
<td>All</td>
<td>All</td>
<td>35</td>
</tr>
<tr>
<td>H274001</td>
<td>Western History II-E2</td>
<td>BHATTE · Pallavi Kamlakar</td>
<td>2</td>
<td>1</td>
<td>2nd</td>
<td>Tue/2</td>
<td>All</td>
<td>All</td>
<td>36</td>
</tr>
<tr>
<td>H274002</td>
<td>Western History II-E2</td>
<td>BHATTE · Pallavi Kamlakar</td>
<td>2</td>
<td>1</td>
<td>2nd</td>
<td>Fri/2</td>
<td>All</td>
<td>All</td>
<td>37</td>
</tr>
<tr>
<td>H277001</td>
<td>Introduction to World Religions-E2</td>
<td>Julius Bautista</td>
<td>2</td>
<td>1</td>
<td>1st</td>
<td>Tue/2</td>
<td>Mainly 1st & 2nd</td>
<td>Liberal Arts</td>
<td>38</td>
</tr>
<tr>
<td>Lecture code</td>
<td>Course title</td>
<td>Instructor</td>
<td>No. of credits</td>
<td>No. of weekly time blocks</td>
<td>Seme-ter</td>
<td>Day/Period</td>
<td>Target year</td>
<td>Eligible students</td>
<td>Page</td>
</tr>
<tr>
<td>--------------</td>
<td>--</td>
<td>-----------------------------</td>
<td>----------------</td>
<td>---------------------------</td>
<td>----------</td>
<td>------------</td>
<td>-------------</td>
<td>-------------------</td>
<td>------</td>
</tr>
<tr>
<td>H280001</td>
<td>Introduction to Asian Societies-E2</td>
<td>Julius Bautista</td>
<td>2</td>
<td>1</td>
<td>2nd</td>
<td>Tue/2</td>
<td>Mainly 1st & 2nd</td>
<td>Liberal Arts</td>
<td>39</td>
</tr>
<tr>
<td>H279001</td>
<td>Religion in Contemporary Society-E2</td>
<td>Julius Bautista</td>
<td>2</td>
<td>1</td>
<td>2nd</td>
<td>Tue/4</td>
<td>Mainly 1st & 2nd</td>
<td>Liberal Arts</td>
<td>40</td>
</tr>
<tr>
<td>H283001</td>
<td>Japanese Intellectual History I-E2</td>
<td>VAN STEENPAAL · Niels</td>
<td>2</td>
<td>1</td>
<td>1st</td>
<td>Wed/2</td>
<td>All</td>
<td>All</td>
<td>41</td>
</tr>
<tr>
<td>H284001</td>
<td>Japanese Intellectual History II-E2</td>
<td>VAN STEENPAAL · Niels</td>
<td>2</td>
<td>1</td>
<td>2nd</td>
<td>Wed/2</td>
<td>All</td>
<td>All</td>
<td>42</td>
</tr>
<tr>
<td>H287001</td>
<td>Japanese Popular Culture-E2</td>
<td>MURPHY, Mahon</td>
<td>2</td>
<td>1</td>
<td>1st</td>
<td>Tue/2</td>
<td>Mainly 1st & 2nd</td>
<td>All</td>
<td>43</td>
</tr>
<tr>
<td>H287002</td>
<td>Japanese Popular Culture-E2</td>
<td>MURPHY, Mahon</td>
<td>2</td>
<td>1</td>
<td>2nd</td>
<td>Wed/4</td>
<td>Mainly 1st & 2nd</td>
<td>All</td>
<td>44</td>
</tr>
<tr>
<td>H381001</td>
<td>Introduction to Linguistic Science-E2</td>
<td>CATT · Adam Alvah</td>
<td>2</td>
<td>1</td>
<td>1st</td>
<td>Wed/1</td>
<td>All</td>
<td>Liberal Arts</td>
<td>45</td>
</tr>
<tr>
<td>H382001</td>
<td>Introduction to Japanese Linguistics I-E2</td>
<td>CATT · Adam Alvah</td>
<td>2</td>
<td>1</td>
<td>2nd</td>
<td>Wed/1</td>
<td>All</td>
<td>Liberal Arts</td>
<td>46</td>
</tr>
<tr>
<td>H383001</td>
<td>Intercultural Communication I-E2</td>
<td>TANGSEEFA · Decha</td>
<td>2</td>
<td>1</td>
<td>1st</td>
<td>Wed/4</td>
<td>Mainly 1st & 2nd</td>
<td>All</td>
<td>47</td>
</tr>
<tr>
<td>H384001</td>
<td>Intercultural Communication II-E2</td>
<td>TANGSEEFA · Decha</td>
<td>2</td>
<td>1</td>
<td>2nd</td>
<td>Wed/4</td>
<td>All</td>
<td>All</td>
<td>48</td>
</tr>
</tbody>
</table>

Humanities and Social Sciences (Arts, Literature and Linguistics)

<table>
<thead>
<tr>
<th>Lecture code</th>
<th>Course title</th>
<th>Instructor</th>
<th>No. of credits</th>
<th>No. of weekly time blocks</th>
<th>Seme-ter</th>
<th>Day/Period</th>
<th>Target year</th>
<th>Eligible students</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>H727001</td>
<td>Pedagogy I-E2</td>
<td>Jeremy Rappleye</td>
<td>2</td>
<td>1</td>
<td>1st</td>
<td>Wed/1</td>
<td>Mainly 1st & 2nd</td>
<td>All</td>
<td>50</td>
</tr>
<tr>
<td>H728001</td>
<td>Pedagogy II-E2</td>
<td>Jeremy Rappleye</td>
<td>2</td>
<td>1</td>
<td>2nd</td>
<td>Wed/1</td>
<td>Mainly 1st & 2nd</td>
<td>All</td>
<td>51</td>
</tr>
<tr>
<td>H739001</td>
<td>Psychoanalysis-E2</td>
<td>TAJAN · Nicolas Pierre</td>
<td>2</td>
<td>1</td>
<td>1st</td>
<td>Thu/5</td>
<td>All</td>
<td>All</td>
<td>52</td>
</tr>
<tr>
<td>H721001</td>
<td>Sociology I-E2</td>
<td>Stephane Heim</td>
<td>2</td>
<td>1</td>
<td>1st</td>
<td>Tue/3</td>
<td>Mainly 1st</td>
<td>All</td>
<td>53</td>
</tr>
<tr>
<td>H715001</td>
<td>Advanced Lecture for Pedagogy I-E2</td>
<td>Jeremy Rappleye</td>
<td>2</td>
<td>1</td>
<td>1st</td>
<td>Wed/2</td>
<td>Mainly 1st & 2nd</td>
<td>All</td>
<td>54</td>
</tr>
<tr>
<td>H716001</td>
<td>Advanced Lecture for Pedagogy II-E2</td>
<td>Jeremy Rappleye</td>
<td>2</td>
<td>1</td>
<td>2nd</td>
<td>Wed/2</td>
<td>Mainly 1st & 2nd</td>
<td>All</td>
<td>55</td>
</tr>
<tr>
<td>H709001</td>
<td>Introduction to Educational Psychology I-E2</td>
<td>Emmanuel MANALO</td>
<td>2</td>
<td>1</td>
<td>1st</td>
<td>Mon/3</td>
<td>Mainly 1st & 2nd</td>
<td>All</td>
<td>56</td>
</tr>
<tr>
<td>H710001</td>
<td>Introduction to Educational Psychology II-E2</td>
<td>Emmanuel MANALO</td>
<td>2</td>
<td>1</td>
<td>2nd</td>
<td>Mon/3</td>
<td>Mainly 1st & 2nd</td>
<td>All</td>
<td>57</td>
</tr>
<tr>
<td>H708001</td>
<td>Introduction to Educational Studies I-E2</td>
<td>Emmanuel MANALO</td>
<td>2</td>
<td>1</td>
<td>1st</td>
<td>Mon/1</td>
<td>Mainly 1st & 2nd</td>
<td>All</td>
<td>58</td>
</tr>
<tr>
<td>H711001</td>
<td>Introduction to Educational Studies II-E2</td>
<td>Emmanuel MANALO</td>
<td>2</td>
<td>1</td>
<td>2nd</td>
<td>Mon/1</td>
<td>Mainly 1st & 2nd</td>
<td>All</td>
<td>59</td>
</tr>
<tr>
<td>H740001</td>
<td>Psychoanalysis II-E2</td>
<td>TAJAN · Nicolas Pierre</td>
<td>2</td>
<td>1</td>
<td>2nd</td>
<td>Tue/4</td>
<td>All</td>
<td>All</td>
<td>60</td>
</tr>
<tr>
<td>H723001</td>
<td>Introduction to Primate Behavior and Cognition-E2</td>
<td>Anderson · James Russell</td>
<td>2</td>
<td>1</td>
<td>2nd</td>
<td>Tue/4</td>
<td>All</td>
<td>All</td>
<td>61</td>
</tr>
<tr>
<td>Lecture code</td>
<td>Course title</td>
<td>Instructor</td>
<td>No. of credits</td>
<td>No. of weekly time blocks</td>
<td>Semester</td>
<td>Day/Period</td>
<td>Target year</td>
<td>Eligible students</td>
<td>Page</td>
</tr>
<tr>
<td>-------------</td>
<td>---</td>
<td>-----------------------</td>
<td>----------------</td>
<td>---------------------------</td>
<td>----------</td>
<td>------------</td>
<td>-------------</td>
<td>------------------</td>
<td>------</td>
</tr>
<tr>
<td>H722001</td>
<td>Introduction to Comparative Psychology-E2</td>
<td>Anderson, James Russell</td>
<td>2</td>
<td>1</td>
<td>1st</td>
<td>Tue/4</td>
<td>All</td>
<td>All</td>
<td>62</td>
</tr>
<tr>
<td>H724001</td>
<td>Introduction to Globalization Studies-E2</td>
<td>Stephane Heim</td>
<td>2</td>
<td>1</td>
<td>1st</td>
<td>Tue/4</td>
<td>Mainly 1st</td>
<td>All</td>
<td>63</td>
</tr>
<tr>
<td>H725001</td>
<td>Introduction to Social Research-E2</td>
<td>Stephane Heim</td>
<td>2</td>
<td>1</td>
<td>2nd</td>
<td>Tue/3</td>
<td>Mainly 1st & 2nd</td>
<td>All</td>
<td>64</td>
</tr>
<tr>
<td>H726001</td>
<td>Sociology of Work and Organizations-E2</td>
<td>Stephane Heim</td>
<td>2</td>
<td>1</td>
<td>2nd</td>
<td>Tue/4</td>
<td>Mainly 1st & 2nd</td>
<td>All</td>
<td>65</td>
</tr>
<tr>
<td>H712001</td>
<td>Introduction to Sociological Observation-E2</td>
<td>SINGER JANE</td>
<td>2</td>
<td>1</td>
<td>1st</td>
<td>Fri/4</td>
<td>Mainly 1st & 2nd</td>
<td>All</td>
<td>66</td>
</tr>
<tr>
<td>H717001</td>
<td>Introduction to Risk Communication-E2</td>
<td>SAMADDAR, Subhajyoti</td>
<td>2</td>
<td>1</td>
<td>2nd</td>
<td>Wed/3</td>
<td>Mainly 1st & 2nd</td>
<td>All</td>
<td>67</td>
</tr>
<tr>
<td>H718001</td>
<td>Introduction to Society and Community Studies-E2</td>
<td>SAMADDAR, Subhajyoti</td>
<td>2</td>
<td>1</td>
<td>2nd</td>
<td>Wed/2</td>
<td>Mainly 1st & 2nd</td>
<td>All</td>
<td>68</td>
</tr>
<tr>
<td>H734001</td>
<td>Introduction to Ritual Studies-E2</td>
<td>LAHOURNAT, Florence</td>
<td>2</td>
<td>1</td>
<td>2nd</td>
<td>Tue/4</td>
<td>Mainly 1st & 2nd</td>
<td>All</td>
<td>69</td>
</tr>
<tr>
<td>H733001</td>
<td>Disaster and Culture-E2</td>
<td>LAHOURNAT, Florence</td>
<td>2</td>
<td>1</td>
<td>2nd</td>
<td>Tue/2</td>
<td>Mainly 1st & 2nd</td>
<td>All</td>
<td>70</td>
</tr>
<tr>
<td></td>
<td>Humanities and Social Sciences (Regions and Cultures)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>H598001</td>
<td>Cultural Anthropology I-E2</td>
<td>LOPEZ, Mario Ivan</td>
<td>2</td>
<td>1</td>
<td>1st</td>
<td>Mon/3</td>
<td>Mainly 1st & 2nd</td>
<td>All</td>
<td>71</td>
</tr>
<tr>
<td>H598002</td>
<td>Cultural Anthropology I-E2</td>
<td>LOPEZ, Mario Ivan</td>
<td>2</td>
<td>1</td>
<td>2nd</td>
<td>Mon/3</td>
<td>Mainly 1st & 2nd</td>
<td>All</td>
<td>72</td>
</tr>
<tr>
<td>H598003</td>
<td>Cultural Anthropology I-E2</td>
<td>COKER, CAITLIN CHRISTINE</td>
<td>2</td>
<td>1</td>
<td>1st</td>
<td>Thu/2</td>
<td>All</td>
<td>All</td>
<td>73</td>
</tr>
<tr>
<td>H598004</td>
<td>Cultural Anthropology I-E2</td>
<td>COKER, CAITLIN CHRISTINE</td>
<td>2</td>
<td>1</td>
<td>1st</td>
<td>Thu/4</td>
<td>All</td>
<td>All</td>
<td>74</td>
</tr>
<tr>
<td>H802002</td>
<td>Human Geography-E2</td>
<td>BAARS, ROGER C.</td>
<td>2</td>
<td>1</td>
<td>1st</td>
<td>Thu/2</td>
<td>Mainly 1st & 2nd</td>
<td>All</td>
<td>75</td>
</tr>
<tr>
<td>H802003</td>
<td>Human Geography-E2</td>
<td>BAARS, ROGER C.</td>
<td>2</td>
<td>1</td>
<td>2nd</td>
<td>Thu/2</td>
<td>Mainly 1st & 2nd</td>
<td>All</td>
<td>76</td>
</tr>
<tr>
<td>H815001</td>
<td>Topics in Cultural Anthropology I-E2</td>
<td>COKER, CAITLIN CHRISTINE</td>
<td>2</td>
<td>1</td>
<td>2nd</td>
<td>Thu/3</td>
<td>All</td>
<td>All</td>
<td>77</td>
</tr>
<tr>
<td>H815002</td>
<td>Topics in Cultural Anthropology I-E2</td>
<td>COKER, CAITLIN CHRISTINE</td>
<td>2</td>
<td>1</td>
<td>2nd</td>
<td>Thu/4</td>
<td>All</td>
<td>All</td>
<td>78</td>
</tr>
<tr>
<td>H589001</td>
<td>Environmental Anthropology-E2</td>
<td>D’SOUZA, Rohan Ignatious</td>
<td>2</td>
<td>1</td>
<td>1st</td>
<td>Fri/3</td>
<td>All</td>
<td>All</td>
<td>79</td>
</tr>
<tr>
<td>H599001</td>
<td>Topics in Human Geography VII-E2(Population and Mobility)</td>
<td>SINGER JANE</td>
<td>2</td>
<td>1</td>
<td>2nd</td>
<td>Thu/3</td>
<td>Mainly 2nd</td>
<td>All</td>
<td>80</td>
</tr>
<tr>
<td>H813001</td>
<td>Contemporary Japanese Architecture-E2</td>
<td>DANIELL, Thomas</td>
<td>2</td>
<td>1</td>
<td>1st</td>
<td>Tue/3</td>
<td>Mainly 1st</td>
<td>All</td>
<td>81</td>
</tr>
<tr>
<td>H812001</td>
<td>Theory of Landscape Design-E2:House and Gardens of Kyoto</td>
<td>DANIELL, Thomas</td>
<td>2</td>
<td>1</td>
<td>2nd</td>
<td>Tue/3</td>
<td>Mainly 1st</td>
<td>All</td>
<td>82</td>
</tr>
<tr>
<td>H591001</td>
<td>Introduction to Globalization I-E2</td>
<td>LOPEZ, Mario Ivan</td>
<td>2</td>
<td>1</td>
<td>1st</td>
<td>Tue/3</td>
<td>Mainly 1st & 2nd</td>
<td>All</td>
<td>83</td>
</tr>
<tr>
<td>Lecture code</td>
<td>Course title</td>
<td>Instructor</td>
<td>No. of credits</td>
<td>No. of weekly blocks</td>
<td>Semester</td>
<td>Day/Period</td>
<td>Target year</td>
<td>Eligible students</td>
<td>Page</td>
</tr>
<tr>
<td>--------------</td>
<td>--</td>
<td>---------------------------</td>
<td>----------------</td>
<td>----------------------</td>
<td>----------</td>
<td>--------------</td>
<td>------------------</td>
<td>-------------------</td>
<td>------</td>
</tr>
<tr>
<td>H592001</td>
<td>Introduction to Globalization II-E2</td>
<td>LOPEZ · Mario Ivan</td>
<td>2</td>
<td>1</td>
<td>2nd</td>
<td>Tue/3</td>
<td>Mainly 1st & 2nd</td>
<td>All</td>
<td>84</td>
</tr>
<tr>
<td>H801001</td>
<td>Environmental Histories of South Asia-E2</td>
<td>D'SOUZA, Rohan Ignatious</td>
<td>2</td>
<td>1</td>
<td>2nd</td>
<td>Fri/3</td>
<td>All</td>
<td>All</td>
<td>85</td>
</tr>
<tr>
<td>H814001</td>
<td>Introduction to Urban Geography-E2</td>
<td>BAARS, ROGER C.</td>
<td>2</td>
<td>1</td>
<td>1st</td>
<td>Thu/4</td>
<td>All</td>
<td>All</td>
<td>86</td>
</tr>
<tr>
<td>H814002</td>
<td>Introduction to Urban Geography-E2</td>
<td>BAARS, ROGER C.</td>
<td>2</td>
<td>1</td>
<td>2nd</td>
<td>Thu/4</td>
<td>All</td>
<td>All</td>
<td>87</td>
</tr>
<tr>
<td>H806001</td>
<td>Introduction to Urban Planning-E2</td>
<td>SAMADDAR · Subhajyoti</td>
<td>2</td>
<td>1</td>
<td>1st</td>
<td>Wed/3</td>
<td>Mainly 1st & 2nd</td>
<td>All</td>
<td>88</td>
</tr>
<tr>
<td>H808001</td>
<td>Food and Globalization I-E2</td>
<td>Hart Nadav FEUER</td>
<td>2</td>
<td>1</td>
<td>1st</td>
<td>Wed/2</td>
<td>Mainly 1st & 2nd</td>
<td>All</td>
<td>89</td>
</tr>
<tr>
<td>H809001</td>
<td>Food and Globalization II-E2</td>
<td>Hart Nadav FEUER</td>
<td>2</td>
<td>1</td>
<td>2nd</td>
<td>Wed/2</td>
<td>Mainly 1st & 2nd</td>
<td>All</td>
<td>90</td>
</tr>
</tbody>
</table>

Humanities and Social Sciences (Jurisprudence, Politics and Economics)

<table>
<thead>
<tr>
<th>Lecture code</th>
<th>Course title</th>
<th>Instructor</th>
<th>No. of credits</th>
<th>No. of weekly blocks</th>
<th>Semester</th>
<th>Day/Period</th>
<th>Target year</th>
<th>Eligible students</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>H926001</td>
<td>Jurisprudence-E2</td>
<td>KARAISKOS · Antonios</td>
<td>2</td>
<td>1</td>
<td>2nd</td>
<td>Mon/4</td>
<td>Mainly 1st & 2nd</td>
<td>All</td>
<td>91</td>
</tr>
<tr>
<td>H927001</td>
<td>Law and Culture in Japan-E2</td>
<td>KARAISKOS · Antonios</td>
<td>2</td>
<td>1</td>
<td>1st</td>
<td>Fri/4</td>
<td>Mainly 1st & 2nd</td>
<td>All</td>
<td>92</td>
</tr>
<tr>
<td>H938001</td>
<td>Political Science I-E2</td>
<td>TANGSEEEFA · Decha</td>
<td>2</td>
<td>1</td>
<td>1st</td>
<td>Wed/3</td>
<td>All</td>
<td>All</td>
<td>93</td>
</tr>
<tr>
<td>H939001</td>
<td>Political Science II-E2</td>
<td>TANGSEEEFA · Decha</td>
<td>2</td>
<td>1</td>
<td>2nd</td>
<td>Wed/3</td>
<td>All</td>
<td>All</td>
<td>94</td>
</tr>
<tr>
<td>H934001</td>
<td>Introduction to Economics-E2</td>
<td>NEWTON · Jonathan Charles Scott</td>
<td>2</td>
<td>1</td>
<td>1st</td>
<td>Wed/1</td>
<td>Mainly 1st</td>
<td>All</td>
<td>95</td>
</tr>
<tr>
<td>H935001</td>
<td>Principles of Economics-E2</td>
<td>NEWTON · Jonathan Charles Scott</td>
<td>2</td>
<td>1</td>
<td>1st</td>
<td>Wed/2</td>
<td>Mainly 1st</td>
<td>All</td>
<td>96</td>
</tr>
<tr>
<td>H936001</td>
<td>Economy and Society I-E2</td>
<td>NEWTON · Jonathan Charles Scott</td>
<td>2</td>
<td>1</td>
<td>1st</td>
<td>Thu/3</td>
<td>Mainly 2nd</td>
<td>Liberal Arts</td>
<td>97</td>
</tr>
<tr>
<td>H937001</td>
<td>Economy and Society II-E2</td>
<td>NEWTON · Jonathan Charles Scott</td>
<td>2</td>
<td>1</td>
<td>1st</td>
<td>Thu/1</td>
<td>Mainly 2nd</td>
<td>Liberal Arts</td>
<td>98</td>
</tr>
<tr>
<td>H930001</td>
<td>Introduction to European Law-E2</td>
<td>KARAISKOS · Antonios</td>
<td>2</td>
<td>1</td>
<td>1st</td>
<td>Fri/3</td>
<td>2nd or above</td>
<td>All</td>
<td>99</td>
</tr>
<tr>
<td>H928001</td>
<td>Japan's Political Economy-E2</td>
<td>HIJINO Ken</td>
<td>2</td>
<td>1</td>
<td>2nd</td>
<td>Tue/2</td>
<td>Mainly 1st & 2nd</td>
<td>All</td>
<td>100</td>
</tr>
<tr>
<td>H929001</td>
<td>Japanese Politics-E2</td>
<td>HIJINO Ken</td>
<td>2</td>
<td>1</td>
<td>1st</td>
<td>Tue/2</td>
<td>2nd or above</td>
<td>All</td>
<td>101</td>
</tr>
<tr>
<td>H931001</td>
<td>Modern Classics in Political Science-E2</td>
<td>HIJINO Ken</td>
<td>2</td>
<td>1</td>
<td>1st</td>
<td>Wed/2</td>
<td>Mainly 1st & 2nd</td>
<td>All</td>
<td>102</td>
</tr>
<tr>
<td>H943001</td>
<td>International History 1900 to the Present-E2</td>
<td>MURPHY, Mahon</td>
<td>2</td>
<td>1</td>
<td>1st</td>
<td>Wed/4</td>
<td>2nd or above</td>
<td>All</td>
<td>103</td>
</tr>
<tr>
<td>H944001</td>
<td>An International History of East Asia 1839-1945-E2</td>
<td>MURPHY, Mahon</td>
<td>2</td>
<td>1</td>
<td>2nd</td>
<td>Tue/2</td>
<td>Mainly 1st & 2nd</td>
<td>All</td>
<td>104</td>
</tr>
</tbody>
</table>

Natural Sciences (Mathematics)

<table>
<thead>
<tr>
<th>Lecture code</th>
<th>Course title</th>
<th>Instructor</th>
<th>No. of credits</th>
<th>No. of weekly blocks</th>
<th>Semester</th>
<th>Day/Period</th>
<th>Target year</th>
<th>Eligible students</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>N157001</td>
<td>Calculus with Exercises A</td>
<td>Karel SVADLENKA</td>
<td>3</td>
<td>2</td>
<td>1st</td>
<td>Tue/2 - Wed2</td>
<td>Mainly 1st</td>
<td>Science</td>
<td>105</td>
</tr>
<tr>
<td>Lecture code</td>
<td>Course title</td>
<td>Instructor Name</td>
<td>No. of credits</td>
<td>No. of weekly time blocks</td>
<td>Semester</td>
<td>Day/Period</td>
<td>Target year</td>
<td>Eligible students</td>
<td>Page</td>
</tr>
<tr>
<td>--------------</td>
<td>---</td>
<td>--------------------------------------</td>
<td>----------------</td>
<td>---------------------------</td>
<td>----------</td>
<td>------------</td>
<td>-------------</td>
<td>------------------</td>
<td>------</td>
</tr>
<tr>
<td>N158001</td>
<td>Calculus with Exercises B</td>
<td>Karel SVADLENKA</td>
<td>3</td>
<td>2</td>
<td>2nd</td>
<td>Tue/2·Wed2</td>
<td>Mainly 1st</td>
<td>Science</td>
<td>106</td>
</tr>
<tr>
<td>N159001</td>
<td>Linear Algebra with Exercises A</td>
<td>COLLINS, Benoit Vincent Pierre</td>
<td>3</td>
<td>2</td>
<td>1st</td>
<td>Mon/3·Tue/2</td>
<td>Mainly 1st</td>
<td>Science</td>
<td>107</td>
</tr>
<tr>
<td>N160001</td>
<td>Linear Algebra with Exercises B</td>
<td>COLLINS, Benoit Vincent Pierre</td>
<td>3</td>
<td>2</td>
<td>2nd</td>
<td>Mon/3·Tue/2</td>
<td>Mainly 1st</td>
<td>Science</td>
<td>108</td>
</tr>
<tr>
<td>N168001</td>
<td>Mathematical Description of Natural Phenomena</td>
<td>CHANG, Kai-Chun</td>
<td>2</td>
<td>1</td>
<td>1st</td>
<td>Tue/3</td>
<td>Mainly 1st</td>
<td>Science</td>
<td>109</td>
</tr>
<tr>
<td>N178001</td>
<td>Mathematical Description of Natural Phenomena-E2</td>
<td>ISLAM, A.K.M. Mahfuzul</td>
<td>2</td>
<td>1</td>
<td>1st</td>
<td>Tue/2</td>
<td>Mainly 1st</td>
<td>Science</td>
<td>110</td>
</tr>
<tr>
<td>N174001</td>
<td>Quest for Mathematics I-E2</td>
<td>CROYDON, David</td>
<td>2</td>
<td>1</td>
<td>1st</td>
<td>Fri/2</td>
<td>Mainly 1st & 2nd</td>
<td>Liberal Arts</td>
<td>111</td>
</tr>
<tr>
<td>N174002</td>
<td>Quest for Mathematics I-E2</td>
<td>Arsieny Aleksandrovich, Kuzmin</td>
<td>2</td>
<td>1</td>
<td>1st</td>
<td>Tue/2</td>
<td>Mainly 1st & 2nd</td>
<td>All</td>
<td>112</td>
</tr>
<tr>
<td>N175001</td>
<td>Quest for Mathematics II-E2</td>
<td>TAN, Fucheng</td>
<td>2</td>
<td>1</td>
<td>1st</td>
<td>Thu/4</td>
<td>All</td>
<td>All</td>
<td>113</td>
</tr>
<tr>
<td>N175002</td>
<td>Quest for Mathematics II-E2</td>
<td>TAN, Fucheng</td>
<td>2</td>
<td>1</td>
<td>2nd</td>
<td>Thu/4</td>
<td>All</td>
<td>All</td>
<td>115</td>
</tr>
<tr>
<td>N169001</td>
<td>Advanced Calculus I-Vector Calculus</td>
<td>QURESJI, Ali Gul</td>
<td>2</td>
<td>1</td>
<td>1st</td>
<td>Wed/5</td>
<td>2nd or above</td>
<td>Science</td>
<td>117</td>
</tr>
<tr>
<td>N170001</td>
<td>Advanced Calculus II-Differential Equations</td>
<td>QURESJI, Ali Gul</td>
<td>2</td>
<td>1</td>
<td>2nd</td>
<td>Wed/5</td>
<td>2nd or above</td>
<td>Science</td>
<td>118</td>
</tr>
<tr>
<td>N106001</td>
<td>Advanced Linear Algebra</td>
<td>CHANG, Kai-Chun</td>
<td>2</td>
<td>1</td>
<td>1st</td>
<td>Fri/2</td>
<td>2nd or above</td>
<td>Science</td>
<td>119</td>
</tr>
<tr>
<td>N162001</td>
<td>Function Theory of a Complex Variable-E2</td>
<td>CROYDON, David</td>
<td>2</td>
<td>1</td>
<td>1st</td>
<td>Fri/1</td>
<td>Mainly 2nd</td>
<td>Science</td>
<td>120</td>
</tr>
<tr>
<td>N161001</td>
<td>Honors Mathematics A-E2</td>
<td>COLLINS, Benoit Vincent Pierre</td>
<td>2</td>
<td>1</td>
<td>2nd</td>
<td>Tue/3</td>
<td>Mainly 1st</td>
<td>Science</td>
<td>121</td>
</tr>
<tr>
<td>N165001</td>
<td>Honors Mathematics B-E2</td>
<td>Karel SVADLENKA</td>
<td>2</td>
<td>1</td>
<td>1st</td>
<td>Tue/3</td>
<td>Mainly 2nd</td>
<td>Science</td>
<td>122</td>
</tr>
</tbody>
</table>

Natural Sciences (Data Science)

<table>
<thead>
<tr>
<th>Lecture code</th>
<th>Course title</th>
<th>Instructor Name</th>
<th>No. of credits</th>
<th>No. of weekly time blocks</th>
<th>Semester</th>
<th>Day/Period</th>
<th>Target year</th>
<th>Eligible students</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>N804001</td>
<td>Introductory Statistics-E2</td>
<td>VEALE, Richard Edmund</td>
<td>2</td>
<td>1</td>
<td>1st</td>
<td>Fri/3</td>
<td>All</td>
<td>All</td>
<td>123</td>
</tr>
<tr>
<td>N804002</td>
<td>Introductory Statistics-E2</td>
<td>VANDENBON, Alexis</td>
<td>2</td>
<td>1</td>
<td>2nd</td>
<td>Tue/2</td>
<td>All</td>
<td>All</td>
<td>124</td>
</tr>
<tr>
<td>N815001</td>
<td>Mathematical Statistics-E2</td>
<td>CROYDON, David</td>
<td>2</td>
<td>1</td>
<td>1st</td>
<td>未定</td>
<td>Mainly 2nd</td>
<td>Science</td>
<td>125</td>
</tr>
<tr>
<td>N815002</td>
<td>Mathematical Statistics-E2</td>
<td>CROYDON, David</td>
<td>2</td>
<td>1</td>
<td>2nd</td>
<td>未定</td>
<td>Mainly 2nd</td>
<td>Science</td>
<td>126</td>
</tr>
<tr>
<td>N809001</td>
<td>Basic Data Analysis-E2</td>
<td>VANDENBON, Alexis</td>
<td>2</td>
<td>1</td>
<td>1st</td>
<td>Tue/2</td>
<td>All</td>
<td>All</td>
<td>127</td>
</tr>
<tr>
<td>N816001</td>
<td>Second Course in Statistics-E2</td>
<td>CROYDON, David</td>
<td>2</td>
<td>1</td>
<td>2nd</td>
<td>未定</td>
<td>Mainly 2nd</td>
<td>All</td>
<td>128</td>
</tr>
<tr>
<td>N813001</td>
<td>Data Analysis Practice I-E2</td>
<td>RAKERS, Christin</td>
<td>2</td>
<td>1</td>
<td>1st</td>
<td>Thu/4</td>
<td>All</td>
<td>All</td>
<td>129</td>
</tr>
<tr>
<td>Lecture code</td>
<td>Course title</td>
<td>Instructor</td>
<td>No. of credits</td>
<td>No. of weekly blocks</td>
<td>Semester</td>
<td>Day/Period</td>
<td>Target year</td>
<td>Eligible students</td>
<td>Page</td>
</tr>
<tr>
<td>-------------</td>
<td>--</td>
<td>---------------------------</td>
<td>----------------</td>
<td>----------------------</td>
<td>----------</td>
<td>------------</td>
<td>-------------</td>
<td>-------------------</td>
<td>------</td>
</tr>
<tr>
<td>N813002</td>
<td>Data Analysis Practice I-E2</td>
<td>RAKERS · Christin</td>
<td>2</td>
<td>1</td>
<td>2nd</td>
<td>Thu/4</td>
<td>All</td>
<td>All</td>
<td>130</td>
</tr>
<tr>
<td>N814001</td>
<td>Data Analysis Practice II-E2</td>
<td>PATAKY · Todd</td>
<td>2</td>
<td>1</td>
<td>2nd</td>
<td>Fri/3</td>
<td>All</td>
<td>All</td>
<td>131</td>
</tr>
<tr>
<td></td>
<td>Natural Sciences (Physics)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>N208001</td>
<td>Fundamental Physics A</td>
<td>QURESHI · Ali Gul</td>
<td>2</td>
<td>1</td>
<td>1st</td>
<td>Thu/4</td>
<td>Mainly 1st</td>
<td>Science</td>
<td>132</td>
</tr>
<tr>
<td>N261001</td>
<td>Fundamental Physics A-E2</td>
<td>OKEYO · Kennedy Omondi</td>
<td>2</td>
<td>1</td>
<td>1st</td>
<td>Thu/2</td>
<td>Mainly 1st</td>
<td>Science</td>
<td>133</td>
</tr>
<tr>
<td>N209001</td>
<td>Fundamental Physics B</td>
<td>QURESHI · Ali Gul</td>
<td>2</td>
<td>1</td>
<td>2nd</td>
<td>Thu/4</td>
<td>Mainly 1st</td>
<td>Science</td>
<td>134</td>
</tr>
<tr>
<td>N264001</td>
<td>Fundamental Physics B-E2</td>
<td>DE ZOYSYA · Menaka</td>
<td>2</td>
<td>1</td>
<td>2nd</td>
<td>Thu/3</td>
<td>Mainly 1st</td>
<td>Science</td>
<td>135</td>
</tr>
<tr>
<td>N256001</td>
<td>Elementary Experimental Physics-E2</td>
<td>WENDELL, Roger</td>
<td>2</td>
<td>2</td>
<td>2nd</td>
<td>Wed/3 · Wed/4</td>
<td>Mainly 1st</td>
<td>Science</td>
<td>136</td>
</tr>
<tr>
<td>N255001</td>
<td>Elementary Course of Physics A-E2</td>
<td>PETERS, Robert</td>
<td>2</td>
<td>1</td>
<td>1st</td>
<td>Mon/3</td>
<td>Mainly 1st</td>
<td>Science</td>
<td>137</td>
</tr>
<tr>
<td>N271001</td>
<td>Elementary Course of Physics B-E2</td>
<td>Arseniy Aleksandrovich · Kuzmin</td>
<td>2</td>
<td>1</td>
<td>2nd</td>
<td>Tue/2</td>
<td>Mainly 1st</td>
<td>Science</td>
<td>138</td>
</tr>
<tr>
<td>N211001</td>
<td>Advanced Dynamics</td>
<td>KIM · SUNMIN</td>
<td>2</td>
<td>1</td>
<td>2nd</td>
<td>Tue/3</td>
<td>Mainly 1st</td>
<td>Science</td>
<td>139</td>
</tr>
<tr>
<td>N207001</td>
<td>Physics of Wave and Oscillation</td>
<td>KIM · SUNMIN</td>
<td>2</td>
<td>1</td>
<td>1st</td>
<td>Thu/4</td>
<td>Mainly 2nd</td>
<td>Science</td>
<td>140</td>
</tr>
<tr>
<td>N251001</td>
<td>Advanced Course of Electromagnetism-E2</td>
<td>BEAUCAMP · Anthony Tadeus Herve</td>
<td>2</td>
<td>1</td>
<td>1st</td>
<td>Tue/1</td>
<td>Mainly 2nd</td>
<td>Science</td>
<td>141</td>
</tr>
<tr>
<td>N253001</td>
<td>A Guide to Modern Physics A-E2</td>
<td>WENDELL, Roger</td>
<td>2</td>
<td>1</td>
<td>1st</td>
<td>Mon/3</td>
<td>Mainly 1st</td>
<td>All</td>
<td>142</td>
</tr>
<tr>
<td>N260002</td>
<td>Physics for All-E2</td>
<td>ISLAM, A K M Mahfuzul</td>
<td>2</td>
<td>1</td>
<td>1st</td>
<td>Tue/3</td>
<td>Mainly 1st & 2nd</td>
<td>Liberal Arts</td>
<td>143</td>
</tr>
<tr>
<td>N260001</td>
<td>Physics for All-E2</td>
<td>OKEYO · Kennedy Omondi</td>
<td>2</td>
<td>1</td>
<td>2nd</td>
<td>Tue/3</td>
<td>Mainly 1st</td>
<td>All</td>
<td>144</td>
</tr>
<tr>
<td>N262001</td>
<td>Introduction to Modern Optics-E2</td>
<td>BEAUCAMP · Anthony Tadeus Herve</td>
<td>2</td>
<td>1</td>
<td>1st</td>
<td>Tue/2</td>
<td>Mainly 1st & 2nd</td>
<td>Science</td>
<td>145</td>
</tr>
<tr>
<td>N263001</td>
<td>Introduction to Light Control-E2</td>
<td>DE ZOYSYA · Menaka</td>
<td>2</td>
<td>1</td>
<td>1st</td>
<td>Wed/1</td>
<td>Mainly 2nd</td>
<td>Science</td>
<td>146</td>
</tr>
<tr>
<td>N272001</td>
<td>Fundamentals of Materials I-E2</td>
<td>GAO · Si</td>
<td>2</td>
<td>1</td>
<td>1st</td>
<td>Thu/2</td>
<td>Mainly 1st & 2nd</td>
<td>Science</td>
<td>147</td>
</tr>
<tr>
<td>N273001</td>
<td>Fundamentals of Materials II-E2</td>
<td>GAO · Si</td>
<td>2</td>
<td>1</td>
<td>2nd</td>
<td>Mon/2</td>
<td>Mainly 1st & 2nd</td>
<td>Science</td>
<td>148</td>
</tr>
<tr>
<td>N257001</td>
<td>Introduction to Statistical Physics-E2</td>
<td>PETERS, Robert</td>
<td>2</td>
<td>1</td>
<td>2nd</td>
<td>Wed/4</td>
<td>Mainly 1st & 2nd</td>
<td>Science</td>
<td>149</td>
</tr>
<tr>
<td>N249001</td>
<td>Theory of Special Relativity-E2</td>
<td>Antonio De Felice</td>
<td>2</td>
<td>1</td>
<td>2nd</td>
<td>Wed/2</td>
<td>Mainly 1st & 2nd</td>
<td>All</td>
<td>150</td>
</tr>
<tr>
<td>N254001</td>
<td>Analytic Dynamics-E2</td>
<td>PETERS, Robert</td>
<td>2</td>
<td>1</td>
<td>1st</td>
<td>Tue/3</td>
<td>Mainly 2nd</td>
<td>Science</td>
<td>151</td>
</tr>
<tr>
<td>Lecture code</td>
<td>Course title</td>
<td>Instructor</td>
<td>No. of credits</td>
<td>No. of weekly time blocks</td>
<td>Semester</td>
<td>Day/Period</td>
<td>Target year</td>
<td>Eligible students</td>
<td>Page</td>
</tr>
<tr>
<td>--------------</td>
<td>--</td>
<td>---</td>
<td>----------------</td>
<td>---------------------------</td>
<td>----------</td>
<td>--------------</td>
<td>-------------</td>
<td>-------------------</td>
<td>------</td>
</tr>
<tr>
<td>N270001</td>
<td>Introduction to Quantum Physics-E2</td>
<td>Arseniy Aleksandrovich, Kuzmin</td>
<td>2</td>
<td>1</td>
<td>2nd</td>
<td>Tue/4</td>
<td>Mainly 2nd</td>
<td>Science</td>
<td>152</td>
</tr>
<tr>
<td>N269001</td>
<td>Introduction to Plasma Science-E2</td>
<td>Arseniy Aleksandrovich, Kuzmin</td>
<td>2</td>
<td>1</td>
<td>2nd</td>
<td>Tue/3</td>
<td>Mainly 1st</td>
<td>All</td>
<td>153</td>
</tr>
<tr>
<td>N248001</td>
<td>Introduction to Cosmology-E2</td>
<td>Antonio De Felice</td>
<td>2</td>
<td>1</td>
<td>1st</td>
<td>Wed/2</td>
<td>Mainly 1st & 2nd</td>
<td>All</td>
<td>154</td>
</tr>
</tbody>
</table>

Natural Sciences (Chemistry)

<table>
<thead>
<tr>
<th>Lecture code</th>
<th>Course title</th>
<th>Instructor</th>
<th>No. of credits</th>
<th>No. of weekly time blocks</th>
<th>Semester</th>
<th>Day/Period</th>
<th>Target year</th>
<th>Eligible students</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>N371001</td>
<td>Essentials of Basic Physical Chemistry-E2</td>
<td>ARIVAZHAGAN RAJENDRAN</td>
<td>2</td>
<td>1</td>
<td>1st</td>
<td>Mon/2</td>
<td>Mainly 1st & 2nd</td>
<td>Science</td>
<td>155</td>
</tr>
<tr>
<td>N365002</td>
<td>Basic Physical Chemistry (thermodynamics)-E2</td>
<td>PARK, Jaehong</td>
<td>2</td>
<td>1</td>
<td>2nd</td>
<td>Thu/3</td>
<td>Mainly 1st & 2nd</td>
<td>Science</td>
<td>156</td>
</tr>
<tr>
<td>N365001</td>
<td>Basic Physical Chemistry (thermodynamics)-E2</td>
<td>ARIVAZHAGAN RAJENDRAN</td>
<td>2</td>
<td>1</td>
<td>1st</td>
<td>Mon/3</td>
<td>Mainly 1st & 2nd</td>
<td>Science</td>
<td>157</td>
</tr>
<tr>
<td>N366003</td>
<td>Basic Physical Chemistry (quantum theory)-E2</td>
<td>PARK, Jaehong</td>
<td>2</td>
<td>1</td>
<td>1st</td>
<td>Mon/3</td>
<td>Mainly 1st & 2nd</td>
<td>Science</td>
<td>158</td>
</tr>
<tr>
<td>N366002</td>
<td>Basic Physical Chemistry (quantum theory)-E2</td>
<td>ARIVAZHAGAN RAJENDRAN</td>
<td>2</td>
<td>1</td>
<td>2nd</td>
<td>Mon/2</td>
<td>Mainly 1st & 2nd</td>
<td>Science</td>
<td>159</td>
</tr>
<tr>
<td>N368002</td>
<td>Basic Organic Chemistry I-E2</td>
<td>Juha Lintuluoto</td>
<td>2</td>
<td>1</td>
<td>1st</td>
<td>Thu/2</td>
<td>Mainly 1st</td>
<td>Science</td>
<td>160</td>
</tr>
<tr>
<td>N368001</td>
<td>Basic Organic Chemistry I-E2</td>
<td>Amelie Perron</td>
<td>2</td>
<td>1</td>
<td>1st</td>
<td>Tue/5</td>
<td>Mainly 1st & 2nd</td>
<td>Science</td>
<td>161</td>
</tr>
<tr>
<td>N369002</td>
<td>Basic Organic Chemistry II-E2</td>
<td>Juha Lintuluoto</td>
<td>2</td>
<td>1</td>
<td>2nd</td>
<td>Thu/2</td>
<td>Mainly 1st</td>
<td>Science</td>
<td>162</td>
</tr>
<tr>
<td>N369003</td>
<td>Basic Organic Chemistry II-E2</td>
<td>Amelie Perron</td>
<td>2</td>
<td>1</td>
<td>2nd</td>
<td>Tue/5</td>
<td>Mainly 1st</td>
<td>Science</td>
<td>163</td>
</tr>
<tr>
<td>N374001</td>
<td>Fundamental Chemical Experiments-E2</td>
<td>Juha Lintuluoto</td>
<td>2</td>
<td>2</td>
<td>1st</td>
<td>Wed/3 · Wed/4</td>
<td>Mainly 1st & 2nd</td>
<td>Science</td>
<td>164</td>
</tr>
<tr>
<td>N374002</td>
<td>Fundamental Chemical Experiments-E2</td>
<td>Cedric Tassel</td>
<td>2</td>
<td>2</td>
<td>1st</td>
<td>Wed/3 · Wed/4</td>
<td>Mainly 1st</td>
<td>Science</td>
<td>164</td>
</tr>
<tr>
<td>N374004</td>
<td>Fundamental Chemical Experiments-E2</td>
<td>Cedric Tassel</td>
<td>2</td>
<td>2</td>
<td>2nd</td>
<td>Wed/3 · Wed/4</td>
<td>Mainly 1st & 2nd</td>
<td>Science</td>
<td>165</td>
</tr>
<tr>
<td>N384001</td>
<td>Outline of Chemistry I (Its History and Fundamentals)-E2</td>
<td>GAO, Si</td>
<td>2</td>
<td>1</td>
<td>2nd</td>
<td>Thu/2</td>
<td>Mainly 1st & 2nd</td>
<td>All</td>
<td>166</td>
</tr>
<tr>
<td>N362001</td>
<td>Everyday Life Chemistry-E2</td>
<td>Amelie Perron</td>
<td>2</td>
<td>1</td>
<td>2nd</td>
<td>Thu/4</td>
<td>Mainly 1st & 2nd</td>
<td>All</td>
<td>167</td>
</tr>
<tr>
<td>N367001</td>
<td>Chemistry of Sustainable Energy-E2</td>
<td>ARIVAZHAGAN RAJENDRAN</td>
<td>2</td>
<td>1</td>
<td>2nd</td>
<td>Mon/3</td>
<td>All</td>
<td>Science</td>
<td>168</td>
</tr>
<tr>
<td>N377001</td>
<td>Revisiting Basic Organic Chemistry I-E2</td>
<td>LANDENBERGER, Kira Beth</td>
<td>2</td>
<td>1</td>
<td>2nd</td>
<td>Thu/4</td>
<td>Mainly 2nd</td>
<td>Science</td>
<td>169</td>
</tr>
<tr>
<td>N378001</td>
<td>Revisiting Basic Organic Chemistry II-E2</td>
<td>LANDENBERGER, Kira Beth</td>
<td>2</td>
<td>1</td>
<td>1st</td>
<td>Thu/4</td>
<td>Mainly 2nd</td>
<td>Science</td>
<td>170</td>
</tr>
<tr>
<td>N381001</td>
<td>Revisiting Basic Physical Chemistry (thermodynamics)-E2</td>
<td>ALCANTARA AVILA, Jesus Rafael</td>
<td>2</td>
<td>1</td>
<td>1st</td>
<td>Thu/4</td>
<td>Mainly 2nd</td>
<td>Science</td>
<td>171</td>
</tr>
<tr>
<td>Lecture code</td>
<td>Course title</td>
<td>Instructor</td>
<td>No. of credits</td>
<td>No. of weekly time blocks</td>
<td>Seme- ter</td>
<td>Day/ Period</td>
<td>Target year</td>
<td>Eligible students</td>
<td>Page</td>
</tr>
<tr>
<td>-------------</td>
<td>--</td>
<td>---</td>
<td>----------------</td>
<td>--------------------------</td>
<td>----------</td>
<td>-------------</td>
<td>-------------</td>
<td>-----------------</td>
<td>-------</td>
</tr>
<tr>
<td>N382001</td>
<td>Revisiting Basic Physical Chemistry (quantum theory)-E2</td>
<td>ALCANTARA AVILA, Jesus Rafael</td>
<td>2</td>
<td>1</td>
<td>2nd</td>
<td>Thu/4</td>
<td>Mainly 2nd</td>
<td>Science</td>
<td>172</td>
</tr>
<tr>
<td>N373001</td>
<td>Equilibrium and Energy-E2: A Macroscopic Perspective of Chemistry</td>
<td>THUERMER • Stephan</td>
<td>2</td>
<td>1</td>
<td>1st</td>
<td>Mon/3</td>
<td>Mainly 1st & 2nd</td>
<td>Science</td>
<td>173</td>
</tr>
<tr>
<td>N363001</td>
<td>Introduction to Inorganic Chemistry A-E2</td>
<td>Cedric Tassel</td>
<td>2</td>
<td>1</td>
<td>1st</td>
<td>Tue/3</td>
<td>Mainly 1st & 2nd</td>
<td>Science</td>
<td>174</td>
</tr>
<tr>
<td>N364001</td>
<td>Introduction to Inorganic Chemistry B-E2</td>
<td>Cedric Tassel</td>
<td>2</td>
<td>1</td>
<td>2nd</td>
<td>Tue/3</td>
<td>Mainly 1st & 2nd</td>
<td>Science</td>
<td>175</td>
</tr>
<tr>
<td>N361001</td>
<td>Organic Chemistry of Life-E2</td>
<td>Amelie Perron</td>
<td>2</td>
<td>1</td>
<td>1st</td>
<td>Thu/4</td>
<td>Mainly 1st & 2nd</td>
<td>Science</td>
<td>176</td>
</tr>
<tr>
<td>N372001</td>
<td>Introduction to Surface Chemistry-E2</td>
<td>THUERMER • Stephan</td>
<td>2</td>
<td>1</td>
<td>2nd</td>
<td>Mon/3</td>
<td>Mainly 2nd</td>
<td>Science</td>
<td>177</td>
</tr>
<tr>
<td>N383001</td>
<td>Chemistry in Solar Energy Conversion-E2</td>
<td>PARK • Jaehong</td>
<td>2</td>
<td>1</td>
<td>1st</td>
<td>Tue/4</td>
<td>Mainly 1st & 2nd</td>
<td>Science</td>
<td>178</td>
</tr>
<tr>
<td>N380001</td>
<td>Chemical Kinetics and Molecular Reaction Dynamics-E2</td>
<td>PARK • Jaehong</td>
<td>2</td>
<td>1</td>
<td>2nd</td>
<td>Thu/4</td>
<td>Mainly 1st & 2nd</td>
<td>Science</td>
<td>179</td>
</tr>
<tr>
<td>N923001</td>
<td>Fundamentals of Cell and Molecular Biology-E2</td>
<td>TAKENAKA • Mizuki</td>
<td>2</td>
<td>1</td>
<td>1st</td>
<td>Fri/2</td>
<td>Mainly 1st & 2nd</td>
<td>All</td>
<td>180</td>
</tr>
<tr>
<td>N924001</td>
<td>Introduction to Plant Science-E2</td>
<td>TAKENAKA • Mizuki</td>
<td>2</td>
<td>1</td>
<td>2nd</td>
<td>Fri/2</td>
<td>Mainly 1st & 2nd</td>
<td>All</td>
<td>181</td>
</tr>
<tr>
<td>N497001</td>
<td>Comparative Cognition-E2</td>
<td>Andrew MacIntosh</td>
<td>2</td>
<td>1</td>
<td>2nd</td>
<td>Mon/4</td>
<td>All</td>
<td>Science</td>
<td>182</td>
</tr>
<tr>
<td>N496001</td>
<td>Conservation Biology-E2</td>
<td>Andrew MacIntosh</td>
<td>2</td>
<td>1</td>
<td>1st</td>
<td>Mon/5</td>
<td>All</td>
<td>Science</td>
<td>183</td>
</tr>
<tr>
<td>N498001</td>
<td>Animal Behavior-E2</td>
<td>Andrew MacIntosh</td>
<td>2</td>
<td>1</td>
<td>1st</td>
<td>Mon/4</td>
<td>All</td>
<td>Science</td>
<td>184</td>
</tr>
<tr>
<td>N499001</td>
<td>Zoo Biology-E2</td>
<td>Andrew MacIntosh</td>
<td>2</td>
<td>1</td>
<td>2nd/int</td>
<td>-</td>
<td>All</td>
<td>Science</td>
<td>185</td>
</tr>
<tr>
<td>N492001</td>
<td>Principles of Genetics-E2</td>
<td>Shohab YOUSSEFIAN</td>
<td>2</td>
<td>1</td>
<td>1st</td>
<td>Tue/2</td>
<td>Mainly 1st & 2nd</td>
<td>Science</td>
<td>186</td>
</tr>
<tr>
<td>N901001</td>
<td>Introduction to Genetics and Evolution-E2</td>
<td>HEJNA, James</td>
<td>2</td>
<td>1</td>
<td>2nd</td>
<td>Mon/3</td>
<td>Mainly 1st & 2nd</td>
<td>Science</td>
<td>187</td>
</tr>
<tr>
<td>N911001</td>
<td>Basic Biology-E2</td>
<td>HEJNA, James</td>
<td>2</td>
<td>1</td>
<td>1st</td>
<td>Mon/3</td>
<td>Mainly 1st & 2nd</td>
<td>Science</td>
<td>188</td>
</tr>
<tr>
<td>N912001</td>
<td>Basic Genetic Engineering-E2</td>
<td>HEJNA, James</td>
<td>2</td>
<td>1</td>
<td>2nd</td>
<td>Wed/2</td>
<td>Mainly 1st & 2nd</td>
<td>Science</td>
<td>189</td>
</tr>
<tr>
<td>N490001</td>
<td>Introduction to Biochemistry-E2</td>
<td>Shohab YOUSSEFIAN</td>
<td>2</td>
<td>1</td>
<td>2nd</td>
<td>Tue/2</td>
<td>Mainly 1st & 2nd</td>
<td>Science</td>
<td>190</td>
</tr>
<tr>
<td>N490003</td>
<td>Introduction to Biochemistry-E2</td>
<td>Shohab YOUSSEFIAN</td>
<td>2</td>
<td>1</td>
<td>2nd</td>
<td>Tue/3</td>
<td>Mainly 1st & 2nd</td>
<td>Science</td>
<td>191</td>
</tr>
<tr>
<td>N490002</td>
<td>Introduction to Biochemistry-E2</td>
<td>Marco, Marques Candeias</td>
<td>2</td>
<td>1</td>
<td>2nd</td>
<td>Tue/2</td>
<td>Mainly 1st & 2nd</td>
<td>Science</td>
<td>192</td>
</tr>
<tr>
<td>N490004</td>
<td>Introduction to Biochemistry-E2</td>
<td>Marco, Marques Candeias</td>
<td>2</td>
<td>1</td>
<td>2nd</td>
<td>Tue/3</td>
<td>Mainly 1st & 2nd</td>
<td>Science</td>
<td>193</td>
</tr>
<tr>
<td>Lecture code</td>
<td>Course title</td>
<td>Instructor</td>
<td>No. of credits</td>
<td>No. of weekly time blocks</td>
<td>Semester</td>
<td>Day/Period</td>
<td>Target year</td>
<td>Eligible students</td>
<td>Page</td>
</tr>
<tr>
<td>--------------</td>
<td>--</td>
<td>-----------------------------</td>
<td>----------------</td>
<td>--------------------------</td>
<td>----------</td>
<td>------------</td>
<td>-------------</td>
<td>-------------------</td>
<td>------</td>
</tr>
<tr>
<td>N491001</td>
<td>Introduction to Molecular Biotechnology-E2</td>
<td>Shohab YOUSSEFIAN</td>
<td>2</td>
<td>1</td>
<td>1st</td>
<td>Tue/3</td>
<td>Mainly 1st & 2nd</td>
<td>Science</td>
<td>194</td>
</tr>
<tr>
<td>N913001</td>
<td>Introduction to Behavioral Neuroscience A-E2</td>
<td>VEALE · Richard Edmund</td>
<td>2</td>
<td>1</td>
<td>1st</td>
<td>Fri/5</td>
<td>All</td>
<td>All</td>
<td>195</td>
</tr>
<tr>
<td>N914001</td>
<td>Introduction to Behavioral Neuroscience B-E2</td>
<td>VEALE · Richard Edmund</td>
<td>2</td>
<td>1</td>
<td>2nd</td>
<td>Fri/5</td>
<td>All</td>
<td>All</td>
<td>196</td>
</tr>
<tr>
<td>N917001</td>
<td>Fundamentals of Neuroscience-E2</td>
<td>ZENAS C. CHAO</td>
<td>2</td>
<td>1</td>
<td>1st</td>
<td>Mon/2</td>
<td>All</td>
<td>All</td>
<td>197</td>
</tr>
<tr>
<td>N918001</td>
<td>Introduction to Human Physiology-E2</td>
<td>ZENAS C. CHAO</td>
<td>2</td>
<td>1</td>
<td>2nd</td>
<td>Mon/2</td>
<td>All</td>
<td>All</td>
<td>198</td>
</tr>
<tr>
<td>N931001</td>
<td>Introduction to Biological Rhythms-E2</td>
<td>Fustin · Jean Michel</td>
<td>2</td>
<td>1</td>
<td>1st</td>
<td>Thu/5</td>
<td>Mainly 2nd</td>
<td>Science</td>
<td>199</td>
</tr>
<tr>
<td>N932001</td>
<td>Introduction to Molecular Cell Biology-E2</td>
<td>Fustin · Jean Michel</td>
<td>2</td>
<td>1</td>
<td>2nd</td>
<td>Fri/5</td>
<td>Mainly 1st</td>
<td>Science</td>
<td>200</td>
</tr>
<tr>
<td>N904001</td>
<td>Chromosome Biology-E2</td>
<td>CARLTON · Peter</td>
<td>2</td>
<td>1</td>
<td>1st</td>
<td>Tue/5</td>
<td>Mainly 1st & 2nd</td>
<td>All</td>
<td>201</td>
</tr>
<tr>
<td>N907001</td>
<td>Practical Computing for Biologists-E2</td>
<td>CARLTON · Peter</td>
<td>2</td>
<td>1</td>
<td>2nd</td>
<td>Tue/5</td>
<td>Mainly 1st & 2nd</td>
<td>Science</td>
<td>202</td>
</tr>
<tr>
<td>N493001</td>
<td>Basic Plant Science-E2</td>
<td>Garry John PILLER</td>
<td>2</td>
<td>1</td>
<td>1st</td>
<td>Mon/2</td>
<td>Mainly 1st & 2nd</td>
<td>Science</td>
<td>203</td>
</tr>
<tr>
<td>N494001</td>
<td>Introductory Plant Ecology-E2</td>
<td>Garry John PILLER</td>
<td>2</td>
<td>1</td>
<td>1st</td>
<td>Wed/3</td>
<td>Mainly 1st & 2nd</td>
<td>Science</td>
<td>204</td>
</tr>
<tr>
<td>N495001</td>
<td>Principles of Horticulture-E2</td>
<td>Garry John PILLER</td>
<td>2</td>
<td>1</td>
<td>2nd</td>
<td>Wed/3</td>
<td>Mainly 1st & 2nd</td>
<td>Science</td>
<td>205</td>
</tr>
<tr>
<td>N905001</td>
<td>Introduction to Ecology-E2</td>
<td>BARNETT · Craig Antony</td>
<td>2</td>
<td>1</td>
<td>1st</td>
<td>Mon/2</td>
<td>Mainly 1st & 2nd</td>
<td>All</td>
<td>206</td>
</tr>
<tr>
<td>N906001</td>
<td>Introduction to Evolution-E2</td>
<td>BARNETT · Craig Antony</td>
<td>2</td>
<td>1</td>
<td>2nd</td>
<td>Mon/2</td>
<td>Mainly 1st & 2nd</td>
<td>All</td>
<td>207</td>
</tr>
<tr>
<td>N925001</td>
<td>Biological Sciences through Scientific Articles I-E2</td>
<td>TAKENAKA · Mizuki</td>
<td>2</td>
<td>1</td>
<td>1st</td>
<td>Tue/5</td>
<td>Mainly 1st & 2nd</td>
<td>All</td>
<td>208</td>
</tr>
<tr>
<td>N926001</td>
<td>Biological Sciences through Scientific Articles II-E2</td>
<td>TAKENAKA · Mizuki</td>
<td>2</td>
<td>1</td>
<td>2nd</td>
<td>Tue/5</td>
<td>Mainly 1st & 2nd</td>
<td>All</td>
<td>209</td>
</tr>
<tr>
<td>N928001</td>
<td>Introduction to Biological Data Analysis-E2</td>
<td>RAKERS · Christin</td>
<td>2</td>
<td>1</td>
<td>1st</td>
<td>Thu/3</td>
<td>All</td>
<td>All</td>
<td>210</td>
</tr>
<tr>
<td>N927001</td>
<td>Introduction to Computational Molecular Biology-E2</td>
<td>RAKERS · Christin</td>
<td>2</td>
<td>1</td>
<td>2nd</td>
<td>Thu/3</td>
<td>All</td>
<td>Science</td>
<td>211</td>
</tr>
<tr>
<td>N929001</td>
<td>Introduction to Plant Physiology-E2</td>
<td>Daniel Epron</td>
<td>2</td>
<td>1</td>
<td>2nd</td>
<td>Mon/3</td>
<td>Mainly 1st & 2nd</td>
<td>All</td>
<td>212</td>
</tr>
<tr>
<td>N533001</td>
<td>Introduction to Earth Science A</td>
<td>FLORES Giancarlo</td>
<td>2</td>
<td>1</td>
<td>1st</td>
<td>Fri/2</td>
<td>Mainly 1st</td>
<td>Science</td>
<td>213</td>
</tr>
<tr>
<td>N560001</td>
<td>Introduction to Earth Science B-E2</td>
<td>ZWINGMANN · Horst Friedrich August</td>
<td>2</td>
<td>1</td>
<td>2nd</td>
<td>Wed/1</td>
<td>Mainly 1st & 2nd</td>
<td>Science</td>
<td>214</td>
</tr>
<tr>
<td>N563001</td>
<td>How the Earth Works I-E2:Environmental Change</td>
<td>ENESCU · Bogdan Dumitru</td>
<td>2</td>
<td>1</td>
<td>1st</td>
<td>Thu/4</td>
<td>All</td>
<td>All</td>
<td>215</td>
</tr>
<tr>
<td>Lecture code</td>
<td>Course title</td>
<td>Instructor</td>
<td>No. of credits</td>
<td>No. of weekly blocks</td>
<td>Semester</td>
<td>Day/Period</td>
<td>Target year</td>
<td>Eligible students</td>
<td>Page</td>
</tr>
<tr>
<td>--------------</td>
<td>--</td>
<td>-----------------------------------</td>
<td>----------------</td>
<td>----------------------</td>
<td>----------</td>
<td>------------</td>
<td>-------------</td>
<td>-------------------</td>
<td>------</td>
</tr>
<tr>
<td>N564001</td>
<td>How the Earth Works II-E2: Earth's History</td>
<td>ENESCU · Bogdan Dumitru</td>
<td>2</td>
<td>1</td>
<td>2nd</td>
<td>Mon/5</td>
<td>All</td>
<td>All</td>
<td>216</td>
</tr>
<tr>
<td>N565001</td>
<td>Introduction to General Astronomy-E2</td>
<td>LEE · Shiu Hang</td>
<td>2</td>
<td>1</td>
<td>1st</td>
<td>Wed/4</td>
<td>All</td>
<td>All</td>
<td>217</td>
</tr>
<tr>
<td>N566001</td>
<td>Science on Water, Soil and Ecosystems-E2</td>
<td>VILAVYONG · Khonesavanh</td>
<td>2</td>
<td>1</td>
<td>2nd</td>
<td>Thu/2</td>
<td>Mainly 1st & 2nd</td>
<td>All</td>
<td>218</td>
</tr>
<tr>
<td>N562001</td>
<td>Field Earth Science-E2</td>
<td>ZWINGMANN · Horst Friedrich August</td>
<td>2</td>
<td>1</td>
<td>2nd</td>
<td>Wed/2</td>
<td>2nd or above</td>
<td>Science</td>
<td>219</td>
</tr>
<tr>
<td>N537001</td>
<td>Introduction to Engineering Geology</td>
<td>FLORES Giancarlo</td>
<td>2</td>
<td>1</td>
<td>2nd</td>
<td>Thu/3</td>
<td>Mainly 2nd</td>
<td>Science</td>
<td>220</td>
</tr>
<tr>
<td>N561001</td>
<td>Advanced Practice of Earth Science-E2</td>
<td>ZWINGMANN · Horst Friedrich August</td>
<td>4</td>
<td>2</td>
<td>2nd/int</td>
<td>-</td>
<td>Mainly 2nd</td>
<td>Science</td>
<td>221</td>
</tr>
<tr>
<td>N559001</td>
<td>Introduction to Hydrology-E2</td>
<td>Sameh Kantoush</td>
<td>2</td>
<td>1</td>
<td>1st</td>
<td>Tue/4</td>
<td>Mainly 1st & 2nd</td>
<td>Science</td>
<td>222</td>
</tr>
<tr>
<td>N558001</td>
<td>Introduction to Mineral Resources-E2</td>
<td>MCLELLAN · Benjamin</td>
<td>2</td>
<td>1</td>
<td>2nd</td>
<td>Thu/2</td>
<td>Mainly 1st & 2nd</td>
<td>Science</td>
<td>223</td>
</tr>
</tbody>
</table>

Informatics

<table>
<thead>
<tr>
<th>Lecture code</th>
<th>Course title</th>
<th>Instructor</th>
<th>No. of credits</th>
<th>No. of weekly blocks</th>
<th>Semester</th>
<th>Day/Period</th>
<th>Target year</th>
<th>Eligible students</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>T008001</td>
<td>Practice of Basic Informatics</td>
<td>FLORES Giancarlo</td>
<td>2</td>
<td>1</td>
<td>1st</td>
<td>Tue/4</td>
<td>Mainly 1st</td>
<td>Science</td>
<td>224</td>
</tr>
<tr>
<td>T056003</td>
<td>Practice of Basic Informatics-E2</td>
<td>ISLAM, A K M Mahfuzul</td>
<td>2</td>
<td>1</td>
<td>1st</td>
<td>Fri/2</td>
<td>Mainly 1st</td>
<td>All</td>
<td>226</td>
</tr>
<tr>
<td>T056001</td>
<td>Practice of Basic Informatics-E2</td>
<td>LIN · Donghui</td>
<td>2</td>
<td>1</td>
<td>2nd</td>
<td>Fri/5</td>
<td>All</td>
<td>All</td>
<td>227</td>
</tr>
<tr>
<td>T056002</td>
<td>Practice of Basic Informatics-E2</td>
<td>CROMIERES · Fabien</td>
<td>2</td>
<td>1</td>
<td>1st</td>
<td>Fri/5</td>
<td>All</td>
<td>All</td>
<td>228</td>
</tr>
<tr>
<td>T015001</td>
<td>Basic Informatics</td>
<td>CHANG · Kai-Chun</td>
<td>2</td>
<td>1</td>
<td>2nd</td>
<td>Tue/4</td>
<td>Mainly 1st</td>
<td>Science</td>
<td>229</td>
</tr>
<tr>
<td>T051001</td>
<td>Basic Informatics-E2</td>
<td>LIN · Donghui</td>
<td>2</td>
<td>1</td>
<td>1st</td>
<td>Wed/5</td>
<td>All</td>
<td>All</td>
<td>230</td>
</tr>
<tr>
<td>T018001</td>
<td>Information and Society-E2</td>
<td>LIN · Donghui</td>
<td>2</td>
<td>1</td>
<td>1st</td>
<td>Mon/5</td>
<td>All</td>
<td>All</td>
<td>231</td>
</tr>
<tr>
<td>T018002</td>
<td>Information and Society-E2</td>
<td>LIN · Donghui</td>
<td>2</td>
<td>1</td>
<td>2nd</td>
<td>Mon/5</td>
<td>All</td>
<td>All</td>
<td>232</td>
</tr>
<tr>
<td>T020001</td>
<td>Programming Practice (Matlab)-E2</td>
<td>DE BRECHT · Matthew</td>
<td>4</td>
<td>2</td>
<td>1st</td>
<td>Thu/4 · Thu/5</td>
<td>All</td>
<td>All</td>
<td>233</td>
</tr>
<tr>
<td>T058001</td>
<td>Programming Practice (R)-E2</td>
<td>Daniel Epron</td>
<td>2</td>
<td>1</td>
<td>2nd</td>
<td>Mon/5</td>
<td>Mainly 1st & 2nd</td>
<td>All</td>
<td>234</td>
</tr>
<tr>
<td>T052001</td>
<td>Introduction to Algorithms-E2</td>
<td>LE GALL, Francois</td>
<td>2</td>
<td>1</td>
<td>1st</td>
<td>Thu/2</td>
<td>All</td>
<td>All</td>
<td>235</td>
</tr>
<tr>
<td>T052002</td>
<td>Introduction to Algorithms-E2</td>
<td>LE GALL, Francois</td>
<td>2</td>
<td>1</td>
<td>2nd</td>
<td>Tue/2</td>
<td>All</td>
<td>All</td>
<td>236</td>
</tr>
<tr>
<td>T048001</td>
<td>Fundamentals of Discrete Optimization-E2</td>
<td>LE GALL, Francois</td>
<td>2</td>
<td>1</td>
<td>2nd</td>
<td>Wed/2</td>
<td>All</td>
<td>All</td>
<td>237</td>
</tr>
<tr>
<td>T049001</td>
<td>Introduction to Coding Theory and Cryptography-E2</td>
<td>LE GALL, Francois</td>
<td>2</td>
<td>1</td>
<td>1st</td>
<td>Fri/2</td>
<td>All</td>
<td>All</td>
<td>238</td>
</tr>
</tbody>
</table>
Courses

Health and Sports Sciences

<table>
<thead>
<tr>
<th>Lecture code</th>
<th>Course title</th>
<th>Instructor</th>
<th>No. of credits</th>
<th>No. of weekly blocks</th>
<th>Semester</th>
<th>Day/Period</th>
<th>Target year</th>
<th>Eligible students</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>T019001</td>
<td>Information Network-E2</td>
<td>DE BRECHT, Matthew</td>
<td>2</td>
<td>1</td>
<td>2nd</td>
<td>Thu/4</td>
<td>All</td>
<td>All</td>
<td>239</td>
</tr>
<tr>
<td>T057002</td>
<td>Fundamentals of Artificial Intelligence-E2</td>
<td>CROMIERES, Fabien</td>
<td>2</td>
<td>1</td>
<td>1st</td>
<td>Tue/5</td>
<td>All</td>
<td>All</td>
<td>240</td>
</tr>
<tr>
<td>T057001</td>
<td>Fundamentals of Artificial Intelligence-E2</td>
<td>CROMIERES, Fabien</td>
<td>2</td>
<td>1</td>
<td>2nd</td>
<td>Wed/5</td>
<td>All</td>
<td>All</td>
<td>241</td>
</tr>
<tr>
<td>T047001</td>
<td>Information Literacy for Academic Study-E2</td>
<td>CROMIERES, Fabien</td>
<td>2</td>
<td>1</td>
<td>2nd</td>
<td>Thu/5</td>
<td>All</td>
<td>All</td>
<td>242</td>
</tr>
<tr>
<td>T050001</td>
<td>Processing and Analyzing Data I-E2: Shell-based data processing fundamentals</td>
<td>BROWN, John</td>
<td>2</td>
<td>1</td>
<td>1st</td>
<td>Wed/3</td>
<td>All</td>
<td>All</td>
<td>243</td>
</tr>
</tbody>
</table>

Career Support (International Communication)

<table>
<thead>
<tr>
<th>Lecture code</th>
<th>Course title</th>
<th>Instructor</th>
<th>No. of credits</th>
<th>No. of weekly blocks</th>
<th>Semester</th>
<th>Day/Period</th>
<th>Target year</th>
<th>Eligible students</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>W226001</td>
<td>Scientific English II-E3(Presentation & Discussion)</td>
<td>FLORES Giancarlo</td>
<td>4</td>
<td>1</td>
<td>Year-round</td>
<td>Fri/3</td>
<td>2nd or above</td>
<td>Science</td>
<td>254</td>
</tr>
<tr>
<td>W227001</td>
<td>Advanced Scientific English-E3(Debate)</td>
<td>SCHMOECKER, Jan-Dirk</td>
<td>4</td>
<td>1</td>
<td>Year-round</td>
<td>Wed/2</td>
<td>2nd or above</td>
<td>Science</td>
<td>255</td>
</tr>
<tr>
<td>W228001</td>
<td>Business English-E3</td>
<td>WILLIAM BABER</td>
<td>2</td>
<td>1</td>
<td>1st</td>
<td>Tue/2</td>
<td>2nd or above</td>
<td>All</td>
<td>256</td>
</tr>
<tr>
<td>W228002</td>
<td>Business English-E3</td>
<td>HAN, Hyun Jeong</td>
<td>2</td>
<td>1</td>
<td>2nd</td>
<td>Tue/3</td>
<td>2nd or above</td>
<td>All</td>
<td>257</td>
</tr>
<tr>
<td>W229001</td>
<td>Business Thinking-E3</td>
<td>WILLIAM BABER</td>
<td>2</td>
<td>1</td>
<td>1st</td>
<td>Wed/2</td>
<td>2nd or above</td>
<td>All</td>
<td>258</td>
</tr>
<tr>
<td>W230001</td>
<td>Negotiation-E3</td>
<td>WILLIAM BABER</td>
<td>2</td>
<td>1</td>
<td>1st</td>
<td>Tue/4</td>
<td>2nd or above</td>
<td>All</td>
<td>259</td>
</tr>
<tr>
<td>W231001</td>
<td>Digesting Scientific English-E3</td>
<td>Anderson, James Russell</td>
<td>2</td>
<td>1</td>
<td>1st</td>
<td>Thu/1</td>
<td>2nd or above</td>
<td>All</td>
<td>260</td>
</tr>
<tr>
<td>Lecture code</td>
<td>Course title</td>
<td>Instructor</td>
<td>No. of credits</td>
<td>No. of weekly time blocks</td>
<td>Semester</td>
<td>Day/Period</td>
<td>Target year</td>
<td>Eligible students</td>
<td>Page</td>
</tr>
<tr>
<td>-------------</td>
<td>---</td>
<td>-----------------------------</td>
<td>----------------</td>
<td>---------------------------</td>
<td>----------</td>
<td>------------</td>
<td>-------------</td>
<td>-------------------</td>
<td>------</td>
</tr>
<tr>
<td>W232001</td>
<td>Scientific Writing and Presenting in English-E3</td>
<td>Anderson・James Russell</td>
<td>2</td>
<td>1</td>
<td>2nd</td>
<td>Thu/1</td>
<td>2nd or above</td>
<td>All</td>
<td>261</td>
</tr>
<tr>
<td></td>
<td>Interdisciplinary Sciences (Environmental Sciences)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Y212001</td>
<td>Introduction to Food Sustainability-E2</td>
<td>Garry John PILLER</td>
<td>2</td>
<td>1</td>
<td>2nd</td>
<td>Thu/2</td>
<td>Mainly 1st & 2nd</td>
<td>All</td>
<td>262</td>
</tr>
<tr>
<td>Y221001</td>
<td>Sustainable Forest Environment-E2</td>
<td>VILAVYONG・Khonesavanh</td>
<td>2</td>
<td>1</td>
<td>1st</td>
<td>Thu/2</td>
<td>Mainly 1st & 2nd</td>
<td>All</td>
<td>263</td>
</tr>
<tr>
<td>Y225001</td>
<td>Introduction to Biogeochemistry-E2</td>
<td>Daniel Epron</td>
<td>2</td>
<td>1</td>
<td>1st</td>
<td>Mon/3</td>
<td>Mainly 1st & 2nd</td>
<td>All</td>
<td>264</td>
</tr>
<tr>
<td>Y208001</td>
<td>Chemistry・Society and Environment-E2</td>
<td>MCLELLAN・Benjamin</td>
<td>2</td>
<td>1</td>
<td>1st</td>
<td>Wed/2</td>
<td>Mainly 1st & 2nd</td>
<td>Science</td>
<td>265</td>
</tr>
<tr>
<td>Y213001</td>
<td>Introduction to Sustainable Development-E2</td>
<td>MCLELLAN・Benjamin</td>
<td>2</td>
<td>1</td>
<td>1st</td>
<td>Thu/4</td>
<td>Mainly 1st & 2nd</td>
<td>All</td>
<td>266</td>
</tr>
<tr>
<td>Y209001</td>
<td>Human-environmental Interactions-E2</td>
<td>SINGER JANE</td>
<td>2</td>
<td>1</td>
<td>1st</td>
<td>Thu/3</td>
<td>Mainly 1st & 2nd</td>
<td>All</td>
<td>267</td>
</tr>
<tr>
<td>Y213002</td>
<td>Introduction to Sustainable Development-E2</td>
<td>SINGER JANE</td>
<td>2</td>
<td>1</td>
<td>2nd</td>
<td>Thu/4</td>
<td>Mainly 1st & 2nd</td>
<td>All</td>
<td>268</td>
</tr>
<tr>
<td>Y211001</td>
<td>Introduction to Biological Invasion-E2</td>
<td>YANG・Chin-Cheng</td>
<td>2</td>
<td>1</td>
<td>2nd</td>
<td>Thu/4</td>
<td>Mainly 1st & 2nd</td>
<td>All</td>
<td>269</td>
</tr>
<tr>
<td>Y210001</td>
<td>Insect-human Interactions-E2</td>
<td>YANG・Chin-Cheng</td>
<td>2</td>
<td>1</td>
<td>1st</td>
<td>Thu/4</td>
<td>Mainly 1st & 2nd</td>
<td>All</td>
<td>271</td>
</tr>
<tr>
<td>Y214001</td>
<td>Natural Disaster Science-E2</td>
<td>Sameh Kantouch</td>
<td>2</td>
<td>1</td>
<td>2nd</td>
<td>Tue/4</td>
<td>All</td>
<td>All</td>
<td>273</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Seminar in Liberal Arts and Sciences (ILAS Seminar)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Z002075</td>
</tr>
<tr>
<td>Z002002</td>
</tr>
<tr>
<td>Z002048</td>
</tr>
<tr>
<td>Z002026</td>
</tr>
<tr>
<td>Z002003</td>
</tr>
<tr>
<td>Z002039</td>
</tr>
<tr>
<td>Z002071</td>
</tr>
<tr>
<td>Z002040</td>
</tr>
<tr>
<td>Z002058</td>
</tr>
<tr>
<td>Lecture code</td>
</tr>
<tr>
<td>-------------</td>
</tr>
<tr>
<td>Z002059</td>
</tr>
<tr>
<td>Z002078</td>
</tr>
<tr>
<td>Z002079</td>
</tr>
<tr>
<td>Z002073</td>
</tr>
<tr>
<td>Z002067</td>
</tr>
<tr>
<td>Z002031</td>
</tr>
<tr>
<td>Z002010</td>
</tr>
<tr>
<td>Z002008</td>
</tr>
<tr>
<td>Z002016</td>
</tr>
<tr>
<td>Z002012</td>
</tr>
<tr>
<td>Z002014</td>
</tr>
<tr>
<td>Z002020</td>
</tr>
<tr>
<td>Z002063</td>
</tr>
<tr>
<td>Z002043</td>
</tr>
<tr>
<td>Z002080</td>
</tr>
<tr>
<td>Z002041</td>
</tr>
<tr>
<td>Z002046</td>
</tr>
<tr>
<td>Z002004</td>
</tr>
<tr>
<td>Z002019</td>
</tr>
<tr>
<td>Z002022</td>
</tr>
<tr>
<td>Lecture code</td>
</tr>
<tr>
<td>--------------</td>
</tr>
<tr>
<td>Z002017</td>
</tr>
<tr>
<td>Z002018</td>
</tr>
<tr>
<td>Z002034</td>
</tr>
<tr>
<td>Z002062</td>
</tr>
<tr>
<td>Z002068</td>
</tr>
<tr>
<td>Z002056</td>
</tr>
<tr>
<td>Z002025</td>
</tr>
<tr>
<td>Z002050</td>
</tr>
<tr>
<td>Z002024</td>
</tr>
<tr>
<td>Z002052</td>
</tr>
<tr>
<td>Z002001</td>
</tr>
<tr>
<td>Z002027</td>
</tr>
<tr>
<td>Z002069</td>
</tr>
<tr>
<td>Z002021</td>
</tr>
<tr>
<td>Z002060</td>
</tr>
<tr>
<td>Z002061</td>
</tr>
<tr>
<td>Z002029</td>
</tr>
<tr>
<td>Z002049</td>
</tr>
<tr>
<td>Z002036</td>
</tr>
<tr>
<td>Z002013</td>
</tr>
<tr>
<td>Z002074</td>
</tr>
<tr>
<td>Lecture code</td>
</tr>
<tr>
<td>------------</td>
</tr>
<tr>
<td>Z002072</td>
</tr>
<tr>
<td>Z002064</td>
</tr>
<tr>
<td>Z002030</td>
</tr>
<tr>
<td>Z002042</td>
</tr>
<tr>
<td>Z002065</td>
</tr>
<tr>
<td>Z002033</td>
</tr>
<tr>
<td>Z002045</td>
</tr>
<tr>
<td>Z002037</td>
</tr>
<tr>
<td>Z002057</td>
</tr>
<tr>
<td>Z002035</td>
</tr>
<tr>
<td>Z002066</td>
</tr>
<tr>
<td>Z002053</td>
</tr>
<tr>
<td>Z002038</td>
</tr>
<tr>
<td>Z002070</td>
</tr>
<tr>
<td>Z002076</td>
</tr>
<tr>
<td>Z003006</td>
</tr>
</tbody>
</table>
How to read Syllabi シラバスの見方

※ 1
平成24年度以前入学者用の群を表記しています。平成24年度以前入学者については、この欄に記載した群により、学部ごとに修得すべき全学共通科目の単位数が決められています。

※ 2
ここに掲載されているシラバスは、各科目の概要を伝えるものです。科目を選択する際の参考にしてください。実際の授業は、教員と参加する学生によって作られていくものです。そのため、授業の進捗状況や受講生の習熟度などによって、「授業計画と内容」、「成績評価の方法・観点及び達成度」が変わる場合があります。それらの変更については、教員が授業の中で受講生に直接伝えることを原則としています。

<table>
<thead>
<tr>
<th>Course Title</th>
<th>授業科目名</th>
</tr>
</thead>
<tbody>
<tr>
<td><English></td>
<td><英語></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Affiliated department</th>
<th>職名・氏名</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Group</th>
<th>群</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Language</th>
<th>使用言語</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Old group</th>
<th>旧群</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Number of credits</th>
<th>営単位数</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Class style</th>
<th>授業形態</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Course offered year/period</th>
<th>開講年度・開講期</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Target year</th>
<th>配当学年</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Eligible students</th>
<th>対象学生</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Day/period</th>
<th>曜時限</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Classroom</th>
<th>教室</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Language</th>
<th>使用言語</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Keyword</th>
<th>キーワード</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>[Outline and Purpose of the Course]</th>
<th>授業の概要・目的</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>[Course Goals]</th>
<th>到達目標</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>[Course Schedule and Contents]</th>
<th>授業計画と内容</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>[Assessment and Attainment levels of Evaluation]</th>
<th>成績評価の方法・観点及び達成度</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Textbook</th>
<th>教科書</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>[Reference book, etc.]</th>
<th>(Reference book)</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>[Regarding studies out of class (preparation and review)]</th>
<th>授業外学習（予習・復習）等</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>[Others (office hour, etc.)]</th>
<th>その他（オフィスアワー）等</th>
</tr>
</thead>
</table>

Lecture code: 講義コード
Outline and Purpose of the Course

Logic is the study of arguments and actions taken based on the validity of those arguments.

Students of all disciplines will learn how to transform natural language (English, Japanese, etc) into symbolic representations, and use those representations to assess the validity of arguments. The content of the course is applicable to both study and everyday thought processes. This course will cover arguments that can be described by sentential logic.

Students will actively practice:
1. transforming English sentences into their symbolic representation,
2. assessing the representations logically, and
3. transforming the conclusion of logical arguments back to natural English.

Course Goals

1. Students will be able to capture the intent/meaning of English language documents or statements and represent the meaning symbolically.
2. Students will be able to derive logical conclusions from a document, and detect examples of poor or incorrect logic.
3. Students will practice creating documents in natural English language based on logical argument, with emphasis on creating English that is easy to interpret. After completion of the course, students should acquire improved English expression skill.

Course Schedule and Contents

1. Course overview: what is an argument, and what makes an argument valid?
2. Classes of valid and incorrect arguments, sentence forms, logical connectives, conversion of simple sentences to symbols
3. Truth table definitions of AND, OR, and NOT, argument analysis by truth table, conditional and biconditional truth tables
4. Deductive logic rules, introduction to proofs
5. Deductive proofs using non-conditional rules

Continue to Logic I-E2: Sentential Logic and Deductions(2)

Logic I-E2: Sentential Logic and Deductions(2)

12–13) Proofs including conditional rules
14) Summary and review
15) Final examination
16) Feedback (Methods of feedback to be notified during class)

Class requirement

None

Method, Point of view, and Attainment levels of Evaluation

Attendance (25%), Quizzes (35%), final examination (40%).

Textbook

Not used

Reference book, etc.

Regarding studies out of class (preparation and review)

Students are recommended to review prior lecture content for 2-3 hours per week outside of class.

Others (office hour, etc.)

19
Lecture code: H156001

Course numbering
U-LAS0010008 LE34

<table>
<thead>
<tr>
<th>Course title</th>
<th>Logic II-E2: Quantificational Logic and Deductions</th>
<th>Affiliated department, Job title, Name</th>
</tr>
</thead>
<tbody>
<tr>
<td><English></td>
<td>Logic II-E2: Quantificational Logic and Deductions</td>
<td>Graduate School of Medicine, Senior Lecturer, John BROWN</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Group</th>
<th>Humanities and Social Sciences</th>
</tr>
</thead>
<tbody>
<tr>
<td>Field(Classification)</td>
<td>Philosophy (Foundations)</td>
</tr>
<tr>
<td>Language</td>
<td>English</td>
</tr>
<tr>
<td>Old group</td>
<td>Group A</td>
</tr>
<tr>
<td>Number of credits</td>
<td>2</td>
</tr>
<tr>
<td>Number of weekly time blocks</td>
<td>1</td>
</tr>
<tr>
<td>Class style</td>
<td>Lecture</td>
</tr>
<tr>
<td>Course offered year/period</td>
<td>2019 • Second semester</td>
</tr>
<tr>
<td>Day/period</td>
<td>Wed.1</td>
</tr>
<tr>
<td>Target year</td>
<td>Mainly 1st & 2nd year students</td>
</tr>
<tr>
<td>Eligible students</td>
<td>For all majors</td>
</tr>
</tbody>
</table>

[Outline and Purpose of the Course]

Students will expand their study of symbolic logic to incorporate quantitative elements in logical reasoning. In addition to the basic "if-then", "and", "or", and "not" logical connectives covered in Logic I, the course will add the use of variables and their application to logical argument. This includes concepts such as "there exists" or "for all".

The course will provide ample time for study and discussion of quantitative logical proofs. Similar to Logic I, transformation of natural language to symbolic representation, logical deduction and reasoning in symbolic form, and translation of the conclusions from quantitative logic back to high-quality English will all be covered.

[Course Goals]

1. Students will acquire the ability to assess an argument in order to determine the unique or general nature of the elements of the argument.
2. Students will be able to solve quantitative logic proofs, resulting in the ability to prove the existence or non-existence of something, or an actionable conclusion as a result of a proof.
3. Students will practice and acquire enhanced ability to write clear, systematic English documents that are unambiguous and present a logical system of reasoning.

[Course Schedule and Contents]

1. Review: sentential logic and truth tables, deductive proofs
 In-class exercises: deductive proofs and conversion of natural English to symbolic form.

2. Introduction to quantificational logic
 Variables, "exists", and "for all" elements
 Conversion of natural English to quantificational logic symbols
 Quantificational logic symbolic representation

3. Quantificational logic proofs: introduction and semantics
 Quantificational logic: existential instantiation and existential generalization
 Quantificational logic: universal instantiation and universal generalization
 Quantificational logic: quantifier negation, and proof exercises

4. Logic I-E2: Quantificational Logic and Deductions(2)
 - Logic proofs strategies
 - Strategies and techniques for solving logical proofs
 - Modern applied logic, with consideration of the "Semantic Web"
 - Exam: solution of quantitative logic proofs, writing of essay/document describing a problem, the symbolic representation of the problem, logical proof, and writing of the logical conclusion derived from proof.

5. Feedback: to be communicated in class.

[Class requirement]

Students are _STRONGLY_ recommended to take Logic I before this course. (Self-study of Chapters 1-3 of the reference text before taking this course is possible.)

Logic Iを履修することを強く推薦する。
(参考書のChapter 1-3を独学した場合もLogic IIを履修することが可能。)

[Method, Point of view, and Attainment levels of Evaluation]

- Attendance (25%), quizzes (35%), final exam (40%)

[Textbook]

- Not used

[Reference book, etc.]

- Gustason
 Elementary Symbolic Logic

[Regarding studies out of class (preparation and review)]

- Students should review weekly course material.
- Students may need to practice solving challenging proofs outside of class.

[Others (office hour, etc.)]
This course is designed as an introduction to the history of eastern philosophical and religious thought. We will begin with a reading of early Indian Vedic literature and then turn our focus to Zoroastrianism and early and later forms of Buddhism.

By the end of this course, students will have gained a basic understanding of eastern philosophical and religious thought by learning how to respond to readings in this field in a critical manner.

The course is divided into the following three sections, each with a different theme. We will spend about five weeks on each section. You will be asked to do readings, in-class presentations, and discussion to help you assimilate the material.

1. The Vedas and Upanishads
2. Zoroastrianism
3. Buddhism

Grades are based on attendance (20%), class participation (30%), and assignments/exams (50%). Important: If you miss four or more classes, you will not be given credit for the course.

Relevant materials will be provided in class.

Readings will be assigned on a weekly basis, and you will be expected to prepare sufficiently before each class.

Office hours to be specified (check KULASIS). For questions about the course or to set up a meeting, email me at catt.adam.7c@kyoto-u.ac.jp. Please include “Eastern Thought I” in the mail header and your full name and student number in the email. Important: Make sure that you search for answers to questions yourself before contacting me by email.
[Outline and Purpose of the Course]

This course provides an introduction to methods for understanding and evaluating religious ideas and practices, focusing in particular on modern approaches such as evolutionary biology and cognitive psychology to address the question of where religious beliefs come from and why we find them so compelling.

[Course Goals]

By the end of this course, students will have gained a basic understanding of the scientific study of religion, learning how to respond to readings in this field in a critical manner.

[Course Schedule and Contents]

After an introduction to the course, each class will be based around addressing the following two questions:
1. Why do we have religious beliefs?
2. How can religious beliefs be explained using the tools of anthropology, evolutionary biology, and cognitive psychology?

[Class requirement]

None

[Method, Point of view, and Attainment levels of Evaluation]

Grades are based on attendance (20%), class participation (30%), and assignments/exams (50%). Important: If you miss four or more classes, you will not be given credit for the course.

[Textbook]

Relevant materials will be provided in class.

[Reference book, etc.]

None

[Regarding studies out of class (preparation and review)]

Readings will be assigned on a weekly basis, and you will be expected to prepare sufficiently before each class.

[Others (office hour, etc.)]

Office hours to be specified (check KULASIS). For questions about the course or to set up a meeting, email me at catt.adam.7c@kyoto-u.ac.jp. Please include "Religion" in the mail header and your full name and student number in the email. Important: Make sure that you search for answers to questions yourself before contacting me by email.
[Outline and Purpose of the Course]
Broadly, in part one [semester: April-September], the course will introduce students to some of the main historiographical debates about the origins and defining features of modern science. The central effort here is to familiarise students both at the level of the biographical details of the main thinkers and the significant ideas that comprise our current understandings and assessments about what constitutes modern science.

[Course Goals]
By rehearsing some of the significant historiographical and philosophical debates and discussions on the theme of modern science, this course aims to develop an interdisciplinary ability. The attempt to problematize the "hard sciences" through social science questions and theories will help prepare students to take up innovative and important research projects and also helps them think through the centrality of modern science in their everyday lives.

[Course Schedule and Contents]
Each class will comprise a 90 minute session; involving a lecture of 60 minutes and followed by a 30 minute interactive discussion in which student participation will also be elicited through either group or individual presentations. Four themes will be covered in this class and each theme will be covered in three to four weeks.

a) Plato's (429?-347 B.C.E.) Forms and Aristotle's (384-322 B.C.E.) Empiricism
b) The Scientific Revolution
c) Colonial Science
d) Scientific Nationalism

[Class requirement]
None

[Method, Point of view, and Attainment levels of Evaluation]
There will be a regular cycle of written submissions and feedback through class discussions and teacher evaluations. The idea is to develop a credible capacity for reading and writing amongst those who take up the course. Evaluations will be based on class presentations, writing assignments and a tutorial. Details are explained during class.
Philosophy of Modern Science-E2

[Method, Point of view, and Attainment levels of Evaluation]
There will be a regular cycle of written submissions and feedback through class discussions and teacher evaluations. The idea is to develop a credible capacity for reading and writing amongst those who take up the course. Evaluations will be based on class presentations, writing assignments and a tutorial. Details are explained during class.

[Textbook]
Not used

[Reference book, etc.]
- Donald Gillies "Philosophy of Science in the 20th Century" (Blackwell) ISBN:978-0631183587
- Anthony O’Hear "Karl Popper" (Routledge) ISBN:978-0415084802
- Alexander Bird "Thomas Kuhn" (Princeton University Press)
- Paul Horwich (ed.) "World Changes" (MIT Press) ISBN:978-0262581387
- G. Andersson "Criticism and the History of Science: Kuhn’s, Lakatos’s and Feyerabend’s Criticisms of Critical Rationalism." (Leiden: Brill)
- C. Hooker and P. Churchland (ed.) "Images of Science" (University of Chicago Press) ISBN:978-0226106540

[Related URL]
(Relevant sections and chapters from the above books will be assigned as readings for the course. Other reading materials such as articles or short write-ups may be included based on class discussions and interest.)

[Regarding studies out of class (preparation and review)]
Students will be expected to have read at least five pages of pre-assigned reading, at the very minimum, before attending each class.

[Others (office hour, etc.)]
Students can meet me during office hours with prior appointment.
Lecture code: H159001

<table>
<thead>
<tr>
<th>Course title</th>
<th>Affiliated department, Job title, Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>Theory of Religion in the Social Sciences-E2</td>
<td>Center for Southeast Asian Studies Associate Professor, Julius Bautista</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Group</th>
<th>Field (Classification)</th>
<th>Language</th>
<th>Old group</th>
<th>Number of credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Humanities and Social Sciences</td>
<td>Philosophy (Foundations)</td>
<td>English</td>
<td>Group A</td>
<td>2</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Number of weekly time blocks</th>
<th>Class style</th>
<th>Course offered year/period</th>
<th>Target year</th>
<th>Eligible students</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Lecture</td>
<td>2019 • First semester</td>
<td>Mainly 1st & 2nd year students</td>
<td>For liberal arts students</td>
</tr>
</tbody>
</table>

Day/period: Tue. 4

<table>
<thead>
<tr>
<th>[Outline and Purpose of the Course]</th>
</tr>
</thead>
<tbody>
<tr>
<td>The course offers a basic foundation for the study of religion by introducing a number of different perspectives from the Sciences and Humanities. Religions are conceived of as part of the history of ideas that shaped the major intellectual traditions such as science, politics, cultural and social studies. The course will cultivate two learning areas: (1) a basic understanding of the approaches and methodologies that have been used in the study of religious phenomena, and (2) a critical discussion of the various religious, moral and ethical issues that influence contemporary ideas and discoveries.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>[Course Goals]</th>
</tr>
</thead>
<tbody>
<tr>
<td>At the end of this course, students will be able to (1) describe how some of the world’s major thinkers and intellectuals have engaged with the topic of religion over the past two centuries. From this intellectual platform, students will be equipped to (2) describe how the concept of religion itself has evolved in ways that is relevant to the various social, cultural and environmental conditions in which it can be observed.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>[Course Schedule and Contents]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Week 1 Introduction and Course Queries</td>
</tr>
<tr>
<td>Week 2 Religion as an Academic Field of Study</td>
</tr>
<tr>
<td>Week 3 Religion and the formation of Social Sciences</td>
</tr>
<tr>
<td>Week 4 Anthropological Approaches to Religion</td>
</tr>
<tr>
<td>Week 5 Religion and the Sociological Imagination</td>
</tr>
<tr>
<td>Week 6 Religion as a Psychological Problem</td>
</tr>
<tr>
<td>Week 7 Religion and the formation of Critical Polities</td>
</tr>
<tr>
<td>Week 8 Recap Lecture/Midterm</td>
</tr>
<tr>
<td>Week 9 Materialist Approaches to Religion</td>
</tr>
<tr>
<td>Week 10 Interpretative Approaches to Religious Experience</td>
</tr>
<tr>
<td>Week 11 Religion and the Scientific Method</td>
</tr>
<tr>
<td>Week 12 Religion and the Secular</td>
</tr>
<tr>
<td>Week 13 Conclusion and Recap</td>
</tr>
<tr>
<td>Week 14 Reading Week</td>
</tr>
<tr>
<td>Week 15 Examination</td>
</tr>
<tr>
<td>Week 16 Feedback Week</td>
</tr>
</tbody>
</table>

Theories of Religion in the Social Sciences-E2(2)

<table>
<thead>
<tr>
<th>[Class requirement]</th>
</tr>
</thead>
<tbody>
<tr>
<td>None</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>[Method, Point of view, and Attainment levels of Evaluation]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Students will be evaluated according to three main criteria. (1) their ability to participate class discussion (20% of the overall grade), (2) a written essay (40%), and (3) group project/presentation (40%). The group project/presentation may be replaced by a written exam, depending on class numbers. This will be announced when the final number of enrollment is confirmed.**</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>[Textbook]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kessler, Gary Fifty Key Thinkers on Religion, (Routledge) ISBN: 415492610</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>[Reference book, etc.]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Introduced during class</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>[Regarding studies out of class (preparation and review)]</th>
</tr>
</thead>
<tbody>
<tr>
<td>No prior knowledge of religion is required. Students should be able to participate in discussions with their classmates in English. This may be face-to-face small group discussion or online. Students may also be asked to make short presentations in English based on the class topics.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>[Others (office hour, etc.)]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Consultation is by appointment via email to bautista@cseas.kyoto-u.ac.jp</td>
</tr>
</tbody>
</table>
Course Numbering

<table>
<thead>
<tr>
<th>Course title <English></th>
<th>Japanese Philosophy I-E2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Japanese Philosophy I-E2</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Affiliated department, Job title, Name</th>
<th>Graduate School of Letters, Associate Professor, PASCA, Roman</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Group</th>
<th>Humanities and Social Sciences</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Field(Classification)</th>
<th>Philosophy(Foundations)</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Language</th>
<th>English</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Old group</th>
<th>Group A</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Number of weekly time blocks</th>
<th>1</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Class style</th>
<th>Lecture</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Course offered year/period</th>
<th>2019 • First semester</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Day/period</th>
<th>Wed.2</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Target year</th>
<th>All students</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Eligible students</th>
<th>For all majors</th>
</tr>
</thead>
</table>

Outline and Purpose of the Course

What is philosophy, after all? Is it a discipline that gives us answers, or is it a tool that helps us ask better questions? What is “Japanese philosophy”? What is its relevance for world philosophy? Is there a difference between “shisō” and “tetsugaku”? In this class, we will start from these questions and try to think together about the meaning of premodern “Japanese philosophy”. The course will focus on premodern Japanese thought, discussing the most important traditions and authors.

Course Goals

In this class, students will learn:
1) to recognize the characteristics of a philosophical text;
2) to critically examine fundamental questions, notions and concepts in premodern Japanese thought;
3) to reflect on the challenges and limitations of translating philosophy;
4) to express their opinions, ideas and arguments in a clear manner.

Course Schedule and Contents

For each meeting, we will read and discuss one (or more) short text(s) of Japanese philosophy. We will think about their meaning and relevance, while also talking, from a philosophical perspective, about concepts and notions such as language, metaphysics, critical spirit, ethics, self, mind, human nature, political thought, education, environment, culture and identity, aesthetics etc.

The course is structured as follows.

Topics:
1. Introduction. What is “philosophy”? What is “Japanese philosophy”? [1 week]
2. Re-reading the Shotoku Constitution. Kojiki. [1 week]
3. Buddhism as philosophy. [3-4 weeks]
 Kukai, Dogen, Nichiren, Zen, Shinran etc.
4. Confucianism and Neo-confucianism. [3-4 weeks]
 Hayashi Razan, Kumanawa Banzan, Kaibara Ekken, Yamaga Soko, Ogyu Sorai, Miura Baien, etc.
5. Shinto and kokugaku [2-3 weeks]
 Motoori Norinaga, Hira Atsutane etc.
6. Aesthetics [3-4 weeks]
 Genji monogatari, Fujiwara no Shunzei, Kamo no Chomei, Zeami.
7. Course round-up and reflection. [1 week]
8. Feedback (Students will be notified of feedback methods separately.) [1 week]
What is philosophy, after all? Is it a discipline that gives us answers, or is it a tool that helps us ask better questions? What is “Japanese philosophy”? What is its relevance for world philosophy? Is there a difference between “shisū” and “tetsugaku”?

In this class, we will start from these questions and try to think together about the meaning of “Japanese philosophy”. This is an introductory class meant to familiarize students with some of the most important names and topics in modern and contemporary Japanese philosophy.

Course Goals

In this class, students will learn:
1) to recognize the characteristics of a philosophical text;
2) to critically examine fundamental questions, notions and concepts in modern and contemporary Japanese thought;
3) to reflect on the challenges and limitations of translating philosophy;
4) to express their opinions, ideas and arguments in a clear manner.

Course Schedule and Contents

For each meeting, we will read and discuss one (or more) short text(s) of Japanese philosophy. We will think together about concepts and notions such as language, metaphysics, critical spirit, ethics, self, mind, human nature, political thought, education, environment, culture and identity, aesthetics etc.

The course is structured as follows.

Topics:
1. Introduction. What is “modernity”? [1 week]
2. Meiji philosophers. [3-4 weeks]
 Nishi Amane, Fukuzawa Yukichi, Nakae Chomin, Inoue Tetsujirō etc.
3. The Kyoto School. [3-4 weeks]
 Nishida Kitarō, Tanabe Hajime, Ueda Shizuteru, Nishitani Keiji etc.
4. Contemporary philosophy. [4-5 weeks]
 Tosaka Jun, Imanishi Kinji, Maruyama Masao, Yuasa Yasuo, Kimura Bin, Hiromatsu Wataru, Fujita Masakatsu etc.
5. Women philosophers. [2 weeks]
 Yosano Akiko, Hiratsuka Raicho.
6. Course round-up and reflection. [1 week]
7. Feedback (Students will be notified of feedback methods separately.) [1 week]
Outline and Purpose of the Course

What is the correct name for nature? Physis, natura, jinen, shizen? How do I, as an individual human being, fit into the world of nature? Am I a part of it, or do I control it? Do I have the right to cut a tree? What is my responsibility toward the environment? How do I respond to the current environmental crisis?

In this class, we will start from these questions and try to think together about the different understandings of "nature" and about the different ways in which we can engage with it. We will focus on views of nature in Japan, from premodern literary texts to contemporary philosophy.

Course Goals

In this class, students will learn:

1. to critically examine notions and concepts related to nature in Japan;
2. to apply ethical theories to some challenging question in our experience of nature;
3. to express their opinions, ideas and arguments in a clear manner.

Course Schedule and Contents

For each meeting, we will read and discuss one (or more) short philosophical text(s). The course is structured as follows.

Topics:

1. Introduction. What is "nature"? How do we understand / define it? [1 week]
2. Nature in literature [3-4 weeks]
 - Kojiki and Nihonshoki. Waka, zuhitu, etc.
3. Buddhism and ecology [3-4 weeks]
 - Kukai and Dogen. Pure Land Buddhism, Zen and nature.
4. Confucianism and nature [2-3 weeks]
 - Houzogaku. Kaibara Ekken, Yamato Honz#333. Sato Nobuhiro and the human dominion over nature
 - Ando Shoeki, Shizen shin’eido. Ishida Baigan and Ninomiya Sontoku.
7. Course round-up and reflection. [1 week]
8. Feedback (Students will be notified of feedback methods separately.) [1 week]
What is the correct name for nature? Physis, natura, jinen, shizen? How do I, as an individual human being, fit into the world of nature? Am I a part of it, or do I control it? Do I have the right to cut a tree? What is my responsibility toward the environment? How do I respond to the current environmental crisis? In this class, we will start from these questions and try to think together about the different understandings of “nature” and about the different ways in which we can engage with it. We will focus on views of nature in the Greco-European tradition, but our approach will be a comparative one.

Course Goals

In this class, students will learn:

1) to critically examine notions and concepts related to nature in the Greco-European tradition;
2) to gain a comparative perspective on philosophy;
3) to express their opinions, ideas and arguments in a clear manner.

Course Schedule and Contents

For each meeting, we will read and discuss one (or more) short philosophical text(s). The course is structured as follows.

Topics:

1. Introduction. What is "nature"? How do we understand / define it? [1 week]
2. Thinking about nature. Religion and nature [3-4 weeks]
 - Darwin, Origin of Species. Kant, Duties to Animals, etc.
5. Human beings and nature. [3-4 weeks]
6. Course round-up and reflection. [1 week]
7. Feedback (Students will be notified of feedback methods separately.) [1 week]
Course Schedule and Contents

Course themes per week:
1. Introduction
2. Prehistory
3. Jomon
4. Yayoi and Kofun
5. Early State Formation I
6. Early State Formation II
7. Imperial Period
8. (Midterm Exam)
9. Mongol Invasion I
10. Mongol Invasion II
11. East Asia War I
12. East Asia War II
13. Christianity I
14. Christianity II
In class the participants will work on the course of modern Japanese history from the last years of the early modern period to the end of World War II in Asia. Special attention will be paid to questions of Meiji nation building and political representation, post-World War I industrialization and its social impact, and politics and culture in Japanese Empire in times of peace and total war.

[Outline and Purpose of the Course]
Knowledge on key phenomena and research perspectives in prewar modern Japanese history.

[Course Schedule and Contents]
1 Introduction
2 The end of the Tokugawa period (1850s–1868)
3–5 Nation building and representation in the Meiji period (1868–1912)
6–8 Industrialization, social movements and imperialism in Taisho; and prewar Showa Japan (1912–1937)
9 Colonialism
10–13 Politics and culture in times of total war (1937–1945)
14 Conclusion

[Class requirement]
None

[Method, Point of view, and Attainment levels of Evaluation]
Written final report.

[Textbook]
Reading materials will be handed out during class.

[Reference book, etc.]
1. **[Reference book]**
Reading materials will be handed out during class.

[Regarding studies out of class (preparation and review)]
Knowledge of modern Japanese history in the Asian and global context is appreciated.
[Outline and Purpose of the Course]
This course will offer an introduction to early modern and modern Japanese history (1600–1911) from a global perspective. That is, we will approach the Japanese archipelago not as an isolated territory that seamlessly transformed into the nation state as we now know it, but as a geographical hub that has been shaped by various “foreign” encounters through the centuries. We will look at how trade, war, diplomacy and ideas fostered international connections that have played crucial roles in deciding the trajectory of Japan’s development. As a survey introduction class, this course will require no reading preparations, but competence in English is required to fruitfully engage in class discussion.

[Course Goals]
Upon the successful completion of this course, students will:
1. have a general understanding of the major periods and events of early modern and modern Japanese history.
2. gain a sensibility for the way in which the history of nation states is intimately bound up with, and cannot be told separately from global events.

[Course Schedule and Contents]
Course themes per week:
1. Introduction
2. Tokugawa Order
3. Maritime Prohibition
4. The Dutch
5. The Zheng Family
6. Ryukyu & Ezo
7. Rise of the West
8. (Midterm Exam)
9. Opium Wars
10. Opening Japan
11. Meiji Restoration
12. Sino-Japanese War
13. Russo-Japanese War I
14. Russo-Japanese War II

[Class requirement]
As a survey introduction class, this course will require no reading preparations, but competence in English is required to fruitfully engage in class and exams. Furthermore, although not a strict requirement, it is recommended that the student will either precede or follow up this course with Japanese History I - E2.

[Method, Point of view, and Attainment levels of Evaluation]
Grading will be based on attendance, participation, a midterm and a final exam as follows:
20% Attendance & Participation
30% Midterm Exam
50% Final Exam
(Students who are absent more than 4 times will automatically fail this course)

[Textbook]
Not used

[Regarding studies out of class (preparation and review)]
Reviewing class notes and possibly clarifying unclear items through independent study.

[Others (office hour, etc.)]
Students should be aware of the fact that student interest in this course always exceeds its capacity and that enrollment permission will be decided based on a random lottery.
Students who have inquiries of any kind are welcome to contact me by email. In doing so, however, please heed the following:
1. write in either Japanese or English, whichever language you are most proficient in.
2. write in a formal format appropriate to the university setting.
Emails that do not conform to both items will be sent back without a response.
| Lecture code: H282002 |

| Course title: Japanese History II-E2 |
| Field: History and Civilization (Foundations) |
| Group: Humanities and Social Sciences |
| Language: English |
| Old group: Group A |
| Number of credits: 2 |
| Number of weekly time blocks: 1 |
| Class style: Lecture |
| Course offered year/period: 2019 • Second semester |
| Day/period: Tue.2/Wed.2 |
| Target year: All students |
| Eligible students: For all majors |

[Outline and Purpose of the Course]

In class the participants will work on Japanese history from the time of US occupation until the “lost decade” of the 1990s. Special attention will be put on economic high growth’s impact on society, the environment, gender, and youth. Emphasizing Japan’s global entanglement, the course will introduce agents of socio-historical change in the late Shōwa period and early years of Heisei.

[Course Goals]

Knowledge of key phenomena and recent research perspectives of modern Japanese history after 1945.

[Course Schedule and Contents]

1. Introduction
11–13. Social movements after 1945
14. Conclusion

[Class requirement]

None

[Method, Point of view, and Attainment levels of Evaluation]

Written final report.

[Textbook]

Reading materials will be handed out during class.

[Reference book, etc.]

Reference book

Reading materials will be handed out during class.

[Regarding studies out of class (preparation and review)]

Knowledge of modern Japanese history in the Asian and global context is appreciated.

[Others (office hour, etc.)]
Western History I-E2(2)

[Textbook]
Not used
Reference materials and notes will be distributed in class as per requirements. Students will be expected to go through the handouts and bring them to class as per instruction.

[Regarding studies out of class (preparation and review)]
No prior knowledge of history is required. Students should be able to participate in discussions with their classmates in English.

[Others (office hour, etc.)]
No office hours specified. Meetings are to be arranged by appointment.
Classroom Management:
Be respectful to everyone and everything in class.

This is an introductory undergraduate course, providing students a basic narrative of British ascendancy and expansionism in India during the late eighteenth century to the twentieth century. This is a contents based course taught in English.

The goals of this course is to help students to (a) compare alternative and compelling views and interpretations and assess their significance, (b) become familiar with key debates of the period, (c) assess primary sources in the light of historical research and (d) present arguments clearly and concisely both orally and on paper.

<table>
<thead>
<tr>
<th>Course Schedule and Contents</th>
</tr>
</thead>
<tbody>
<tr>
<td>Week 1: Introduction to the course and Overview</td>
</tr>
<tr>
<td>Week 2/3: The Mughals; Emerging European presence in India</td>
</tr>
<tr>
<td>Week 4/5: Establishment of Company Rule</td>
</tr>
<tr>
<td>Week 6/7: The Colonizer and the Indigenous People</td>
</tr>
<tr>
<td>Week 8/9: Rebellion and Revolt: The Mutiny of 1857-58</td>
</tr>
<tr>
<td>Week 10/11: Social Reform Movements</td>
</tr>
<tr>
<td>Week 12/13: Nationalism and Communism</td>
</tr>
<tr>
<td>Week 14: Independence and Partition</td>
</tr>
<tr>
<td>Week 15: Final examination</td>
</tr>
<tr>
<td>Week 16: Feedback & Summary</td>
</tr>
</tbody>
</table>

Note: The schedule may change slightly depending on class requirements.

A system of continuous evaluation will be adopted. Although this will be a lecture styled course, students will be required to engage in discussions and/or presentations and submit written work as per instructions.

Final grade will be based on the following:
30% Regular participation and activity in class.
70% Exam/Final Paper at the end of the course.
Outline and Purpose of the Course

This is an introductory undergraduate course, providing students a basic narrative of British ascendancy and expansionism in India during the late eighteenth century to the twentieth century. This is a contents based course taught in English.

Course Goals

The goals of this course is to help students to (a) compare alternative and compelling views and interpretations and assess their significance, (b) become familiar with key debates of the period, (c) assess primary sources in the light of historical research and (d) present arguments clearly and concisely both orally and on paper.

Course Schedule and Contents

| Week 1: Introduction to the course and Overview |
| Week 2/3: The Mughals; Emerging European presence in India |
| Week 4/5: Establishment of Company Rule |
| Week 6/7: The Colonizer and the Indigenous People |
| Week 8/9: Rebellion and Revolt: The Mutiny of 1857-58 |
| Week 10/11: Social Reform Movements |
| Week 12/13: Nationalism and Communism |
| Week 14: Independence and Partition |
| Week 15: Final examination |
| Week 16: Feedback & Summary |

Note: The schedule may change slightly depending on class requirements.

Class requirement

None

Method, Point of view, and Attainment levels of Evaluation

A system of continuous evaluation will be adopted.

Although this will be a lecture styled course, students will be required to engage in discussions and/or presentations and submit written work as per instructions.

Final grade will be based on the following:

- 30% Regular participation and activity in class.
- 70% Exam/Final Paper at the end of the course.

Western History I-E2(2)

Textbook

Not used

Reference materials and notes will be distributed in class as per requirements. Students will be expected to go through the handouts and bring them to class as per instruction.

Regarding studies out of class (preparation and review)

No prior knowledge of history is required. Students should be able to participate in discussions with their classmates in English.

Others (office hour, etc.)

No office hours specified. Meetings are to be arranged by appointment.

Classroom Management:

Be respectful to everyone and everything in class.
Western History II-E2(2)

Final grade will be based on the following:
30% Regular participation and activity in class.
70% Exam/Final Paper at the end of the course.

[Textbook]
Not used
Reference materials and notes will be distributed in class as per requirements. Students will be expected to go through the handouts and bring them to class as per instruction.

[Reference book, etc.]
Introduced during class
To be announced in class.

[Regarding studies out of class (preparation and review)]
No prior knowledge of history is required. Students should be able to participate in discussions with their classmates in English.

[Others (office hour, etc.)]
No office hours specified. Meetings are to be arranged by appointment.
Classroom Management:
Be respectful to everyone and everything in class.

Lecture code: H274001

Course title
Western History II-E2

Affiliated department, Job title, Name
Graduate School of Human and Environmental Studies Program-Specific Senior Lecturer, BHATTE, Pallavi Kamlakar

Group
Humanities and Social Sciences

Field (Classification)
History and Civilization (Foundations)

Language
English

Number of credits
2

Number of weekly time blocks
1

Class style
Lecture

Course offered year/period
2019 • Second semester

Day/period
Tue. 2

Target year
All students

Eligible students
For all majors

[Outline and Purpose of the Course]
This is an introductory undergraduate course, providing students a basic narrative of major turning points that shaped modern Europe from the late 18th-century through the present, including the cause and the course of the two world wars. This is a content-based course taught in English. The purpose of this course is to develop (a) an understanding of some of the principle themes in modern Western History, and (b) an ability to analyze historical evidence and historical interpretation, and (c) an ability to express historical understanding verbally.

[Course Goals]
One of the goals of this course is to help students to consider multiple accounts of historical events in order to understand international relations from a variety of perspectives. Besides nurturing their English reading, writing and communication skills, the ultimate goal of this course is to provide a platform for students to discuss history in English.

[Course Schedule and Contents]
Week 1: Introduction to the course and Overview
Week 2/3: The French Revolution and Napoleon
Week 4/5: The Industrial Revolution and Pax Britannica
Week 6/7: World War I
Week 8/9: Interwar period and the rise of Fascist Italy, Germany and Japan
Week 10/11: World War II
Week 12/13: The Cold War
Week 14: Post Cold War and the Contemporary Era
Week 15: Final examination
Week 16: Feedback & Summary of the Course

*Note: The schedule may change slightly depending on class requirements.

[Class requirement]
There are no prerequisites. This course is open to all students regardless of major. Enthusiasm and willingness to participate and share ideas in class is necessary.

[Method, Point of view, and Attainment levels of Evaluation]
A system of continuous evaluation will be adopted.
Although this will be a lecture-styled course, students will be required to engage in discussions and presentations and submit written work as per instructions.

[Textbook]
Not used
Reference materials and notes will be distributed in class as per requirements. Students will be expected to go through the handouts and bring them to class as per instruction.

[Reference book, etc.]
Introduced during class
To be announced in class.

[Regarding studies out of class (preparation and review)]
No prior knowledge of history is required. Students should be able to participate in discussions with their classmates in English.

[Others (office hour, etc.)]
No office hours specified. Meetings are to be arranged by appointment.
Classroom Management:
Be respectful to everyone and everything in class.

Continue to Western History II-E2(2)
Western History II-E2(2)

Course title: Western History II-E2

Group: Humanities and Social Sciences
Field (Classification): History and Civilization (Foundations)
Language: English

Old group: Group A
Number of credits: 2

Number of weekly time blocks: 1
Class style: Lecture
Course offered year/period: 2019 • Second semester

Day/period: Fri. 2
Target year: All students
Eligible students: For all majors

[Outline and Purpose of the Course]
This is an introductory undergraduate course, providing students a basic narrative of major turning points that shaped modern Europe from the late 18th-century through the present, including the cause and the course of the two world wars. This is a contents-based course taught in English. The purpose of this course is to develop (a) an understanding of some of the principle themes in modern Western History, and (b) an ability to analyze historical evidence and historical interpretation, and (c) an ability to express historical understanding verbally.

[Course Goals]
One of the goals of this course is to help students to consider multiple accounts of historical events in order to understand international relations from a variety of perspectives. Besides nurturing their English reading, writing and communication skills, the ultimate goal of this course is to provide a platform for students to discuss history in English.

[Course Schedule and Contents]
Week 1: Introduction to the course and Overview
Week 2/3: The French Revolution and Napoleon
Week 4/5: The Industrial Revolution and Pax Britannica
Week 6/7: World War I
Week 8/9: Interwar period and the rise of Fascist Italy, Germany and Japan
Week 10/11: World War II
Week 12/13: The Cold War
Week 14: Post Cold War and the Contemporary Era
Week 15: Final examination
Week 16: Feedback & Summary of the Course

*Note: The schedule may change slightly depending on class requirements.

[Class requirement]
There are no prerequisites. This course is open to all students regardless of major. Enthusiasm and willingness to participate and share ideas in class is necessary.

[Method, Point of view, and Attainment levels of Evaluation]
A system of continuous evaluation will be adopted. Although this will be a lecture style course, students will be required to engage in discussions and/or presentations and submit written work as per instructions.

[Textbook]
Not used
Reference materials and notes will be distributed in class as per requirements. Students will be expected to go through the handouts and bring them to class as per instruction.

[Reference book, etc.]
Introduced during class
To be announced in class.

[Regarding studies out of class (preparation and review)]
No prior knowledge of history is required. Students should be able to participate in discussions with their classmates in English.

[Others (office hour, etc.)]
No office hours specified. Meetings are to be arranged by appointment.
Classroom Management:
Be respectful to everyone and everything in class.
<table>
<thead>
<tr>
<th>Lecture code: H277001</th>
</tr>
</thead>
<tbody>
<tr>
<td>Course numbering</td>
</tr>
<tr>
<td>U-LAS01 10013 LE38</td>
</tr>
<tr>
<td>Course title</td>
</tr>
<tr>
<td>Introduction to World Religions-E2</td>
</tr>
<tr>
<td>Affiliated department, Job title, Name</td>
</tr>
<tr>
<td>Center for Southeast Asian Studies, Associate Professor, Julius Bautista</td>
</tr>
<tr>
<td>Group</td>
</tr>
<tr>
<td>Humanities and Social Sciences</td>
</tr>
<tr>
<td>Field (Classification)</td>
</tr>
<tr>
<td>History and Civilization (Foundations)</td>
</tr>
<tr>
<td>Language</td>
</tr>
<tr>
<td>English</td>
</tr>
<tr>
<td>Old group</td>
</tr>
<tr>
<td>Group A</td>
</tr>
<tr>
<td>Number of credits</td>
</tr>
<tr>
<td>2</td>
</tr>
<tr>
<td>Number of weekly time blocks</td>
</tr>
<tr>
<td>1</td>
</tr>
<tr>
<td>Class style</td>
</tr>
<tr>
<td>Lecture</td>
</tr>
<tr>
<td>Course offered year/period</td>
</tr>
<tr>
<td>2019 • First semester</td>
</tr>
<tr>
<td>Day/period</td>
</tr>
<tr>
<td>Tue.2</td>
</tr>
<tr>
<td>Target year</td>
</tr>
<tr>
<td>Nearly 1st & 2nd year student</td>
</tr>
<tr>
<td>Eligible students</td>
</tr>
<tr>
<td>For liberal arts students</td>
</tr>
</tbody>
</table>

Outline and Purpose of the Course
This course offers an introduction to major religions of the world, including Hinduism, Buddhism, Eastern Religions, Judaism, Christianity, and Islam. What is interesting about the origin and historical development of each religious tradition? What are their sacred texts, philosophical ideas and common values? What kinds of rituals are performed by the members of each faith? The purpose of this course is to answer these questions in a way that compares various World Religions, especially in light of the global forces that have shaped them.

Course Goals
This course has two main learning outcomes: The first is the ability to offer a comparative analysis of the origin and historical development of each of the world’s major religions, drawing from basic understanding of sacred texts, philosophical ideas and patterns of ritual worship. Secondly, students will have the ability to comment on how religion impacts upon a wide range of social, political and cultural issues that affects modern society around the globe.

Course Schedule and Contents

<table>
<thead>
<tr>
<th>Week</th>
<th>Introduction and Course Queries</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Monotheism: The Founding Narratives</td>
</tr>
<tr>
<td>2</td>
<td>The Judeo-Christian Tradition</td>
</tr>
<tr>
<td>3</td>
<td>The Prophet of Islam</td>
</tr>
<tr>
<td>4</td>
<td>The Submission to God</td>
</tr>
<tr>
<td>5</td>
<td>The Vedic Tradition: The Foundational Narratives</td>
</tr>
<tr>
<td>6</td>
<td>Hinduism in Traditional and Contemporary Society</td>
</tr>
<tr>
<td>7</td>
<td>Buddhism: The Path Towards Enlightenment</td>
</tr>
<tr>
<td>8</td>
<td>The Buddha and His Dharma</td>
</tr>
<tr>
<td>9</td>
<td>East Asian Religious Traditions 1</td>
</tr>
<tr>
<td>10</td>
<td>East Asian Religious Traditions 2</td>
</tr>
<tr>
<td>11</td>
<td>Conclusion and Recap</td>
</tr>
<tr>
<td>12</td>
<td>Reading Week</td>
</tr>
<tr>
<td>13</td>
<td>Examination</td>
</tr>
<tr>
<td>14</td>
<td>Feedback Week</td>
</tr>
</tbody>
</table>

Class requirement
None

Method, Point of view, and Attainment levels of Evaluation
Students will be evaluated according to three main criteria: (1) their ability to participate in class discussions (20% of the overall grade), (2) a written essay (40%), and (3) group project/presentation (40%). The group project/presentation may be replaced by a written exam, depending on class numbers. This will be announced when the final number of enrollment is confirmed.

Textbook

Reference book, etc.
Introduced during class study.

Regarding studies out of class (preparation and review)
No prior knowledge of religion is required. Students should be able to participate in discussions with their classmates in English. This may be face-to-face small group discussion or online. Students may also be asked to make short presentations in English based on the class topics.

Others (office hour, etc.)
Consultation is by appointment via email to bautista@cseas.kyoto-u.ac.jp
Introduction to Asian Societies-E2

[Outline and Purpose of the Course]
This course will introduce students to Asian history and civilization. While each of these regions has its own distinctive identities, we shall consider how overlapping historical, political and cultural experiences have engendered a shared sense of heritage and common destiny. We shall examine the struggles of Asians to protect or regain their sovereignty, and establish their identities in a rapidly arising and often volatile world order. We will look at how individuals in Asia respond to significant issues and challenges in four distinct historical themes: “Pre-modern ideologies in Asia”, “Euro-American Imperialism”, “War and Conflict in Asia” and the “Era of the modern state and regionalism.”

[Course Goals]
At the end of this course, students will be able to achieve the following learning outcomes: (1) The ability to provide an historical portrait of the interrelationships between Asian societies and the wider global forces that have shaped the region. (2) The ability to engage in critical discussion and debate on some of the most pressing regional issues, including those in the areas of politics, the environment, history, culture and security.

[Course Schedule and Contents]
Lecture 1 will be an introduction to the course and its assessment tasks.
Lectures 2, 3 and 4 will be devoted to a discussion of pre-modern forms of Asian civilizational ideologies and how they remain relevant in contemporary society.
Lectures 5, 6 and 7 will discuss the impact of Euro-American incursion in the region from the sixteenth century, particularly in the pursuit of natural resources and trading routes. We shall discuss Asian responses to changing power relations, as well as how resistance to foreign incursion cultivated ethnic and religious identity in this period.
Lectures 8, 9 and 10 will examine the major modern conflicts in the region, particularly the two world wars, and how this impacted upon the pursuit of sovereignty and self determination among Asians.
Lectures 11, 12 and 13 will examine the era of the nation state, including the formation of cultural nationalism in the region in the post-war period. We shall examine the formation of various forms of governance and how this relates to national identity. We shall then discuss the moves towards regional integration among Asian nations, and how Asians are looking to the future in light of globalization.
Lecture 14 will be a conclusion and summary of the major themes of the course.
Lectures 15 and 16 will be devoted to examinations, and feedback for the course.

Introduction to Asian Societies-E2(2)

[Class requirement]
None

[Method, Point of view, and Attainment levels of Evaluation]
Students will be evaluated according to three main criteria. (1) their ability to participate class discussion (20% of the overall grade), (2) a written essay (40%), and (3) group project/presentation (40%). **The group project/presentation may be replaced by a written exam, depending on class numbers. This will be announced when the final number of enrollment is confirmed.**

[Textbook]
Not used

[Reference book, etc.]
Reference book Introduced during class

[Regarding studies out of class (preparation and review)]
No prior knowledge of Asian studies is required. Students should be able to participate in discussions with their classmates in English. This may be face-to-face small group discussion or online. Students may also be asked to make short presentations in English based on the class topics.

[Others (office hour, etc.)]
Consultation is by appointment via email to bautista@cseas.kyoto-u.ac.jp
Religion in Contemporary Society-E2

[Outline and Purpose of the Course]
This course is an exploration into how religion impacts upon some of the major social, cultural, political and economic issues of today's world. We shall be focusing on specific case studies relating to religious fundamentalism, religious pluralism, new religious movements and spirituality from around the world. Specific attention will also be paid to considering how the rise of information technology and social media impact religious belief and practice. We consider case studies in inquiring into how religion influences the pursuit of knowledge and scientific inquiry, including questions of ethics and morality in a rapidly globalizing world.

[Course Goals]
This course has two main learning outcomes for students: (1) the ability to assess how religion has figured as a critical factor in some of the major political and social issues facing the world today and (2) the ability to express an informed opinion on the themes of science and modernity, religious violence, extremism, radicalization and revivalism among others.

[Course Schedule and Contents]
Week 1 Introduction and Course Queries
Week 2 Religion and the Contemporary Demographic Order 1
Week 3 Religion and the Contemporary Demographic Order 2
Week 4 Discussion Session (Lectures 2-3)
Week 5 Globalization and Religious Belief 1
Week 6 Globalization and Religious Belief 2
Week 7 Discussion Session (Lectures 5-6)
Week 8 Religion and Technology 1
Week 9 Religion and Technology 2
Week 10 Discussion Session (Lectures 8-9)
Week 11 Religion and Politics 1
Week 12 Religion and Politics 2
Week 13 Discussion Session (Lectures 11-12)
Week 14 Conclusion and Recap
Week 15 Examination
Week 16 Feedback Week

[Class requirement]
None

[Method, Point of view, and Attainment levels of Evaluation]
Students will be evaluated according to three main criteria. (1) their ability to participate class discussion (20% of the overall grade), (2) a written essay (40%), and (3) group project/presentation (40%). ***The group project/presentation may be replaced by a written exam, depending on class numbers. This will be announced when the final number of enrollment is confirmed.**

[Textbook]
Instructed during class

[Reference book, etc.]
(Reference book)
Introduced during class

[Regarding studies out of class (preparation and review)]
No prior knowledge of religion is required. Students should be able to participate in discussions with their classmates in English. This may be face-to-face small group discussion or online. Students may also be asked to make short presentations in English based on the class topics.

[Others (office hour, etc.]]
Consultation is by appointment via email to bautista@cseas.kyoto-u.ac.jp
This course will introduce the student to the intellectual history of the Tokugawa and Meiji periods (1600-1911), both as a body of knowledge, and as a particular historical method. That is, besides deepening our understanding of the philosophies, ideologies, and mentalities that helped shape this period, we will also develop the skills necessary to meaningfully examine these ideas as academic problems. Through class discussion based on research literature and in-class presentations, we will reconstruct the way in which Tokugawa and Meiji contemporaries thought (or did not think) about a wide range of issues such as prostitution, discrimination, gender, education and the nation.

Course Goals
Upon the successful completion of this course, students will:

1. be familiar with the presuppositions and narratives of historical trends such as Marxism and modernization theory.
2. have a general understanding of early modern Japanese history as well as some of the ideas and ideologies that defined this particular period.
3. be able to efficiently and effectively distil the essence of academic writing, and structure and present one’s own ideas in a lucid manner.
4. be able to pose meaningful historical questions, and conduct independent research according to the methodological requirements of intellectual history.

Course Schedule and Contents
Course activities per week:

1. Introduction
2. Reading Assignments
3. Reading 1 (Orientalism)
4. Reading 2 (Nation-State)
5. Topic Discussion
6. Reading 3 (Kabuki)
7. Reading 4 (Publishing)
8. Proposal Discussion
9. Proposal Discussion
10. Reading 5 (Prostitution)
11. Reading 6 (Race)
12. Presentations
13. Presentations
14. Presentations

Japanese Intellectual History I-E2(2)

Class requirement
Competence in reading academic literature and in discussing its content in English is a prerequisite for this course. Furthermore, although not a strict requirement, it is recommended that the student will either precede or follow up this course with Japanese Intellectual History II - E2.

Method, Point of view, and Attainment levels of Evaluation
Grading will be based on attendance, participation, class reports, and a term research paper as follows:

- 30% Attendance and Participation
- 30% Class Reports
- 40% Research Paper

(Students who are absent more than 4 times will automatically fail this course)

Textbook
Not used

Regarding studies out of class (preparation and review)
(1) read the assigned readings (20-30 pages)
(2) prepare a "reading sheet" for each reading
(3) prepare a "report sheet" one or two times during the semester
(4) write a term research paper

Others (office hour, etc.)
Students should be aware of the fact that student interest in this course sometimes exceeds its capacity in which case enrollment permission will be decided based on a random lottery.

Students who have inquiries of any kind are welcome to contact me by email. In doing so, however, please heed the following:

1. write in either Japanese or English, whichever language you are most proficient in.
2. write in a formal format appropriate to the university setting.

Emails that do not conform to both items will be sent back without a response.
Course title
Japanese Intellectual History II-E2

Affiliated department, Job title, Name
Graduate School of Education
Associate Professor, Niels van Steenpaal

Group
Humanities and Social Sciences

Field(Classification)
History and Civilization(Issues)

Language
English

Old group
Group A

Number of weekly time blocks
1

Class style
Lecture

Course offered year/period
2019 • Second semester

Day/period
Wed.2

Target year
All students

Eligible students
For all majors

[Outline and Purpose of the Course]
This course will introduce the student to the intellectual history of Japan up to the early modern period (~1600), both as a body of knowledge, and as a particular historical method. That is, besides deepening our understanding of the philosophies, ideologies, and mentalities that helped shape this period, we will also develop the skills necessary to meaningfully examine these ideas as academic problems. Through class discussion based on research literature and in-class presentations, we will reconstruct the way in which premodern Japanese thought (or did not think) about a wide range of issues such as morality, death, gender, and the state.

[Course Goals]
Upon the successful completion of this course, students will:

1. be familiar with the presuppositions and narratives of historical trends such as Marxism and modernization theory.
2. have a general understanding of premodern Japanese history as well as some of the ideas and ideologies that defined this particular period.
3. be able to efficiently and effectively distil the essence of academic writing, and structure and present one's own ideas in a lucid manner.
4. be able to pose meaningful historical questions, and conduct independent research according to the methodological requirements of intellectual history.

[Course Schedule and Contents]
Course activities per week:
1. Introduction
2. Reading Assignments
3. Reading 1 (Ritsuryo Confucianism)
4. Reading 2 (Confucianism as a Religion)
5. Topic Discussion
6. Reading 3 (Honzeki Suijaku)
7. Reading 4 (Yoshida Shinto)
8. Proposal Discussion
9. Proposal Discussion
10. Reading 5 (Hungry Ghosts)
11. Reading 6 (Coping with Death)
12. Presentations
13. Presentations
14. Presentations

[Class requirement]
Competence in reading academic literature and in discussing its content in English is a prerequisite for this course. Furthermore, although not a strict requirement, it is recommended that the student will either precede or follow up this course with Japanese Intellectual History I-E2.

[Method, Point of view, and Attainment levels of Evaluation]
Grading will be based on attendance, participation, class reports, and the term paper as follows:
- 30% Attendance and Participation
- 30% Class Reports
- 40% Research Paper

Students who are absent more than 4 times will automatically fail this course.

[Textbook]
Not used

[Regarding studies out of class (preparation and review)]
1. read the assigned readings (20-30 pages)
2. prepare a "reading sheet" for each reading
3. prepare a "report sheet" one or two times during the semester
4. write a term research paper

[Others (office hour, etc.)]
Students should be aware of the fact that student interest in this course sometimes exceeds its capacity in which case enrollment permission will be decided based on a random lottery.

Students who have inquiries of any kind are welcome to contact me by email. In doing so, however, please heed the following:
1. write in either Japanese or English, whichever language you are most proficient in.
2. write in a formal format appropriate to the university setting.

Emails that do not conform to both items will be sent back without a response.
Japanese Popular Culture-E2(2)

Outline and Purpose of the Course
The phenomenon of "Cool Japan" is one of the distinctive features of modern global pop culture. This lecture series will discuss the development of this phenomenon from its 19th century roots to the present day. The Meiji Period, which ushered in the opening of Japan, attracted a new global audience to Japanese culture. Japanese culture was of course affected by these new interactions. Shifting away from high politics to focus on music, sport, film, magazines and comics, this lecture series will discuss Japanese popular culture as shaped by domestic and international counter-culture trends. This course will be suitable for both students who have a deep understanding of Japanese culture and those who are new comers.

Course Goals
Students will gain a knowledge of Japanese popular culture and will be able to demonstrate this through essays.

Course Schedule and Contents
1. Introduction Lecture
2. Protest movements in Japan from Eizynaika to the Student Demonstrations of the 1970s
3. Europe and America’s fascination with Japanese art
4. You gotta have wa! Sport and Japan
5. In the Beginning Woman was the Sun: Consumerism and the Modern Girl
6. The Propaganda War: Creating an Empire
7. Professional Wrestling and post war Japan
8. From Kurosawa to Star Wars, the influence of Japanese film
9. The American Invasion: Rock’n’Roll hits Japan
10. Battle of the Planets: Animation and Manga Culture
11. Nintendo takes over America: Video Games and the 1980s
12. They’ve never had it so good: Bubble-Culture
13. Dreaming of Sushi: Japan and the mania for food
14. Review

Class requirement
None

Continue to Japanese Popular Culture-E2(2): [Link]
Japanese Popular Culture-E2

[Textbook]
E. Taylor Atkins "A History of Popular Culture in Japan" (Bloomsbury)

[Regarding studies out of class (preparation and review)]
Students will be given a short article or primary source to prepare for each lesson.

[Others (office hour, etc.)]

[Outline and Purpose of the Course]
The phenomenon of "Cool Japan" is one of the distinctive features of modern global pop culture. This lecture series will discuss the development of this phenomenon from it’s 19th century roots to the present day. The Meiji Period which ushered the ‘opening’ of Japan attracted a new global audience to Japanese culture. Japanese culture itself was of course affected by these new interactions. Shifting away from high politics to focus on music, sport, film, magazines and comics this lecture series will discuss Japanese popular culture as shaped by domestic and international counter-culture trends. This course will be suitable for both students who have a deep understanding of Japanese culture and those who are new comers.

[Course Goals]
Students will gain a knowledge of modern Japanese culture and display this through written work.

[Course Schedule and Contents]
1. Introduction Lecture
2. Protest movements in Japan from Eejynaika to the Student Demonstrations of the 1970s
3. Europe and America’s fascination with Japanese art
4. You gotta have wa! Sport and Japan
5. In the Beginning Woman was the Sun: Consumerism and the Modern Girl
6. The Propaganda War: Creating an Empire
7. Professional Wrestling and post war Japan
8. From Kurosawa to Star Wars, the influence of Japanese film
9. The American Invasion: Rock ‘n’ Roll hits Japan
10. Battle of the Planets: Animation and Manga Culture
11. Nintendo takes over America: Video Games and the 1980s
12. They’ve never had it so good: Bubble-Culture
13. Dreaming of Sushi: Japan and the mania for food
14. Review

[Class requirement]
None

[Method, Point of view, and Attainment levels of Evaluation]
Written Examination during the Official Examination Term
Evaluation on Class performance through attendance and participation
Lecture code: H381001

<table>
<thead>
<tr>
<th>Field(Classification)</th>
<th>Arts, Literature and Linguistics(Foundations)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Group</td>
<td>Humanities and Social Sciences</td>
</tr>
<tr>
<td>Language</td>
<td>English</td>
</tr>
<tr>
<td>Number of weekly time blocks</td>
<td>1</td>
</tr>
<tr>
<td>Class style</td>
<td>Lecture</td>
</tr>
<tr>
<td>Course offered year/period</td>
<td>2019 • First semester</td>
</tr>
<tr>
<td>Day/period</td>
<td>Wed.1</td>
</tr>
<tr>
<td>Target year</td>
<td>All students</td>
</tr>
<tr>
<td>Eligible students</td>
<td>For liberal arts students</td>
</tr>
</tbody>
</table>

[Outline and Purpose of the Course]

This course provides a general introduction to the principles of linguistic science. It will introduce each of the core areas of study in the field of linguistics: phonetics, phonology, morphology, syntax, and language change.

[Course Goals]

After taking this course, students will have a basic understanding of how to critically consider and analyze actual linguistic data from a variety of languages.

[Course Schedule and Contents]

The course is divided into the following five sections, each with a different theme. Exercises and readings will be regularly assigned to help you explore various descriptive and theoretical issues.

1. Introduction, Phonetics (about 3 weeks)
 - What is linguistics?; the International Phonetic Alphabet; the vowels and consonants of English and Japanese
2. Phonology (about 3 weeks)
 - The phoneme; allophones; formulating rules; minimal pairs; free variation
3. Morphology (about 3 weeks)
 - The morpheme; allomorphs; word formation; derivation and inflection; compounding
4. Syntax (about 3 weeks)
 - Grammaticality; constituency; phrase structure; X-bar theory; movement
5. Language Change: Historical Linguistics (about 2 weeks)
 - Genetically related languages; proto-languages; sound change; the comparative method; cognates; borrowing

[Class requirement]

None

[Method, Point of view, and Attainment levels of Evaluation]

Grades are based on attendance (10%), class participation (20%), and assignments/exams (70%). Important: If you miss four or more classes, you will not be given credit for the course.

[Textbook]

Relevant materials will be provided in class.

[Reference book, etc.]

- **Reference book**

[Regarding studies out of class (preparation and review)]

In general, exercises and readings will be assigned on a weekly basis, and you will be expected to prepare sufficiently before each class.

[Others (office hour, etc.)]

Office hours to be specified (check KULASIS). For questions about the course or to set up a meeting, email me at catt.adam.7c@kyoto-u.ac.jp. Please include “Linguistic Science” in the mail header and your full name and student number in the email. Important: Make sure that you search for answers to questions yourself before contacting me by email.
Introduction to Japanese Linguistics I-E2

Course Goals
After taking this course, students will have a basic understanding of how to critically consider and analyze actual linguistic data from Japanese.

Course Schedule and Contents
The course schedule is divided into the following seven sections, each with a different theme. Exercises and readings will be regularly assigned to help you explore various descriptive and theoretical issues.

1. Introduction, Phonetics (about 2 weeks)
 - The phonetic inventory of Japanese; accent

2. Phonology (about 3 weeks)
 - Phonological rules; sequential voicing (rendaku); mora vs. syllable; accentuation

3. Morphology (about 2 weeks)
 - Parts of speech categories; morpheme types; word formation; transitive and intransitive verb pairs; nominalization; compounding

4. Syntax (about 3 weeks)
 - Syntactic structures; word order and scrambling; reflexives; passives; causatives

5. Semantics (about 1 week)
 - Word meaning and sentence meaning; tense and aspect; verb semantics

6. Language Variation (about 1 week)
 - Dialectal variation

7. Language Change (about 2 weeks)
 - The diachronic perspective; preserving endangered languages

Day/period
Wed. 1

Target year
All students

Eligible students
For liberal arts students

Number of credits
2

Class requirement
This course does not require any prerequisite knowledge, although a basic familiarity with Japanese is preferable.

Method, Point of view, and Attainment levels of Evaluation
Grades are based on attendance (10%), class participation (20%), and assignments/exams (70%). Important: If you miss four or more classes, you will not be given credit for the course.

Textbook
Relevant materials will be provided in class.

Reference book, etc.

Regarding studies out of class (preparation and review)
Exercises will be assigned on a weekly basis, and you will be expected to prepare sufficiently before each class.

Others (office hour, etc.)
Office hours to be specified (check KULASIS). For questions about the course or to set up a meeting, email me at catt.adam.7c@kyoto-u.ac.jp. Please include “Japanese Linguistics” in the mail header and your full name and student number in the email. Important: Make sure that you search for answers to questions yourself before contacting me by email.
<table>
<thead>
<tr>
<th>Course number</th>
<th>U-LAS02 10020 LE37</th>
</tr>
</thead>
<tbody>
<tr>
<td>Course title</td>
<td>Intercultural Communication I-E2</td>
</tr>
<tr>
<td>Affiliated department, Job title, Name</td>
<td>Center for Southeast Asian Studies, Associate Professor, TANGSEESA, Decha</td>
</tr>
<tr>
<td>Group</td>
<td>Humanities and Social Sciences</td>
</tr>
<tr>
<td>Field (Classification)</td>
<td>Arts, Literature and Linguistics (Foundations)</td>
</tr>
<tr>
<td>Language</td>
<td>English</td>
</tr>
<tr>
<td>Old group</td>
<td>Group A</td>
</tr>
<tr>
<td>Number of weekly time blocks</td>
<td>1</td>
</tr>
<tr>
<td>Class style</td>
<td>Lecture</td>
</tr>
<tr>
<td>Course offered year/period</td>
<td>2019 · First semester</td>
</tr>
<tr>
<td>Target year</td>
<td>Mainly 1st & 2nd year students</td>
</tr>
<tr>
<td>Eligible students</td>
<td>For all majors</td>
</tr>
</tbody>
</table>

Outline and Purpose of the Course

In today's global community, how should a person conceptually prepare herself to be an effective intercultural communicator? Inconceivable even a decade ago, this era has witnessed tremendous transnational cultural flows - of people, practices and products - as well as local cultural complexities. Each not only encounters her own cultural intricacy, but also needs to effectively operate in culturally-complex contexts - no matter in the cyber or physical spaces. These contexts range from the home and neighborhood; to places of work, worship and recreation; and to regions and the world. This introductory course’s foci are: first, foundations of intercultural communication; second, intercultural communication processes; and, third, intercultural communication applications. The course explores both theories and events as well as employs sounds (melodic or not) and images (moving or otherwise) - as pedagogical tools - to deepen students’ understanding on effective intercultural communication.

Class Goals

This course aims to equip students with a set of abilities to: (1) conceptually think through foundations and processes of intercultural communication; (2) apply that conceptualization to inter-culturally communicate in their everyday lives.

Course Schedule and Contents

- Week 1 Introduction and Course Queries
- Week 2 Why Study Intercultural Communication?
- Week 3 The History of the Study of Intercultural Communication
- Week 4 Culture, Communication, Context, and Power
- Week 5 History and Intercultural Communication
- Week 6 Identity and Intercultural Communication
- Week 7 Language and Intercultural Communication
- Week 8 Nonverbal Codes and Cultural Space
- Week 9 Understanding Intercultural Transitions
- Week 10 Popular Culture and Intercultural Communication
- Week 11 Culture, Communication, and Intercultural Relationships
- Week 12 Culture, Communication, and Conflict
- Week 13 Striving for Engaged and Effective Intercultural
- Week 14 Course Summary
- Week 15 Examination
- Week 16 Feedback Session

This page continues to Intercultural Communication I-E2(2)
In today’s global community, how should a person prepare herself to be an ethical intercultural communicator? With time and space becoming even more compressed, the present global era has increasingly become more fragile; and people have increasingly become less tolerant towards those who are different from themselves. This course studies intercultural communication by prioritizing one human activity – listening – over others. The course aims to orientate students to not only understand the significance of listening, but also to practice listening to varieties of cultures through the multitude of sounds in everyday public spaces. They are the spaces where people of different cultures roam. We are different either because of our gender, class, age, (dis)ability, ethnicity, religion, and/or nation. These sounds signal a way that people of different cultures interculturally communicate among one another, consciously or not. Academics working on sound culture calls this phenomenon sonorities of everyday life. Such quotidian acoustic life offers alternative interdisciplinary modes of thinking to contemporary questions of global inhabitation, relation and disruption.

Course Goals

This course aims to equip students with a set of abilities to: (1) conceptually think through the importance of listening as a way of heightening an ethical intercultural communication; (2) apply that conceptualization to inter-culturally communicate in their everyday lives.

Course Schedule and Contents

Week 1: Introduction and Course Queries

Acoustic Territories: Sound Culture and Everyday Life (AT)

Week 2:

Week 3:

Week 4:

Week 5:

Week 6:

Week 7:

Week 8:

Week 9:

Week 10:

Week 11:

Week 12:

Sound, Forced Migration, Borderland

Week 13:

Week 14:

- Course Summary

Week 15: Examination

Week 16: Feedback Session

Class Requirement

Students must pass Intercultural Communication I before they can enroll in Intercultural Communication II.

Method, Point of view, and Attainment levels of Evaluation

Attendance and class participation (30%), team research paper (40%), final exam (30%).

Textbook

Reference book, etc.

<table>
<thead>
<tr>
<th>Intercultural Communication IL-EZ(3)</th>
</tr>
</thead>
<tbody>
<tr>
<td>[Regarding studies out of class (preparation and review)]</td>
</tr>
<tr>
<td>On the first day of class, each weekly required reading(s) will be assigned. Throughout the semester, students will come to class having read the reading(s) and ready to engage with their peers.</td>
</tr>
<tr>
<td>[Others (office hour, etc.):]</td>
</tr>
<tr>
<td>Consultations can be arranged as needed.</td>
</tr>
</tbody>
</table>
This course introduces students to deeper thinking about education, teaching, and learning. It challenges students to contemplate seemingly easy questions: What makes a good school? What is the purpose of education? What is the role of the goal of education? Even though we have all attended school for most of our lives, rarely have we stopped to think seriously about how and what we are taught. This class gives students this chance. As such, it is suitable for all students, regardless of major, year, or future career path.

Course Goals
The goals of this course are three. First, students will acquire a systematic introduction to the major issues in education: organization of schools, goals, teaching, learning, curriculum, etc. Second, will improve their analytical abilities through a range of critical examinations of course materials (videos, academic articles, media sources, etc.). Third, students will begin to develop advanced skills in discussion and debate: each of the five unit of the course will require active, focused discussion.

Course Schedule and Contents

- **Introduction (1 class)**

 Part I: What do good schools look like? (4-5 classes) - This section will examine various examples of innovative schools drawn from different cultural contexts, including Summerhill, monasteries, and preschools in Japan and America.

 Part II: What is the role of the goal of education? (3-4 classes) - This section will introduce students to 3 broad aims for schooling found throughout the world: economic growth, social equality, and individual development.

 Part III: What makes a good teacher? (3-4 classes) - We next turn to look at the different styles of teacher that match the different goals of education discussed in Part II.

 Part IV: What should be taught? (2-3 classes) - This section focuses on what is taught, both the explicit and hidden curriculum of schools.

 Part V: What will schools look like in the future? (2-3 classes) - Drawing together all the previous sections of the course, we contemplate the future of education, in particular technology and globalization. (15 classes total, 1 Final Exam, 1 Feedback Section)
This course challenges students to think deeply about education, specifically teaching and learning. To do so, it introduces the major approaches to pedagogy, discussing the historical origins, philosophical assumptions, concrete practices, and persistent problems found in each. Throughout this course, students will be challenged to think deeper about competing goals in education. They will also be asked to engage with difficult problems surrounding cross-cultural teaching and learning. Students are encouraged to also enroll in the Advanced Lecture for Pedagogy II at the same time.

Course Goals
This lecture has two major goals. First, students will learn about how to think critically about different types of pedagogy. Second, students will gain the skills and confidence necessary for discussion on educational issues in diverse academic and intercultural contexts. The importance of avoiding one-way conceptions of cross-cultural education or comparative educational research will be emphasized, while possibilities of realizing more intercultural practices are demonstrated.

Course Schedule and Contents
1. Class Introduction, Overview and Student Questionnaire (1 class)
2. Classical Pedagogy: Plato's Cave and Socrates Soul (2-3 classes)
3. Traditional Pedagogy (Christian, Oakeshott) (2-3 classes)
4. Progressive Pedagogy (Rousseau, Kilpatrick) (2-3 classes)
5. Dewey's Pedagogy: Experience and Democracy (2-3 classes)
6. Non-Western Pedagogy? (2-3 classes)

(15 lectures total, including 1 Review Class, Final Examination (or Final Paper), Feedback session)

(Note: Depending on students' background, and levels of English, the plan for this course may change. However, the course will generally progress according to the major topics outlined below. The instructor will be open to extending or reducing lectures, depending on what students are most interested in as the course develops. A more detailed syllabus will be distributed in second or third week of the course.)
Psychoanalysis-E2

Course Schedule and Contents

1. Introduction
2. Unconscious
3. Transference
4. Sexuality
5. Loss
6. Dora I
7. Dora II
8. Little Hans I
9. Little Hans II
10. Rat Man I
11. Rat Man II
12. Totem and Taboo
13. Civilization and its discontents
14. Conclusion
15. Final test
16. feedback

Course Goals

To provide you with a general introduction to and understanding of psychoanalytical theory and practice. To increase your psychoanalytical knowledge through one of the most debated case studies in the history of mental medicine. To help you develop your analytical and critical thinking regarding the founding principles, key concepts, and applications of psychoanalysis.

Textbook

Relevant material is distributed in class.

Reference book, etc.

- Sigmund Freud: *Fragments of an Analysis of a Case of Hystera (1905)* (The Complete Psychological Works of Sigmund Freud)
- Sigmund Freud: *Analysis of a Phobia in a Five-year-old Boy (1909)* (The Complete Psychological Works of Sigmund Freud)
- Sigmund Freud: *Notes Upon A Case of Obsessional Neurosis (1909)* (The Complete Psychological Works of Sigmund Freud)

Regarding studies out of class (preparation and review)

Students do not have homework assignments. However, they are advised to take notes during class and to review the course material before written responses and final test.

Others (office hour, etc.)

None
Course title
Sociology I-E2

Affiliated department, Job title, Name
Graduate School of Letters, Associate Professor, Stephane Heim

Group
Humanities and Social Sciences

Field(Classification)
Pedagogy, Psychology and Sociology(Foundations)

Language
English

Group, Old group, Group A, Number of credits
Group A, 2

Number of weekly time blocks
1

Class style
Lecture

Course offered year/period
2019 • First semester

Day/period
Tue.3

Target year
Mainly 1st year students

Eligible students
For all majors

Course Schedule and Contents

<table>
<thead>
<tr>
<th>Week</th>
<th>Course Introduction: the Sociological Imagination</th>
</tr>
</thead>
<tbody>
<tr>
<td>Week</td>
<td>Social Research</td>
</tr>
<tr>
<td>Week</td>
<td>Socialization and Social Interaction</td>
</tr>
<tr>
<td>Week</td>
<td>Social Structure and Family</td>
</tr>
<tr>
<td>Week</td>
<td>Culture and Media</td>
</tr>
<tr>
<td>Week</td>
<td>Capitalism, Economy, and Work</td>
</tr>
<tr>
<td>Week</td>
<td>Organizations and Institutions</td>
</tr>
<tr>
<td>Week</td>
<td>Social Stratifications, Class, Inequalities</td>
</tr>
<tr>
<td>Week</td>
<td>Deviance and Control</td>
</tr>
<tr>
<td>Week</td>
<td>Race and Ethnicity</td>
</tr>
<tr>
<td>Week</td>
<td>Power</td>
</tr>
<tr>
<td>Week</td>
<td>Gender and Sexuality</td>
</tr>
<tr>
<td>Week</td>
<td>Education and Science</td>
</tr>
<tr>
<td>Week</td>
<td>Course Conclusions</td>
</tr>
<tr>
<td>Week</td>
<td>Feedback</td>
</tr>
</tbody>
</table>

Class requirement
The lectures will be delivered in English. It is not required to have already studied Sociology, but students should have an interest in the phenomena that shape and modify our contemporary societies.

Method, Point of view, and Attainment levels of Evaluation
Final exam

Textbook
Instructed during class

Reference book, etc.
(Reference book)
Introduced during class

Regarding studies out of class (preparation and review)
During each class, the first ten-fifteen minutes are dedicated to the review of the previous class. Students are asked to prepare each lesson on a weekly basis.

Others (office hour, etc.)
Students should email the teacher to make an appointment.
Course Schedule and Contents

Introduction (1 class)

- **Part I: What do good schools look like? (4-5 classes)** - This section will examine various examples of innovative schools drawn from different cultural contexts, including Summerhill, monasteries, and preschools in Japan and America.

- **Part II: What is the goal of education? (3-4 classes)** - This section will introduce students to 3 broad aims for schooling found throughout the world: economic growth, social equality, and individual development.

- **Part III: What makes a good teacher? (3-4 classes)** - We next turn to look at the different styles of teacher that match the different goals of education discussed in Part II.

- **Part IV: What should be taught? (2-3 classes)** - This section focuses on what is taught, both the explicit and hidden curriculum of schools.

- **Part V: What will schools look like in the future? (2-3 classes)** - Drawing together all the previous sections of the course, we contemplate the future of education, in particular technology and globalization.

(15 classes total, 1 Final Exam, 1 Feedback Section)
Advanced Lecture for Pedagogy II-E2

Course Title: Advanced Lecture for Pedagogy II-E2

Affiliated Department: Graduate School of Education

Job Title: Associate Professor

Name: Jeremy Rappleye

Group: Humanities and Social Sciences

Field (Classification): Pedagogy, Psychology and Sociology

Language: English

Old Group: Group A

Number of Credits: 2

Number of Weekly Time Blocks: 1

Course offered year/period: 2019 • Second semester

Day/period: Wed.2

Target Year: Mainly 1st & 2nd year students

Eligible Students: For all majors

Outline and Purpose of the Course

This course complements and extends Pedagogy II. It focuses on deepening students' understanding of major pedagogical approaches by critically engaging with original, high-level texts by leading philosophical and educational thinkers. Students are encouraged to read advanced level texts so that they can acquire both a higher command of academic English and a deeper understanding of diverse pedagogical approaches.

Course Goals

One primary goal of this course is to help students gain the skills and confidence to read challenging academic materials in English. Another goal is to develop high-level analytical skills in the field of pedagogy. A third is to gain a deeper knowledge of leading thinkers. In contrast to Pedagogy II, the core of this course will be critical reading and analysis of original texts. The modes of critical engagement acquired will be useful across all subjects in the social sciences and humanities.

Course Schedule and Contents

This class will complement and thus closely follow Pedagogy II. Ideally, all students will enroll in both courses, first receiving lectures in Pedagogy II, then reading original texts to deepen their knowledge further in the Advanced Lecture for Pedagogy II.

As such, the class is organized in the same manner as Pedagogy II:

1. Class Overview and Student Questionarie (1 class)
2. Classic Conceptions: Plato's Cave, Socrates Soul (2-3 classes)
3. Traditional Pedagogy (Christianity, Oakeshott) (2-3 classes)
4. Progressive Pedagogy (Rousseau, Kilpatrick) (2-3 classes)
5. Dewey's Pedagogy: Experience and Democracy (2-3 classes)
6. Non-Western Pedagogy? Self, Tradition, Other (Japanese thinkers and others) (2-3 classes)

(15 lectures total, including Final Examination (or Final Paper), plus 1 Feedback Class)

Class requirement

There are no special requirements for taking this course. However, students are strongly encouraged to also enroll in Pedagogy II at the same time as this course. These two courses will be roughly the same content, but Advanced Lecture for Pedagogy II will focus more on reading skills and deepening knowledge. All lectures will be in English, but the instructor can read and understand Japanese, so questions or comments may occasionally be made in Japanese.

Method, Point of view, and Attainment levels of Evaluation

Classes will take the form of group analysis of key texts. Students will be expected to deliver a 10-15 minute presentation at least once during the course. Grading will be based on attendance and active participation (30 points), evidence of advanced preparation (15 points), presentation and reflection paper (15 points), and a final evaluation, test or paper to be decided later (40 points). Students who are absent more than four times will not be given credit.

Textbook

Not used

There is no textbook for this course. All readings will be distributed by the instructor in PDF format and hard copy (if students wish to have hard copy). We will discuss in the first class.

Reference book, etc.

- J. Palmer (Ed.) *Fifty Major Thinkers on Education: From Confucius to Dewey* (*Available online*)

Regarding studies out of class (preparation and review)

Students will be expected to read 1-2 major articles outside of class each week. This will be roughly 15-30 pages of challenging, academic English language text. This will require studying 2-3 hours outside of class each week for this course.

Others (office hour, etc.)

Office Hours will be held 1 hour each week (time and place to be announced).
Introduction to Educational Psychology I-E2

- **Course number:** U-LAS04 20004 LE46
- **Course title:** Introduction to Educational Psychology I-E2

Course Conduct

Students taking this course will be expected to prepare for each class by reading the appropriate textbook pages and any other materials that the instructor assigns. Class sessions will comprise of lectures provided by the instructor to summarize key points, highlight important issues, and introduce students to other pertinent information. Active participation in these discussions and exercises is necessary to meet course work/grading requirements. Eligible students will be expected to submit their work on time and to participate actively in class discussions. Active participation includes asking questions, offering comments, and engaging in discussions with other students.

Course Schedule and Contents

The following is a guide to what will be covered during the 16 weeks of the semester. As required, some minor adjustments may be made to this schedule.

Week 1: Introduction to the course and to the foundations of learning

Week 2: The brain and learning: lecture and discussion

Week 3: The physiology of learning: reflections about opportunities, limitations, and challenges

Week 4: The nature of development: lecture and discussion

Week 5: The nature of development: reflections on the contributions of maturation and experience

Week 6: The nature of development: reflections on the importance of catering to individual differences in school education

Week 7: What "learning" is from the behavioral perspective: lecture and discussion

Week 8: What "learning" is from the gestalt and cognitive perspectives: lecture and discussion

Week 9: What "learning" is: reflections about the usefulness of knowing these perspectives for teachers and students

Week 10: The mechanisms of learning part 1: lecture and discussion

Week 11: The mechanisms of learning part 2: lecture and discussion

Week 12: The mechanisms of learning: reflections about applications of principles to classroom teaching and learning

Week 13: Language and learning: lecture and discussion

Week 14: Language and learning: reflections about the relationship between language and thought

Week 15: Final examination

Week 16: Feedback week

Textbook

Others (office hour, etc.)

Students will be expected to obtain a copy of the textbook, and to read assigned chapters and other readings in preparation for each class. During the semester, students can email the instructor to make an appointment or to ask any questions about the course.
Course title<English>
Introduction to Educational Psychology II-E2

Field(Classification)
Pedagogy, Psychology and Sociology

Language
English

Number of weekly time blocks
1

Course style
Lecture

Course offered year/period
2019 • Second semester

Day/period
Mon.3

Target year
Mainly 1st & 2nd year student

Eligible students
For all majors

Course Schedule and Contents

The following is a guide to what will be covered during the 16 weeks of the semester. As required, some minor adjustments may be made to this schedule.

Week 1: Introduction to the course and to concept formation in children

Week 2: Schema in learning; lecture and discussion

Week 3: Concepts and schemas: reflections about what we know, how we know, what we think others may know

Week 4: Memory: an introduction to and discussion of basic concepts

Week 5: Remembering and forgetting: reflections about what we retain and what we lose in memory

Week 6: Mnemonic techniques: reflections about uses in educational settings

Week 7: Learning in school: lecture and discussion

Week 8: Learning in school: reflections about what is taught - and how

Week 9: Examinations and tests: lecture and discussion

Week 10: Formative and summative evaluation: reflections about effects on learning

Week 11: Test and question types: reflections about uses and usefulness

Week 12: Intelligence and intelligence testing: lecture and discussion

Week 13: Ability grouping: reflections about advantages and disadvantages for students and teachers

Week 14: Diversity in education: reflections about benefits and challenges

Week 15: Final examination

Week 16: Feedback week

Introduction to Educational Psychology II-E2(2)

Course Conduct

Students taking this course will be expected to prepare for each class by reading the appropriate textbook pages and any other materials that the instructor assigns. Class sessions will comprise of lectures provided by the instructor to summarize key points, highlight important issues, and introduce students to other pertinent information that bear on the topic being covered: these will all be provided on the assumption that students have undertaken the preparatory readings. The class sessions will also involve pair, small group, and/or plenary discussions, and exercises for students to complete individually or in cooperation with other students. Active participation in these discussions and exercises is necessary to meet coursework/grading requirements (see below). 40% of the course grade is based on a portfolio of work that students complete relating to the topics dealt with in the course (i.e., exercises completed in class, notes on key points raised in discussions with other students, notes taken from and reflections on assigned and other readings undertaken, etc.).

Class requirement

There are no prerequisites, but it is preferable if students have taken Introduction to Educational Psychology I before taking this course.

Method, Point of view, and Attainment levels of Evaluation

- Portfolio of work = 40%
- Short essay (750 words) = 20%
- Class discussion participation and contribution = 20%
- Final examination = 20%

Textbook

Regarding studies out of class (preparation and review)

Students will be expected to spend about 90 minutes each week on out-of-class preparation, readings, and assignments.

Others (office hour, etc.)

Students will be expected to obtain their own copy of the textbook, and to read assigned chapters and other readings in preparation for each class. During the semester, students can email the instructor to make an appointment or to ask any questions about the course.
Lecture code: H708001

Introduction to Educational Studies I-E2

Course Conduct
Students taking this course will be expected to prepare for each class by reading the appropriate textbook pages and any other materials that the instructor assigns. Class sessions will comprise of lectures provided by the instructor to summarize key points, highlight important issues, and introduce students to other pertinent information that bear on the topic being covered; these will all be provided on the assumption that students have undertaken the preparatory readings. The class sessions will also involve pair, small group, and/or plenary discussions, and exercises for students to complete individually or in cooperation with other students. Active participation in these discussions and exercises is necessary to meet coursework/grading requirements. 40% of the course grade is based on a portfolio of work that students complete relating to the topics dealt with in the course (i.e., exercises completed in class, notes on key points raised in discussions with other students, notes taken from and reflections on assigned and other readings undertaken, etc.).

Course Goals
The goals of this course are:
- To facilitate students' acquisition of knowledge about some of the important concepts, issues, and ideas in educational studies
- To foster in students an understanding and appreciation of the multiple perspectives that exist in the study and practice of education
- To encourage students to think about the relevance and applications of the knowledge they are acquiring
- To facilitate the development of students' thinking and communication skills in English

Course Schedule and Contents

Course Schedule
The following is a guide to what will be covered during the 16 weeks of the semester. As required, some minor adjustments may be made to this schedule:

Week 1: Introduction to the course and to the question of what education might mean
Week 2: What education means: lecture and discussion
Week 3: What education means: reflections about own and others' perspectives on the meaning of education
Week 4: Theories of teaching and learning: lecture and discussion
Week 5: Theories of teaching and learning: reflections about the usefulness of these theories to the learner
Week 6: Theories of teaching and learning: reflections about the usefulness of these theories to the teacher
Week 7: Differences in educational systems part 1: lecture and discussion
Week 8: Differences in educational systems part 2: lecture and discussion
Week 9: Differences in educational systems: reflections about culture and the realities of school settings
Week 10: Special educational needs and inclusion: lecture and discussion
Week 11: Educating students with learning disabilities: reflections on issues, controversies, and strategies
Week 12: Educating students who are gifted and talented: reflections on issues, controversies, and strategies
Week 13: Gender in education: lecture and discussion
Week 14: Gender in education: reflections about fairness and ways to promote equal opportunities
Week 15: Final examination
Week 16: Feedback week

Course title: Introduction to Educational Studies I-E2

Course number: U-LAS04 20006 LE47

Affiliated department, Job title, Name: Graduate School of Education, Professor, Emmanuel MANALO

Group: Humanities and Social Sciences
Language: English
Field(Classification): Pedagogy, Psychology and Sociology(Issues)
Number of weekly time blocks: 1
Class style: Lecture
Course offered year/period: 2019 • First semester
Target year: Mainly 1st & 2nd year students
Eligible students: For all majors

[Outline and Purpose of the Course]
The main purpose of this course is to provide students with an introduction to some of the key concepts, issues, and perspectives in the study of education. Through a series of lectures, exercises, and discussions in class, students will be encouraged to consider the meaning and functions of education; different theories of teaching and learning; differences in educational systems; strategies in catering for special educational needs and promoting inclusion; and some of the controversies and debates surrounding the issue of gender in education.

[Course Goals]
The goals of this course are:
- To facilitate students' acquisition of knowledge about some of the important concepts, issues, and ideas in educational studies
- To foster in students an understanding and appreciation of the multiple perspectives that exist in the study and practice of education
- To encourage students to think about the relevance and applications of the knowledge they are acquiring
- To facilitate the development of students' thinking and communication skills in English

[Course Schedule and Contents]
Course Schedule
The following is a guide to what will be covered during the 16 weeks of the semester. As required, some minor adjustments may be made to this schedule:
Week 1: Introduction to the course and to the question of what education might mean
Week 2: What education means: lecture and discussion
Week 3: What education means: reflections about own and others' perspectives on the meaning of education
Week 4: Theories of teaching and learning: lecture and discussion
Week 5: Theories of teaching and learning: reflections about the usefulness of these theories to the learner
Week 6: Theories of teaching and learning: reflections about the usefulness of these theories to the teacher
Week 7: Differences in educational systems part 1: lecture and discussion
Week 8: Differences in educational systems part 2: lecture and discussion
Week 9: Differences in educational systems: reflections about culture and the realities of school settings
Week 10: Special educational needs and inclusion: lecture and discussion
Week 11: Educating students with learning disabilities: reflections on issues, controversies, and strategies
Week 12: Educating students who are gifted and talented: reflections on issues, controversies, and strategies
Week 13: Gender in education: lecture and discussion
Week 14: Gender in education: reflections about fairness and ways to promote equal opportunities
Week 15: Final examination
Week 16: Feedback week

[Class requirement]
None

[Method, Point of view, and Attainment levels of Evaluation]
Portfolio of work = 40%, Short essay (750 words) = 20%, Class discussion participation and contribution = 20%, Final examination = 20%

[Textbook]

[Regarding studies out of class (preparation and review)]
Students will be expected to spend about 90 minutes each week on out-of-class preparation, readings, and assignments.

[Others (office hour, etc.)]
Students will be expected to obtain their own copy of the textbook, and to read assigned chapters and other readings in preparation for each class. During the semester, students can email the instructor to make an appointment or to ask any questions about the course.
Introduction to Educational Studies II-E2

Week 16: Feedback week

Course Conduct
Students taking this course will be expected to prepare for each class by reading the appropriate textbook pages and any other materials that the instructor assigns. Class sessions will comprise of lectures provided by the instructor to summarize key points, highlight important issues, and introduce students to other pertinent information that bear on the topic being covered: these will all be provided on the assumption that students have undertaken the preparatory readings. The class sessions will also involve pair, small group, and/or plenary discussions, and exercises for students to complete individually or in cooperation with other students. Active participation in these discussions and exercises is necessary to meet coursework/grading requirements. 40% of the course grade is based on a portfolio of work that students complete relating to the topics dealt with in the course (i.e., exercises completed in class, notes on key points raised in discussions with other students, notes taken from and reflections on assigned and other readings undertaken, etc.).

Course Goals
Following on from Introduction to Educational Studies I, the goals of this course are:
- To further facilitate students' acquisition of knowledge about some of the important concepts, issues, and ideas in educational studies
- To continue to foster in students an understanding and appreciation of the multiple perspectives that exist in the study and practice of education
- To encourage students to think about the relevance and applications of the knowledge they are acquiring
- To facilitate the development of students' thinking and communication skills in English

Course Schedule and Contents
Course Schedule
The following is a guide to what will be covered during the 16 weeks of the semester. As required, some minor adjustments may be made to this schedule.

Week 1: Introduction to the course and to the role of technology in education
Week 2: The "flipped" classroom: reconsidering teacher and student roles
Week 3: Early childhood education: lecture and discussion
Week 4: Compulsory school education: lecture and discussion
Week 5: Further and higher education: lecture and discussion
Week 6: Discussion of student project on investigating and comparing educational provisions in Japan, part 1
Week 7: Discussion of student project on investigating and comparing educational provisions in Japan, part 2
Week 8: Motivation and school achievement: lecture and discussion
Week 9: Lifelong learning: lecture and discussion
Week 10: Lifelong learning: reflections on its value
Week 11: Race and social class inequalities in education: lecture and discussion
Week 12: Inequalities in education: reflections on the effectiveness of strategies for addressing inequalities
Week 13: Educational research: lecture and discussion
Week 14: Educational research: some considerations about what, why, and how
Week 15: Final examination

[Outline and Purpose of the Course]
The main purpose of this course is to introduce some key concepts, issues, and perspectives in the study of education. Through a series of lectures, exercises, and discussions in class, students will be encouraged to consider various important issues about student and teacher roles, and what happens in the classroom and beyond. Through a project, students will investigate and reflect on educational provisions in Japan in comparison to the United Kingdom (covered in the textbook) and other countries.

[Course Goals]
Following on from Introduction to Educational Studies I, the goals of this course are:
- To further facilitate students' acquisition of knowledge about some of the important concepts, issues, and ideas in educational studies
- To continue to foster in students an understanding and appreciation of the multiple perspectives that exist in the study and practice of education
- To encourage students to think about the relevance and applications of the knowledge they are acquiring
- To facilitate the development of students' thinking and communication skills in English

[Course Schedule and Contents]
Course Schedule
The following is a guide to what will be covered during the 16 weeks of the semester. As required, some minor adjustments may be made to this schedule.

Week 1: Introduction to the course and to the role of technology in education
Week 2: The "flipped" classroom: reconsidering teacher and student roles
Week 3: Early childhood education: lecture and discussion
Week 4: Compulsory school education: lecture and discussion
Week 5: Further and higher education: lecture and discussion
Week 6: Discussion of student project on investigating and comparing educational provisions in Japan, part 1
Week 7: Discussion of student project on investigating and comparing educational provisions in Japan, part 2
Week 8: Motivation and school achievement: lecture and discussion
Week 9: Lifelong learning: lecture and discussion
Week 10: Lifelong learning: reflections on its value
Week 11: Race and social class inequalities in education: lecture and discussion
Week 12: Inequalities in education: reflections on the effectiveness of strategies for addressing inequalities
Week 13: Educational research: lecture and discussion
Week 14: Educational research: some considerations about what, why, and how
Week 15: Final examination

[Textbook]

[Regarding studies out of class (preparation and review)]
Students will be expected to spend about 90 minutes each week on out-of-class preparation, readings, and assignments.

[Others (office hour, etc.)]
Students will be expected to obtain their own copy of the textbook, and to read assigned chapters and other readings in preparation for each class. During the semester, students can email the instructor to make an appointment or to ask any questions about the course.
Course numbering

<table>
<thead>
<tr>
<th>Course title <English></th>
<th>Affiliated department, Job title, Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>Psychoanalysis II-E2</td>
<td>Graduate School of Human and Environmental Studies, Associate Professor, TAJAN, Nicolas Pierre</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Group</th>
<th>Field(Classification)</th>
<th>Language</th>
<th>Old group</th>
<th>Number of weekly time blocks</th>
<th>Class style</th>
<th>Course offered year/period</th>
</tr>
</thead>
<tbody>
<tr>
<td>Humanities and Social Sciences</td>
<td>Pedagogy, Psychology and Sociology(Issues)</td>
<td>English</td>
<td>Group A</td>
<td>1</td>
<td>Lecture</td>
<td>2019 • Second semester</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Day/period</th>
<th>Target year</th>
<th>Eligible students</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tue.4</td>
<td>All students</td>
<td>For all majors</td>
</tr>
</tbody>
</table>

Students of Faculty of Integrated Human Studies cannot take this course as liberal arts and general education course. Please register the course with your department.

[Outline and Purpose of the Course]

This course introduces psychoanalysis through one of Jacques Lacan's most famous works. We will read, explain, and comment Jacques Lacan's return to Freud by focusing on a case study of paranoia: Schreber. Some crucial aspects of Lacanian doctrine will be explained, including his approach to linguistics and subjectivity; the three orders; and the four discourses.

[Course Goals]

To provide you with a general introduction to and understanding of Lacanian psychoanalytical theory and practice.

To increase your psychoanalytical knowledge through one of the most debated case studies in the history of mental medicine.

To help you develop your analytical and critical thinking regarding the founding principles, major notions, and applications of psychoanalysis.

[Course Schedule and Contents]

1) Introduction
2) Metaphor, Metonymy and Primacy of the Signifier I
3) Metaphor, Metonymy and Primacy of the Signifier II
4) The Paternal Metaphor and Subjectivity I
5) The Paternal Metaphor and Subjectivity II
10) The Three orders: Imaginary, Symbolic, Real I
11) The Three orders: Imaginary, Symbolic, Real II
12) The four discourses I
13) The four discourses II
14) Conclusion
15) Final test
16) feedback

Psychoanalysis II-E2(2)

[Class requirement]

None

[Method, Point of view, and Attainment levels of Evaluation]

Students are expected to actively participate to discussion and read Freud's five case studies. Evaluation is based on the following: Attendance and participation (30%), 2 written responses at beginning of class 6 and 10 (30%), final test (40%).

[Textbook]

Relevant material is distributed in class.

[Reference book, etc.]

- Dor, Joel *Introduction to the Reading of Lacan: The Unconscious Structured Like a Language.* (New York, Other Press, 2001)
- Sigmund Freud *Psycho-Analytic Notes on an Autobiographical Account of a Case of Paranoia (Dementia Paranoides) (1911)* (The Complete Psychological Works of Sigmund Freud)

[Regarding studies out of class (preparation and review)]

Students do not have homework assignments. However, they are advised to take notes during class and to review the course material before written responses and final test.

[Others (office hour, etc.)]
Introduction to Primate Behavior and Cognition-E2

[Outline and Purpose of the Course]
This class will focus on nonhuman primates (prosimians, monkeys, apes) and why they are of particular interest to many biologists, anthropologists, and psychologists. Students will learn about taxonomic relationships and distribution of primates, their socio-ecological strategies, social systems, and cognitive abilities. Observational and experimental investigations of these and related phenomena will be reviewed and analyzed. The aim is to investigate the ecological and psychological status of primates in today's world. The course also aims to provide students with the opportunity to communicate about primates in English.

[Course Goals]
The class aims to help students acquire knowledge about the evolution of primates - their structure, their social and nonsocial behavior, and how they adapt to changing environmental circumstances, and to use written and spoken English to express their knowledge.

[Course Schedule and Contents]
1. Why study primate behavior? Brief introduction to Primates, and methods of study
2. Primate taxonomy
3. Early influential studies of primate behavior
4. Primate socio-ecology: social organizations and environment
5. Primate socio-ecology: specific adaptations and strategies; responses to habitat change
6. Living together: sympathy, intra- and inter-group competition and cooperation in the wild
7. Living together: experimental approaches to studying competition and cooperation
8. Behavioral adaptations: how genes and experience interact
9. Mechanisms and parameters of social learning
10. Tool use as a foraging adaptation
11. Primate intelligence: evolutionary factors
12. Primates in captivity: the good and the bad
13. Ethical aspects of research on nonhuman primates
14. Recent highlights in the study of primate behavior

Please note that the order and content of specific classes may change.

[Class requirement]
None

[Method, Point of view, and Attainment levels of Evaluation]
Assessment will be based on two components as follows:

1) A mid-term test consisting of 25 multiple-choice questions (each worth 1%) and five short-answer questions written in the students' own words (each worth 5%) (Total: 50%)

2) A final exam consisting of 25 multiple-choice questions (each worth 1%) and five short-answer questions written in the students' own words (each worth 5%) (Total: 50%)

[Textbook]
Lecture notes/slides will be distributed.

[Reference book, etc.]
Introduced during class

[Regarding studies out of class (preparation and review)]
Students are expected to review the lecture handouts after each class, and to consult other sources (books, journals, appropriate websites).

[Others (office hour, etc.)]
There are no specific office hours. My e-mail address is:
j.r.anderson@psy.bun.kyoto-u.ac.jp
Introduction to Comparative Psychology-E2

[Course title](#): Introduction to Comparative Psychology-E2

Course numbering: U-LAS04 20022 LE46

Course title (English): Introduction to Comparative Psychology-E2

Field (Classification): Pedagogy, Psychology and Sociology (Issues)

Group: Humanities and Social Sciences

Language: English

Number of weekly time blocks: 1

Class style: Lecture

Number of credits: 2

Course offered year/period: 2019 • First semester

Day/period: Tue.4

Target year: All students

Eligible students: For all majors

[Outline and Purpose of the Course](#)

Students will become acquainted with the principle reasons for psychologists’ interest in the behavior of other species as well as humans, and they will gain knowledge about the major approaches used (observational studies, fieldwork, experimental manipulations) in this field. They will become familiar with the most important researchers in this branch of psychology, the historical contexts of their work, and how their studies have influenced contemporary research. There will be opportunities to ask questions in each class, and to compose short-answer questions.

[Course Goals](#)

Students will learn about major psychological approaches to understanding learning and behavior of humans and other species. Topics will include classical and operant conditioning, advanced cognition, and social and mating systems.

[Course Schedule and Contents](#)

1. Background to classical and operant conditioning
2. Learning: sensitive periods, preparedness, and applications
3. The ethological approach to animal behavior. Tinbergen’s 4 questions
4. Early development: nature and nurture
5. Early development: the formation and disruption of social attachments
6. The impact of early experience on behavioral adjustment
7. Living in groups: costs and benefits 1
8. Living in groups: costs and benefits 2
9. Mating systems: humans and other species
10. Social relationships: mechanisms and correlates of dominance
11. Social relationships: friendships, alliances, and kin. Aggression and reconciliation
12. Social cognition: from recognition to theory of mind
13. Physical cognition: dealing with objects and events
14. Recent highlights in comparative psychology

Note: The contents of specific classes may change.

Introduction to Comparative Psychology-E2(2)

[Class requirement](#): None

[Method, Point of view, and Attainment levels of Evaluation](#):

- Assessment will be by means of two components as follows:
 1. There will be a mid-term test consisting of five short-answer questions (each worth 5%) and 25 multiple-choice questions (each worth 1%) (Total: 50%).
 2. There will be an end-of-course exam consisting of five short-answer questions (each worth 5%) and 25 multiple-choice questions (each worth 1%) (Total: 50%).

[Textbook](#): Lecture notes/slides will be distributed and posted on KULASIS.

[Reference book, etc.](#):

- Introduced during class

[Regarding studies out of class (preparation and review)](#):

No special preparations are required before or after classes, other than revising the material covered.

[Others (office hour, etc.)](#):

There are no specific office hours. My e-mail address is: j.r.anderson@psy.bun.kyoto-u.ac.jp
Lecture code: H724001

<table>
<thead>
<tr>
<th>Course numbering</th>
<th>U-LAS04 20030 LE45</th>
</tr>
</thead>
<tbody>
<tr>
<td>Course title</td>
<td>Introduction to Globalization Studies-E2</td>
</tr>
<tr>
<td>Affiliated</td>
<td>Introduction to Globalization Studies-E2</td>
</tr>
<tr>
<td>department, Job title, Name</td>
<td>Graduate School of Letters, Associate Professor, Stephane Heim</td>
</tr>
<tr>
<td>Group</td>
<td>Humanities and Social Sciences</td>
</tr>
<tr>
<td>Field(Classification)</td>
<td>Pedagogy, Psychology and Sociology(Issues)</td>
</tr>
<tr>
<td>Language</td>
<td>English</td>
</tr>
<tr>
<td>Old group</td>
<td>Group A</td>
</tr>
<tr>
<td>Number of credits</td>
<td>2</td>
</tr>
<tr>
<td>Number of weekly time blocks</td>
<td>1</td>
</tr>
<tr>
<td>Class style</td>
<td>Lecture</td>
</tr>
<tr>
<td>Course offered year/period</td>
<td>2019 • First semester</td>
</tr>
<tr>
<td>Day/period</td>
<td>Tue.4</td>
</tr>
<tr>
<td>Target year</td>
<td>Mainly 1st year students</td>
</tr>
<tr>
<td>Eligible students</td>
<td>For all majors</td>
</tr>
</tbody>
</table>

[Outline and Purpose of the Course]

Globalization is presented as the main factor of evolution affecting the contemporary world, both in its political, economic, social, and cultural dimensions. Globalization has then to be examined as a process that entails several changes due to migration, political regional integration, unequal economic development, cultural convergence for example. This course focuses on these overall tendencies, and their various effects on developing and developed countries.

[Course Goals]

The first target of this course is to provide students with sound knowledge about the several ways globalization impact our societies. In that respect, students will study both the economic, political, social, and cultural dimensions of globalization. At the end of the course, they will have an interdisciplinary and problem-oriented approach of issues entailed by globalization.

[Course Schedule and Contents]

- **Week 1.** Course Introduction
- **Week 2.** Theories of the Global System, Discourses on Globalization
- **Week 3.** Sociology of Globalization
- **Week 4.** Globalization in a Historical Perspective
- **Week 5.** Economic Globalization: Global Capitalism
- **Week 6.** Economic Globalization: Neoliberalism
- **Week 7.** Political Globalization: Transnational State and Institutions
- **Week 8.** Political Globalization: Global Democratization
- **Week 9.** Cultural Globalization: Local/Global
- **Week 10.** Globalization, Ethnicity, and Gender
- **Week 11.** Globalization, Identity, Culture, and Communication
- **Week 12.** Globalization, and Transnational Migrations
- **Week 13.** Globalization and Environment
- **Week 14.** Course Conclusions
- **Week 15.** Feedback

[Class requirement]

The lectures will be delivered in English. There are no prerequisite to take this course.
Introduction to Social Research-E2(2)

[Outline and Purpose of the Course]
Social sciences, whose aim is an in-depth understanding of human behaviors, share with natural and engineering sciences a common "scientific frame", while having also specific and diverse research methodologies. Those methodologies are usually divided into quantitative and qualitative approaches. The qualitative approaches are presented in this lecture. We will see both how a research can be conducted from the building of a sound problematic to the final report writing, and how several well-known surveys produced knowledge about human behaviors.

[Course Goals]
This course aims to familiarize students with different qualitative research methods so as to develop their critical sense and ability in analyzing social, economic, and political issues presented and debated in the media, and in leading qualitative researches on their own. A great variety of researches will be exposed and discussed, as well as the construction of, and issues linked with each step of a qualitative research.

[Course Schedule and Contents]
Week 1. Introduction to Field Research
Week 2. Literature Reviews
Week 3. Research Design: Hypothesis and Research Question
Week 4. Field Research and Questionnaire
Week 5. Interviews, Observation, and Participation
Week 6. Documents and Archives
Week 7. Interpretation, Qualitative Data Analysis, and Content Analysis
Week 8. Conceptualization, Operationalization
Week 9. Writing Research Reports
Week 10. Historical/Comparative Research
Week 11. Field Research and Social Surveys
Week 12. Social Research in Critical Perspective
Week 13. Research Ethics
Week 14. Course Conclusions
Week 15. Feedback

[Class requirement]
The lectures will be delivered in English. There are no prerequisite to take this course.

[Method, Point of view, and Attainment levels of Evaluation]
Final exam.

[Textbook]
Instructed during class

[Reference book, etc.]
Instructed during class

[Regarding studies out of class (preparation and review)]
During each class, the first ten-fifteen minutes are dedicated to the review of the previous class. Students are asked to prepare each lesson on a weekly basis.

[Others (office hour, etc.)]
Students should email the teacher to make an appointment.
Sociology of Work and Organizations-E2(2)

[Class requirement]
The lectures will be delivered in English. There are no prerequisite to take this course, though it would be better to have some basic sociological knowledge.

[Method, Point of view, and Attainment levels of Evaluation]
Final exam.

[Textbook]
Instructed during class

[Reference book, etc.]
Introduced during class

[Regarding studies out of class (preparation and review)]
During each class, the first ten-fifteen minutes are dedicated to the review of the previous class. Students are asked to prepare each lesson on a weekly basis.

[Others (office hour, etc.)]
Students should email the teacher to make an appointment.

Outline and Purpose of the Course
Work and organizations are two central institutions in contemporary societies, greatly participating in their shaping through social stratification and social integration. They create differentiation among individuals in terms of occupations, but they also give birth to interdependency and modes of cooperation through which individuals interact with each other. Based on these two processes (social differentiation and integration), the course will put the emphasis on different aspects of work and organizations while presenting the main theories in this field of research.

Course Goals
The course aims at understanding the basics of sociology of work and organizations, so that students develop a critical sense about the functioning of these two institutions, and are prepared to solve problems they might encounter in their future careers. Students will therefore acquire knowledge of several approaches and theories on the function of work and organizations in the society. Several case studies will also be introduced to illustrate these approaches.

Course Schedule and Contents

<table>
<thead>
<tr>
<th>Week</th>
<th>Topic</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Course Introduction: What is Sociology of Work and Organizations?</td>
</tr>
<tr>
<td>2.</td>
<td>Theories of Work: Division of Labor</td>
</tr>
<tr>
<td>3.</td>
<td>Theories of Organization: Bureaucracy and Control</td>
</tr>
<tr>
<td>4.</td>
<td>Taylorism, Rationality, and the Labor Society</td>
</tr>
<tr>
<td>5.</td>
<td>Fordism, Post-Fordism, and Neoliberalism</td>
</tr>
<tr>
<td>6.</td>
<td>The Social Construction of Markets</td>
</tr>
<tr>
<td>7.</td>
<td>Firms: Outsourcing, Control, and Trust</td>
</tr>
<tr>
<td>8.</td>
<td>The Emergence of the Service Industry</td>
</tr>
<tr>
<td>9.</td>
<td>From Qualification to Competencies: Wages and Industrial Relations</td>
</tr>
<tr>
<td>10.</td>
<td>Professions and Occupational Groups</td>
</tr>
<tr>
<td>11.</td>
<td>Employment and Unemployment</td>
</tr>
<tr>
<td>12.</td>
<td>Work, Age, Gender, and Family</td>
</tr>
<tr>
<td>13.</td>
<td>Work, Organizations, and Institutions</td>
</tr>
<tr>
<td>14.</td>
<td>Course Conclusions</td>
</tr>
<tr>
<td>15.</td>
<td>Feedback</td>
</tr>
</tbody>
</table>

[Continued on next page]
[Outline and Purpose of the Course]

Why do you wish to buy brand-name goods? Why do you select a particular friend or spouse? Sociology is the study of human social life, groups, and societies. Study in this field helps us understand why we act the way we do, how historical and social factors affect us and how we can address social and societal problems. In this course students will apply sociological approaches to examine aspects of our own and other societies that interest them. Through videos, lectures, group and pair discussions and extensive class interaction we will explore these topics in a cross-cultural and dynamic classroom setting.

[Course Goals]

Students will understand and be able to apply some core sociological theories, including Marxism, social functionalism and symbolic interaction, to question critically the causes, meanings and implications of social trends and phenomena. They will improve presentation skills and learn how to conduct observation-based qualitative research.

[Course Schedule and Contents]

Class 1: What is sociology? Introduction to the field

Class 2: Theories and their application: Sociological observation

Class 3-4: Marriage and the family (lecture and group activities)

Class 5-6: Child-rearing and socialization

Class 7-8: Midterm test. Culture and norms. Start student presentations

Class 9-10: Gender and roles, student presentations

Class 11-12: Racism and ethnicity, student presentations

Class 13-14: Deviance and poverty, student presentations

Note: The schedule may change slightly depending on class requirements.
Introduction to Risk Communication-E2(2)

[Class requirement]
None

[Method, Point of view, and Attainment levels of Evaluation]
Assignment 2 (30 X 2 = 60 points)
Presentation 1 (40 points)

[Textbook]
Handouts will be distributed by the instructor if necessary.

[Reference book, etc.]

[Regarding studies out of class (preparation and review)]
- prepare and review class contents, reading textbooks.
- complete short assignments on a regular basis.

[Others (office hour, etc.)]
Students who want to talk to the instructor must make arrangements in advance by email.

Modern society is characterized as risk society, particularly populations and communities vulnerable to natural hazards and environmental risk are increasing day by day. Effective risk communication is critical for increasing risk awareness and encouraging preparedness among the community members. However, the risk managers, city government authorities, environmental risk regulators are often challenged how to better communicate risk to the public. Because risk is socially and culturally constructed. The purpose of this course is to explain how planners and practitioners can design and implement communication plans related to environmental and disaster risks.

[Course Goals]
The primary objectives of the course are as follows:
1. To introduce basic knowledge on risk communication for effective disaster and environmental risk management.
2. To introduce the theories and approaches of risk communication.
3. To find out risk communication principles and strategies.
4. To introduce methods, tools and techniques for effective risk governance and public participation.
5. To gain practical knowledge on risk communication strategies from some best practices (Using selected case studies on disaster and environmental risk).

[Course Schedule and Contents]
Week 2: Risk: Hazards, Exposure and Vulnerability.
Week 3: Factors Affecting Effective Risk Communication: Organization, Emotional and Social.
Week 7: Analyze the Audience: Minds, Attitude and Behavior of Risk Preparedness.
Week 9: Emergency Early Warning and Evacuation Behavior.
Week 10: Risk Communication Channels and Techniques
Week 11: Preparing Risk Communication Plan.
Week 12: Response to Risk Communication: Household Disaster Preparedness.
Week 13: Implementing Risk Communication Plan.
Week 15: Final Presentations.
Week 16: Feedbacks and Presentations.
Introduction to Society and Community Studies-E2(2)

[Course title]
Introduction to Society and Community Studies-E2

[Group]
Humanities and Social Sciences

[Field (Classification)]
Pedagogy, Psychology and Sociology (Issues)

[Language]
English

[Number of weekly time blocks]
1

[Class style]
Lecture

[Course offered year/period]
2019 • Second semester

[Day/period]
Wed. 2

[Target year]
Mainly 1st & 2nd year student

[Eligible students]
For all majors

[Outline and Purpose of the Course]
This course offers an introduction to the basic nature of society and community and their impact on individual's mind, behavior and thought process. This course focuses on how society and community impact and influence individual motivation, attitude, perception and actions. Further, the focus will be placed on collective action, participatory process, community networks in order to understand how decisions are collectively made in society and what are the factors that influence the decision making process.

[Course Goals]
To understand conceptual and theoretical understanding of the society, community and culture and their role shaping individual attitude, perceptions and actions.
To understand the nature of social groups, organizations, social intuitions and their importance for individuals and society.
To understand how decisions are made in a society, who make and influence the decision making process and how. Further the focus will be placed on how all sections and individuals of a society and community can be involved in the collective decision making process.

[Course Schedule and Contents]
Week 1: An introduction to Society and Community Studies. (Week 1)
Week 2 to 3: Basic ideas - Society, Culture, Social Institution, Social Groups, Social Interactions, Socialization - - Theories of Self Development. (Week 2 to 3).
Week 3: Community and Sense of Community (Week 4)
Week 4: Community of Practice
Week 5: Community Participation #8211 Process and Outcomes: Part 1
Week 6: Community Participation #8211 Process and Outcome : Part 2.
Week 7: Social Capital and Collective Action.
Week 8: Social Networks: Structure and Functions
Week 9: Social Trust: Definition, Measurement and Roles
Week 10: Mind, Self, and Society
Week 11: Collaborative Knowledge Development: Ideas and Tools.
Week 12: Cultural Impact on Decision Making Process.
Week 13: Collective Action
Week 14: Social Change
Week 15: Final Presentation
Week 16: Feedback
Introduction to Ritual Studies-E2(2)

This course provides an introduction to the field of ritual studies. Exploring the core questions of the nature and functions of rituals, we will examine different types of rituals that humans create and participate in, as well as their meaning and significance, in both secular and sacred contexts. This course will present a number of ritual genres, as well as the theories and methods used to record and study them.

Course Goals

There are 3 main objectives for this class. First students will gain an understanding of the notion of rituals, their meanings and social functions, the scope of ritual studies, as well as an awareness of the wide array of rituals that humans participate in. Second, they will acquire a working knowledge of ritual theory and of the main categories of rituals and their structure. Third, the course will help students become more comfortable formulating thoughts and opinions on a specific topic.

Course Schedule and Contents

This is a lecture-type class with an interactive component. Each session will include a lecture part and followed or interspersed with discussions based on the lecture content and this week's readings.

1- Orientation and overview
2- Defining and delimiting the notion of ritual
3- Studying rituals
4- Classifications of rituals
5- Ritual theory: how they work, what they do (P.1)
6- Ritual theory: how they work, what they do (P.2)
7- Group work session
8- Rituals in magic and religion (P.1)
9- Rituals in magic and religion (P.2)
10- Rites of passage
11- Rituals of life and death
12- Other secular rituals
13- Preparation for final presentations
14- Final presentations

Note: this schedule may be subject to change. The detailed definitive schedule will be handed out during the first class.
Disaster and Culture-E2(2)

Note: this schedule may be subject to change. The detailed definitive schedule will be handed out during the first class.

[Class requirement]
There are no specific requirements for taking this seminar. However, students must be willing to prepare each session by completing the weekly readings and assigned tasks, and to participate actively in class.

[Method, Point of view, and Attainment levels of Evaluation]
Evaluation will be based on class attendance and active participation (60%), a mid-term group work or presentation (20%) and final group or individual presentations (20%).

Active participation means actively listening and engaging with the class content, participating during discussions and group work, and contributing to the class by sharing opinions, experiences and reflections. It also means taking notes and reviewing them each week, since each class will start with a quick recap of the previous week done by a student.

Students absent 3 times or more will fail this class. Tardiness (by 15 minutes or more) will be treated as absence. Systematic tardiness and/or unexplained early departures will greatly reduce your attendance and participation grade.

[Textbook]
There is no textbook for this class. Weekly readings and documents will be available for download. Printing and preparing the material is the responsibility of the student.

[Reference book, etc.]
(Reference book)
Introduced during class

[Regarding studies out of class (preparation and review)]
Students are required to prepare for each class by completing the weekly readings and assigned tasks. They should expect 2 to 3 hours/week of work outside the classroom for review and preparation.

[Others (office hour, etc.)]
- This is a lecture-type class with an interactive component. It will be conducted in English. All readings will also be in English.
- The capacity of the class will be limited to 25 students to ensure the interactive aspect of it.
- As stated in the evaluation section, students are expected to engage actively during class.
- Office hour is after class or by appointment.
[Outline and Purpose of the Course]
Anthropology is the comparative study of culture and human societies and examines the general principles of social and cultural life. This course offers an introduction to the discipline of anthropology and its practical relevance to understanding societies. It introduces the different ways we can examine human societies and understand exchange processes, kinship and family, marriage, culture, nature, gender, nation building, and religion and ritual. Each week will consist of a brief lecture of 30~40 minutes based on class notes and readings followed by a class discussion and group exercises.

[Course Goals]
The main purpose of the course is to give students a critical introduction and understanding to cultural diversity and processes of change within and between societies. The course provides students with some basic tools that can help students to recognize the preconceptions and assumptions of their own social and cultural environments. This course is open to anyone who is interested in societies and cultures, and willing to proactively participate in discussions over the duration of the course.

[Course Schedule and Contents]
Week 1. Overview
Week 2. Social Theory, Culture and Cultural Relativity
Week 3. Kinship and Family
Week 4. Marriage
Week 5. The Sharing Economy
Week 6. Human Societies and Nature (1)
Week 7. Human Societies and Nature (2)
Week 8. Gender (1)
Week 9. Gender (2)
Week 10 Identifying “Others”
Week 11. Community Building
Week 12. Nation Building and Nationalism
Week 13. Religion and Ritual
Week 14. The Secular and Anthropology
Week 15. Recap

[Cultural Anthropology I-E2(2)]

[Class requirement]
Students should be able to participate in discussions, do readings, and submit short homework pieces each week.

[Method, Point of view, and Attainment levels of Evaluation]
The final semester grade will be decided upon by participation in class lectures and attendance (65%) and a written essay (35%) to be submitted at the end of the course.

[Textbook]
Not used
Materials will be prepared for use in the class. Most weeks have pre-prepared class notes and a main text to read.

[Reference book, etc.]
(Reference book)
Introduced during class

[Regarding studies out of class (preparation and review)]
Students will have readings prepared for each week along with class notes.

[Others (office hour, etc.)]
Office hours are Mondays 4th period.
This course restricts student enrollment by 25.
Course title
Cultural Anthropology I-E2

Affiliated department, Job title, Name
Center for Southeast Asian Studies
Associate Professor, LOPEZ, Mario Ivan

Group
Humanities and Social Sciences

Field(Classification)
Regions and Cultures (Foundations)

Language
English

Old group
Group A

Number of credits
2

Number of weekly time blocks
1

Class style
Lecture

Course offered year/period
2019 • Second semester

Day/period
Mon. 3

Target year
mainly 1st & 2nd year student

Eligible students
For all majors

Outline and Purpose of the Course

This course provides a critical introduction to what it means to be a person as experienced through their gender. This course will explore the various social and cultural contexts of gender through examples from the 20th/21st century Asia-Pacific region. We will draw on comparative material from other places around the globe as well.

Course Goals
The broad goal of this course is to introduce students to the broad diversity of gender experiences available in today’s highly globalized societies. In particular, the course will give students an analytical framework to contextualize this gender diversity and its continual transformation over the past couple of centuries to situate their own experiences. At the end of the course, students will have increased ability to give balanced consideration to the expression of individual gendered points of view and sexual orientation in different cultural contexts.

Course Schedule and Contents

Week 1. Introduction and Overview of the Course
Week 2. Mapping Gender
Week 3. Fluid Gender and Sexualities
Week 4. Plural Co-existence in Southeast Asia (1)
Week 5. Plural Co-existence in Southeast Asia (2)
Week 6. Production and Reproduction within the Household: Japan
Week 7. The Role of National Discourses in the Construction of Gender: Japan
Week 8. The emotional commons: Labor migration and the globalization of care work (1)
Week 9. The emotional commons: Labor migration and the globalization of care work (1)
Week 10. The Gender See-saw: Inequality/Equality (1)
Week 11. The Gender See-saw Inequality/Equality (2)
Week 12. "Naturalizing" Bodies
Week 14. Final Group Discussions
Week 15. Re-cap

Cultural Anthropology I-E2(2)

Class requirement

Students should be able to participate in discussions, do readings (required for participation), and submit short homework pieces each week.

Method, Point of view, and Attainment levels of Evaluation

The final semester grade will be decided upon by participation in class lectures and attendance (65%) and a written essay (35%) to be submitted at the end of the course.

Textbook

Not used

Articles and Audiovisual materials will be provided for this course and available to access from the first week.

Reference book, etc.

Introduced during class

Regarding studies out of class (preparation and review)

Each week will consist of materials to be prepared in advance for class discussion. Students are responsible for printing materials.

Others (office hour, etc.)

Office hours are on Mondays and Tuesday, 4th period.

This course restricts student enrollment by 25.
This course will introduce students to the central topics, concepts and methods of cultural anthropology, which can be broadly defined as the study of human cultures and societies. It will survey the key topics in contemporary cultural anthropology and offer insights into how the seemingly "common-sense" aspects of people's lives, as well as their norms and rules, can be informed by the social contexts and practices of which they consider themselves a part. It draws on ethnographic examples and case studies from various societies, including the lecturer's country-of-origin the USA, but contemporary Japan will be central in order to provide students with an understanding of where they are living.

Anthropology involves a way of seeing, a frame of reference for interpreting people's behavior in all societies. The first goal of this class is for the student to be able to consider topics from this anthropological perspective. This also means that the student will develop an acceptance and appreciation of people informed by different cultures and maintain a non-judgemental attitude. Additionally, the student will also be expected to understand social relationships in their own experiences in the cultural context in which they are living in the present, namely contemporary Japan.

[Course Schedule and Contents]

Week 1: Introduction to Anthropology
Week 2: What is Culture?
Week 3: Ethnographic Research
Week 4: Language
Week 5: Race and Racism
Week 6: Ethnicity and Nationalism
Week 7: Gender
Week 8: Sexuality; Submission of Report Proposal
Week 9: Marriage and Family
Week 10: Class and Inequality
Week 11: Religion and Cosmology
Week 12: Ritual and Trance
Week 13: Art
Week 14: Peer Review of Reports
Week 15: Discussion and Submission of Final Report
Week 16: Feedback
Cultural Anthropology I-E2(2)

[Class requirement]
None

[Method, Point of view, and Attainment levels of Evaluation]
Students grades' will be made up of the following assessment: Discussion Contributions (20%), Weekly Comment Papers (30%), Final Report (50%)

[Textbook]
Not used. Lecture notes and readings for homework will be distributed in class and on the internet.

[Reference book, etc.]
Introduced during class.

[Regarding studies out of class (preparation and review)]
Preparation varies by class, but students are expected to read the assigned readings before class and complete assignments on time.

[Others (office hour, etc.)]
Meetings in my office are available through appointment: please email me at caitlince@gmail.com.

[Outline and Purpose of the Course]
This course will introduce students to the central topics, concepts and methods of cultural anthropology, which can be broadly defined as the study of human cultures and societies. It will survey the key topics in contemporary cultural anthropology and offer insights into how the seemingly “common-sense” aspects of people’s lives, as well as their norms and rules, can be informed by the social contexts and practices of which they consider themselves a part. It draws on ethnographic examples and case studies from various societies, including the lecturer's country-of-origin the USA, but contemporary Japan will be central in order to provide students with an understanding of where they are living.

[Course Goals]
Anthropology involves a way of seeing, a frame of reference for interpreting people’s behavior in all societies. The first goal of this class is for the student to be able to consider topics from this anthropological perspective. This also means that the student will develop an acceptance and appreciation of people informed by different cultures and maintain a non-judgemental attitude. Additionally, the student will also be expected to understand social relationships in their own experiences in the cultural context in which they are living in the present, namely contemporary Japan.

[Course Schedule and Contents]
- **Week 1**: Introduction to Anthropology
- **Week 2**: What is Culture?
- **Week 3**: Ethnographic Research
- **Week 4**: Language
- **Week 5**: Race and Racism
- **Week 6**: Ethnicity and Nationalism
- **Week 7**: Gender
- **Week 8**: Sexuality; Submission of Report Proposal
- **Week 9**: Marriage and Family
- **Week 10**: Class and Inequality
- **Week 11**: Religion and Cosmology
- **Week 12**: Ritual and Trance
- **Week 13**: Art
- **Week 14**: Peer Review of Reports
- **Week 15**: Discussion and Submission of Final Report
- **Week 16**: Feedback

The course investigates the spatial organisation of human action and the relationships between society and environment and offers a critical exploration of the interactions between people, place and space through the core themes of globalisation, development, urbanisation, diversity and inequality. The course explores the ways in which both local and global forces continuously shape socio-cultural and economic landscapes.

Course Goals
The course equips students with basic concepts in human geography required to understand, interpret and synthesise information on the world around us. Students develop the ability to use geography and spatial perspectives to think creatively and critically about human interactions with the environment.

Course Schedule and Contents
- Week 1: What is Human Geography? A Brief Overview
- Week 2: Foundations I - Basic Concepts
- Week 3: Foundations II - Advanced Concepts
- Week 4: Biogeography
- Week 5: Cultural Geography
- Week 6: Development Geography
- Week 7: Economic Geography
- Week 8: Environmental Geography
- Week 9: Historical Geography
- Week 10: Political Geography
- Week 11: Population Geography
- Week 12: Urban/Rural Geography
- Week 13: Final Presentations I
- Week 14: Final Presentations II

Course Schedule might change

Class requirement
You are curious to explore the value of human geography in understanding the world around you.

Human Geography-E2(2)

[Method, Point of view, and Attainment levels of Evaluation]
20% Attendance and in-class discussion and participation, 40% Photo Essay (1500 words), 40% Group Presentation (10-15 min)

[Textbook]
Required readings and materials will be distributed in class.

[Reference book, etc.]
Introduced during class

[Regarding studies out of class (preparation and review)]
Students are expected to prepare for each class and be ready to discuss the weeks topics in small groups. Preparatory materials include academic readings, news pieces and online media materials.

[Others (office hour, etc.)]
Please email the instructor:
baars.rogercloud.6a@kyoto-u.ac.jp
The course investigates the spatial organisation of human action and the relationships between society and environment and offers a critical exploration of the interactions between people, place and space through the core themes of globalisation, development, urbanisation, diversity and inequality. The course explores the ways in which both local and global forces continuously shape socio-cultural and economic landscapes.

[Course Goals]
The course equips students with basic concepts in human geography required to understand, interpret and synthesise information on the world around us. Students develop the ability to use geography and spatial perspectives to think creatively and critically about human interactions with the environment.

[Course Schedule and Contents]
Week 1: What is Human Geography? A Brief Overview
Week 2: Foundations I - Basic Concepts
Week 3: Foundations II - Advanced Concepts
Week 4: Biogeography
Week 5: Cultural Geography
Week 6: Development Geography
Week 7: Economic Geography
Week 8: Environmental Geography
Week 9: Historical Geography
Week 10: Political Geography
Week 11: Population Geography
Week 12: Urban/Rural Geography
Week 13: Final Presentations I
Week 14: Final Presentations II

Course Schedule might change

[Class requirement]
You are curious to explore the value of human geography in understanding the world around you.

[Method, Point of view, and Attainment levels of Evaluation]
20% Attendance and in-class discussion and participation, 40% Photo Essay (1500 words), 40% Group Presentation (10-15 min)

[Textbook]
Required readings and materials will be distributed in class.

[Reference book, etc.]
Introducing during class

[Regarding studies out of class (preparation and review)]
Students are expected to prepare for each class and be ready to discuss the weeks topics in small groups. Preparatory materials include academic readings, news pieces and online media materials.

[Others (office hour, etc.)]
Please email the instructor:
baars.rogercloud.6a@kyoto-u.ac.jp
[Outline and Purpose of the Course]
This course will focus on the topic of human bodies in cultural anthropology. It will introduce how physical experience has been theorized and researched ethnographically. While the body is the foundation of human experience and thus the starting point for the formation of society and culture, this fact has been a difficult concept for the social sciences to grasp empirically. In the first 7 weeks, this course will introduce the multitude of anthropological approaches and consider the relationships between these approaches and evaluate them critically. In the last 7 weeks of lectures, it will present representative anthropological studies of the body through a variety of body-related phenomena as they occur in different cultural contexts.

[Course Goals]
The main goal of this class is for students to deepen their understanding of how physical experience shapes people’s perspectives and experience and thus their society and ontology. Through this understanding, they will be expected to consider the complicated nature of bodily experience and the different social pressures and cultural contexts on which it is based. For this purpose, the student will be asked to imagine and try-on different bodily perspectives from different societies by also re-evaluating physical experience in their everyday life.

[Course Schedule and Contents]
The Body in Cultural Anthropology
Week 1: General Introduction: What is a body?
What is the Anthropology of the Body?
Section 1: Theoretical Approaches
Week 2: Body in Practice and Habitus
Week 3: Body as Symbol under Social Control
Week 4: The Defiant and Creative Body
Week 5: Embodiment
Week 6: Affect
Week 7: Short discussion and Mid-term Test
Section 2: Hot Topics in Anthropology
Week 8: Body in the Mundane and Daily Affeets
Week 9: Bodily Ornamentation and Modifications
Week 10: Body in Ritual and Liminality
Week 11: Body in Performance and Dance
Week 12: Body in Possession and Trance
Week 13: Body in Illness and Medical Care
Week 14: Body in Recreation and Sex

[Class requirement]
None

[Method, Point of view, and Attainment levels of Evaluation]
Students grades will be made up of the following assessment: Discussion Contributions and Weekly Comment Papers (20%), Mid-term Test (30%), Final Examination (50%)

[Textbook]
Not used. Lecture notes and readings for homework will be distributed in class and on the internet.

[Reference book, etc.]
Introduced during class.

[Regarding studies out of class (preparation and review)]
Preparation varies by class, but students are expected to read the assigned readings before class.

[Others (office hour, etc.)]
Meetings in my office are available through appointment: please email me at caitlincc@gmail.com.
[Outline and Purpose of the Course]

This course will focus on the topic of human bodies in cultural anthropology. It will introduce how physical experience has been theorized and researched ethnographically. While the body is the foundation of human experience and thus the starting point for the formation of society and culture, this fact has been a difficult concept for the social sciences to grasp empirically. In the first 7 weeks, this course will introduce the multitude of anthropological approaches and consider the relationships between these approaches and evaluate them critically. In the last 7 weeks of lectures, it will present representative anthropological studies of the body through a variety of body-related phenomena as they occur in different cultural contexts.

[Course Goals]

The main goal of this class is for students to deepen their understanding of how physical experience shapes people’s perspectives and experience and thus their society and ontology. Through this understanding, they will be expected to consider the complicated nature of bodily experience and the different social pressures and cultural contexts on which it is based. For this purpose, the student will be asked to imagine and “try-on” different bodily perspectives from different societies by also re-evaluating physical experience in their everyday life.

[Course Schedule and Contents]

The Body in Cultural Anthropology

Week 1: General Introduction: What is a body?
What is the Anthropology of the Body?
Section 1: Theoretical Approaches

Week 2: Body in Practice and Habitus
Week 3: Body as Symbol under Social Control
Week 4: The Defiant and Creative Body
Week 5: Embodiment
Week 6: Affect
Week 7: Short discussion and Mid-term Test

Section 2: Hot Topics in Anthropology

Week 8: Body in the Mundane and Daily Affeets
Week 9: Bodily Ornamantation and Modifications
Week 10: Body in Ritual and Liminality
Week 11: Body in Performance and Dance
Week 12: Body in Possession and Trance
Week 13: Body in Illness and Medical Care
Week 14: Body in Recreation and Sex

[Class requirement]

None

[Method, Point of view, and Attainment levels of Evaluation]

Students grades' will be made up of the following assessment: Discussion Contributions and Weekly Comment Papers (20%), Mid-term Test (30%), Final Examination (50%)

[Textbook]

Not used. Lecture notes and readings for homework will be distributed in class and on the internet.

[Reference book, etc.]

Introduced during class.

[Regarding studies out of class (preparation and review)]

Preparation varies by class, but students are expected to read the assigned readings before class.

[Others (office hour, etc.])

Meetings in my office are available through appointment: please email me at caitlincc@gmail.com.
[Outline and Purpose of the Course]
This course will introduce students to four defining anthropologically inspired frameworks that have been critical in exploring the many fraught relationships between Nature and Culture. These frameworks or ideological perspectives have in actual fact driven the field of ecological and environmental anthropology by sparking innumerable debates, discussions and sharp disagreements. The true weight of this scholarship, however, as this course will emphasize, lies not only in the empirically informed insights that have been generated over the years but the riveting theories that have helped us reflect on the Nature-Culture divide and overlap.

[Course Goals]
The Nature-Culture divide has been foundational in defining a range of philosophical and political attitudes. This course is intended to help navigate the complex theory laden understanding of how humans have interacted with and shaped their environments.

[Course Schedule and Contents]
Each class will comprise a 90 minute session; involving a lecture of 60 minutes and followed by a 30 minute interactive discussion in which student participation will be elicited through either group or individual presentations.

Four themes will be covered:
- a) Cultural Ecology
- b) Socio-Biology
- c) Conservation Ecology
- d) Political Ecology

[Class requirement]
None

[Method, Point of view, and Attainment levels of Evaluation]
There will be a regular cycle of written submissions and feedback through class discussions and teacher evaluations. The idea is to develop a credible capacity for reading and writing amongst those who take up the course. Evaluations will be based on class presentations, writing assignments and tutorials.
[Outline and Purpose of the Course]

This course looks at global trends in population change and mobility, including population growth, declining and aging populations; displacement due to development, conflict or climate change; urban migration and international migration. By carrying out a simulated stakeholder negotiation exercise, students will understand the complex issues involved.

[Course Goals]

Students will be able to understand many of the complex causes and impacts of population trends and mobility. They will consider many of the ethical questions involved, such as government obligations for accepting refugees or those displaced by climate change, the roles of various stakeholders in assisting the displaced, and unequal impacts of development and globalization.

[Course Schedule and Contents]

<table>
<thead>
<tr>
<th>Class</th>
<th>Topic</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Introduction and overview. Demographic trends and population issues</td>
</tr>
<tr>
<td>2</td>
<td>Population booms vs. population declines and aging</td>
</tr>
<tr>
<td>3</td>
<td>Japan's rural crisis: Can we revitalize rural areas?</td>
</tr>
<tr>
<td>4-7</td>
<td>Displacement due to conflict, development and environmental change</td>
</tr>
<tr>
<td>8</td>
<td>Mid-term test; Migration: pull and push factors</td>
</tr>
<tr>
<td>9</td>
<td>Urban migration trends and issues</td>
</tr>
<tr>
<td>10-11</td>
<td>Globalization and transborder movement</td>
</tr>
<tr>
<td>12-14</td>
<td>Stakeholder analysis and stakeholder negotiation: preparation, implementation and feedback</td>
</tr>
</tbody>
</table>

Note: The schedule may change slightly depending on class requirements.

[Class requirement]

None

[Method, Point of view, and Attainment levels of Evaluation]

Evaluation will be based on class attendance and active participation (30%), short assignments and classroom exercises (30%), a mid-term test (25%) and participation in the final simulation exercise (15%).

[Textbook]

No text; required readings and lecture notes will be distributed in class.
Contemporary Japanese Architecture-E2

<table>
<thead>
<tr>
<th>Course title</th>
<th>Course title English</th>
<th>Group</th>
<th>Field (Classification)</th>
<th>Language</th>
<th>Number of credits</th>
<th>Course offered year/period</th>
<th>Day/period</th>
<th>Target year</th>
<th>Eligible students</th>
</tr>
</thead>
<tbody>
<tr>
<td>Contemporary Japanese Architecture-E2</td>
<td>Contemporary Japanese Architecture-E2</td>
<td>Humanities and Social Sciences</td>
<td>Regions and Cultures (Issues)</td>
<td>English</td>
<td>2</td>
<td>2019 • First semester</td>
<td>Tue.3</td>
<td>Mainly 1st year students</td>
<td>For all majors</td>
</tr>
</tbody>
</table>

[Outline and Purpose of the Course]

This course comprises a broad survey of contemporary Japanese architecture from the 1960s until the early twenty-first century. The content will be organized around detailed examinations of the work of specific architects. There will be explanations of the principal characteristics of the various styles, key figures, and major buildings. We will also examine the social, cultural, environmental, artistic, technological, and political forces that have influenced the architecture.

[Course Goals]

By the end of this course, students will: Recognize the various styles, specific architects, dates, and locations of important buildings; Understand the climatic, technological, socioeconomic, and cultural factors that have shaped the architecture; Learn to employ basic methods of data collection in research; Assemble this research into a cogent structure.

[Course Schedule and Contents]

The course comprises an approximately chronological sequence of lectures. The topics and sequence may be altered during the semester.

WK. 01 Metabolism / Arata Isozaki
WK. 02 Kazuo Shinohara / Small Houses
WK. 03 Hiroshi Hara / Architecture as Event
WK. 04 Toyo Ito / The Bubble
WK. 05 Itsuko Hasegawa / Women Architects
WK. 06 Hiromi Fujii / Takefumi Aida
WK. 07 Terunobu Fujimori / Street Observation
WK. 08 Osamu Ishiyama / Basara
WK. 09 Shin Takamatsu / Tadao Ando
WK. 10 Kiyoshi Sey Takeyama / Criticism
WK. 11 Kengo Kuma / Materials
WK. 12 Kazuyo Sejima / Social Engagement
WK. 13 The New Generation / After the Tsunami
WK. 14 Review

Class requirement

No prior knowledge is required. Students should be able to participate in discussions with their classmates in English.

Method, Point of view, and Attainment levels of Evaluation

Students must write three 1000-word essays, on the content of any three of the lectures. The essays should include at least two quotations from the main architects discussed, illustrated with images of the key projects discussed. Refer to information given in class, material contained in the readings, and other relevant sources. All images must have captions indicating the name of the building and architect, the location, and the year. All quotations and bibliographies must have footnotes in APA style. Students must visit one of the buildings from the list provided, and write a 1000-word illustrated essay about it. The essay must contain: Basic facts (name, architect, function, location, date); Explanation of the architectural ideas; Description of a walkthrough of the building, illustrated with the student’s own photos. Grades are based on attendance (20 points), essays (60 points), and report (20 points). Students who are absent more than four times will not be credited. Students who submit work that is plagiarized or lacks proper attribution may fail.

Textbook

Reference book, etc.

Regarding studies out of class (preparation and review)

Students are expected to have read the relevant chapter(s) in the main textbook before each class.

Others (office hour, etc.)

By appointment.
Outline and Purpose of the Course

This course introduces a broad array of Kyoto’s traditional houses and gardens from every period of the city’s history. These range from summer villas to townhouses, from monumental Buddhist temples to insubstantial garden inns. All have their associated outdoor spaces, whether condensed courtyard gardens, picturesque stroll gardens, "dry landscape" stone gardens, or the "borrowed scenery" of distant landscapes.

Course Goals

By the end of this course, students will:

- Know the various styles, dates, and locations of important buildings and gardens;
- Understand the climatic and cultural factors that have shaped the buildings and gardens;
- Learn to employ basic methods of data collection in research;
- Assemble this research into a cogent structure.

Course Schedule and Contents

Lectures will alternate with site visits (held during regular class hours). Students are required to pay their own transport and entry costs for the site visits. The topics and sequence may be altered during the semester.

WK. 01 Overview of historical styles: shinden, shoin, sukiya

WK. 02 - 3 Aristocratic villas: Katsura, Shugakuin, Kinkaku-ji, Ginkaku-ji, Byodo-in, Jakko-in, etc.

WK. 04 - 5 Private retreats: Kawai Kanjiro Memorial House, Shigemori Mirei Garden Museum, Shunki-an, Suisen-an, etc.

WK. 06 - 7 Temple residences: Nanzen-ji, Tofuku-ji, Ryogen-in, Kanchi-in, Shoren-in, Ninna-ji, Takaosan Jingo-ji, etc.

WK. 08 - 9 Traditional townhouses: Kinpyo, Kinmata, Inakatei, Iori Suiyia-cho, Iori Zaimoku-cho, Iori Minoya-cho, etc.

WK. 10 - 11 Traditional inns: Hiiragiya, Yoshida Sanso, Gion Hatanaka, Rangetsu, Jijinden Guesthouse Kyoto, Momijiya, Miyamaso, etc.

WK. 12 - 13 Tea houses: Urasenke, Toji-in, Koto-in, Murin-an, Juko-in, Shokado Garden Art Museum, etc

WK. 14 Review

Regarding studies out of class (preparation and review)

Students are expected to have read the relevant chapter(s) in the main textbook before each class.

Others (office hour, etc.)

By appointment.

Theory of Landscape Design-E2 : House and Gardens of Kyoto(2)

Course title

Theory of Landscape Design-E2 : House and Gardens of Kyoto

Affiliated department, Job title, Name

Graduate School of Engineering, Professor, DANIELL, Thomas Charles

Group

Humanities and Social Sciences

Field(Classification)

Regions and Cultures(Issues)

Language

English

Number of weekly time blocks

1

Class style

Lecture

Course offered year/period

2019 • Second semester

Day/period

Tue.3

Target year

Mainly 1st year students

Eligible students

For all majors

Number of credits

2

Class requirement

No prior knowledge is required. Students should be able to participate in discussions with their classmates in English.

Method, Point of view, and Attainment levels of Evaluation

Students must write four 1000-word essays about any four of the site visits, illustrated with the student's own photos. All images must have captions explaining what is being shown. Discuss the history, style, and use of the building and any related garden spaces. Refer to information given in class, material contained in the readings, and other relevant sources. Give footnotes in the APA style, and a complete bibliography of cited works. Grades are based on attendance (20 points) and submitted assignments (80 points). Students who are absent for more than four lectures will not be credited. Students who miss more than two site visits will not be credited. Students who submit work that is plagiarized or lacks proper attribution may fail.

Textbook

Thomas Daniell : Houses and Gardens of Kyoto. (Tuttle) ISBN:978-4805314715

Reference book, etc.

Introduction to Globalization I-E2

[Method, Point of view, and Attainment levels of Evaluation]

The final semester grade will be decided upon by participation in class lectures participation (35%) and a written essay (30%) and group work (35%) through the course.

[Textbook]

Not used.

[Reference book, etc.]

Introduced during class.

[Regarding studies out of class (preparation and review)]

Readings are prepared for each week along with class notes for some lectures.

[Others (office hour, etc.)]

This course restricts student enrollment by 25.

Outline and Purpose of the Course

This course introduces students to some core processes that underlie present day globalization. This is a seminar based course and will act as a stepping stone for students to learn and explore in what ways different aspects of globalization play out in Asia-pacific, Southeast Asia and other regions in the world.

Course Goals

Each week will consist of a brief lecture based on readings (and some class notes) followed by a class discussion and group exercises. The main goal of the course is to give students a critical introduction to the way global processes play out in the domains of the economy, ecology, politics, and society. Students will receive a grounding on the various ways in which global issues affect everyday life in the present and future and ask them to think about the different ways we measure them.

Course Schedule and Contents

Week 1. Overview
Week 2. The Politics of Enough
Week 3. The Limits of Growth
Week 4. The De-growth argument
Week 5. Viewing Growth through GDP
Week 6. The Rise of Neoliberal Economies
Week 7. Financial Crises
Week 8. Prosperity as an Obtainable Goal?
Week 9. Sustainable Humanosphere: Assessing the Potentially of Global Regions
Week 10. Measuring Global Conditions: Global Indicators
Week 11. Measuring Potentiality for the 21st Century
Week 12. Producing Indexes to Monitor Global Change (1)
Week 13. Producing Indexes to Monitor Global Change (2)
Week 14: Group Presentations
Week 15. Recap

Class requirement

Students should be able to participate in discussions, do readings, and submit short homework pieces.
Introduction to Globalization II-E2

[Outline and Purpose of the Course]

Human Societies are often characterized by their dynamic populations. These often include people who are born in one country but live and reside in another. This course introduces students to present day global movement and the different conditions of people who move and settle in other countries. This is a seminar based course and aims to help students learn and explore the ways human movement plays out Asia-pacific, Southeast Asia, and other regions in the world.

[Course Goals]

Each week will consist of a brief lecture based on readings (and some class notes) followed by a class discussion and group exercises. The main purpose is to give students a critical introduction to the way present day globalization processes affect the lives of migrants, immigrants and refugees and stimulate discussion on the human dimensions of movement.

[Course Schedule and Contents]

Week 1. Overview
Week 2. Who is a Migrant?
Week 3. Global Migration in the 21st Century
Week 4. Statelessness: Causes and Consequences (1)
Week 5. Statelessness: Causes and Consequences (2)
Week 6. The International Refugee Regime
Week 7. Media images of refugees and migrants (documentary screening)
Week 8. Demonizing Discourses and Toxic Metaphors
Week 9. Managing Migration (1): Singaporean Case Study
Week 10. Managing Migration (1): Japanese Case Study
Week 11. Caring for the Future: Highly Skilled Migrants
Week 12. Integrating Global Care: Germany, Japan, Philippines, and Vietnam
Week 13. Migrants: Winners or Losers from Migration?
Week 14. Does Migration Adversely affect Host Societies?
Week 15. Re-cap

[Course requirements]

Students should be able to participate in discussions, do readings and submit short homework pieces each week.

[Method, Point of view, and Attainment levels of Evaluation]

The final semester grade will be decided upon by participation in class lectures and an online forum (35%), participation (including a group test) (35%) and a written essay (30%) to be submitted at the end of the course.

[Textbook]

Not used

[Reference book, etc.]

Introduced during class

[Regarding studies out of class (preparation and review)]

Each week will consist of materials to be prepared in advance for class discussion.

[Others (office hour, etc.)]

This course restricts student enrollment by 25.
Environmental Histories of South Asia-E2

This is designed as an introductory course that will familiarise students with several of the critical debates that have shaped environmental history writings on South Asia. The emphasis will be on rehearsing not only the distinct conceptual and theoretical claims but, significantly as well, survey the rich and complex socio-ecological worlds that have been revealed such writing on South Asia.

Course Goals

Given that the environmental question has become central to discussions about sustainability and climate change, this course will help students understand the unique histories of ecological change in South Asia. It will not only enable students to grasp the ruptural and often times dramatic environmental transformations that continue to shape contemporary South Asia but brings into relief the complicated pathways of modernity.

Course Schedule and Contents

Each class will comprise a 90 minute session; involving a lecture of 60 minutes and followed by a 30 minute interactive discussion in which student participation will also be elicited through either group or individual presentations. Four themes will be covered:

- The Colonial Watershed Thesis
- Continuity and Change
- Forest Protection, Hunting and Colonial Hydrology
- Conservation, environmental change and the Colonial State

Class requirement

None

Method, Point of view, and Attainment levels of Evaluation

There will be a regular cycle of written submissions and feedback through class discussions and teacher evaluations. The idea is to develop a credible capacity for reading and writing amongst those who take up the course. Evaluations will be based on class presentations, writing assignments and a tutorial.

Textbook

Not used

Reference book, etc.

Related URL

(Relevant sections and chapters from the above books will be assigned as readings for the course. Other reading materials such as articles or short write-ups may be included based on class discussions and interest.)

Regarding studies out of class (preparation and review)

Students will be expected to have read at least five pages of pre-assigned reading, at the very minimum, before attending each class.

Others (office hour, etc.)

Students can meet me during office hours with prior appointment
Introduction to Urban Geography-E2

[Outline and Purpose of the Course]
The majority of the world’s population live in cities. The course explores the dynamics and transformations of urban places and spaces, which include the origin and evolution of cities, the development of networks of cities bound together by culture, trade, communication and competition, as well as the dynamics of economic restructuring in urban regions.

[Course Goals]
The course allows students to develop a critical perspective on dominant neoliberal representations of the city and to explore the great diversity of urban worlds. Students will understand the complexity of human-city relationships and learn how cities are shaped by culture, society, economics, politics, and the environment.

[Course Schedule and Contents]
Week 1: Approaches to the City - What is Urban Geography?
Week 2: Foundations I - Basic Concepts
Week 3: Foundations II - Advanced Concepts
Week 4: Forms and Structures
Week 5: City Economies
Week 6: Urban Planning
Week 7: Field Trip - Gion / Kawaramachi
Week 8: Urban Architecture
Week 9: Experiencing the City
Week 10: Housing and Inequality
Week 11: Urban Transport
Week 12: Sustainable Cities
Week 13: Final Presentations I
Week 14: Final Presentations II

Course Schedule might change

[Class requirement]
You are interested in cities, excited about living in one, and want to learn more about them.

Field Trip to Gion: Participation is mandatory
Introduction to Urban Geography-E2

[Outline and Purpose of the Course]

The majority of the world’s population live in cities. The course explores the dynamics and transformations of urban places and spaces, which include the origin and evolution of cities, the development of networks of cities bound together by culture, trade, communication and competition, as well as the dynamics of economic restructuring in urban regions.

[Course Goals]

The course allows students to develop a critical perspective on dominant neoliberal representations of the city and to explore the great diversity of urban worlds. Students will understand the complexity of human-city relationships and learn how cities are shaped by culture, society, economics, politics, and the environment.

[Course Schedule and Contents]

Week 1: Approaches to the City - What is Urban Geography?
Week 2: Foundations I - Basic Concepts
Week 3: Foundations II - Advanced Concepts
Week 4: Forms and Structures
Week 5: City Economies
Week 6: Urban Planning
Week 7: Field Trip - Gion / Kawaramachi
Week 8: Urban Architecture
Week 9: Experiencing the City
Week 10: Housing and Inequality
Week 11: Urban Transport
Week 12: Sustainable Cities
Week 13: Final Presentations I
Week 14: Final Presentations II

Course Schedule might change

[Class requirements]

You are interested in cities, excited about living in one, and want to learn more about them.

Field Trip to Gion: Participation is mandatory

Introduction to Urban Geography-E2(2)

[Method, Point of view, and Attainment levels of Evaluation]

20% Attendance and in-class discussion and participation, 40% Photo Essay (1500 words), 40% Group Presentation (10-15 min)

[Textbook]

Required readings and materials will be distributed in class.

[Reference book, etc.]

Introduced during class

[Regarding studies out of class (preparation and review)]

Students are expected to prepare for each class and be ready to discuss the weeks topics in small groups. Preparatory materials include academic readings, news pieces and online media materials.

[Others (office hour, etc.)]

Please email the instructor.

baars.rogercloud.6a@kyoto-u.ac.jp

Continue to Introduction to Urban Geography-E2(2)
Lecture code: H806001

<table>
<thead>
<tr>
<th>Course number</th>
<th>U-LAS05 20041 LE74</th>
</tr>
</thead>
<tbody>
<tr>
<td>Course title</td>
<td>Introduction to Urban Planning-E2</td>
</tr>
<tr>
<td>Field/Classification</td>
<td>Regions and Cultures(Issues)</td>
</tr>
<tr>
<td>Language</td>
<td>English</td>
</tr>
<tr>
<td>Number of weekly time blocks</td>
<td>1</td>
</tr>
<tr>
<td>Class style</td>
<td>Lecture</td>
</tr>
<tr>
<td>Course offered year/period</td>
<td>2019 • First semester</td>
</tr>
<tr>
<td>Eligible students</td>
<td>For all majors</td>
</tr>
</tbody>
</table>

[Outline and Purpose of the Course]
This course provides an overview of the conceptual ideas, theories and popular practices in urban and city planning. This course would help you to understand origins and evolution of the urban world. It would cover major movements, ideas and practices that have influenced both cities and urban planning. It will highlight both the theoretical debates and practical challenges that urban planners are likely to encounter; and discuss problem-solving techniques and strategies popular in planning practices.

[Course Goals]
To introduce major theories and concepts in urban planning.
To understand the socio-economic, political and environmental forces influence the planning processes.
To learn various planning tools and techniques.
To understand practical challenges in urban planning.

[Course Schedule and Contents]
1. What is urban planning? (Week 1 to 2)
2. History of city: Urbanization, sub-urbanization and re-urbanization. (Week 3 and 4).
3. History of urban planning: An overview (Week 5 to 7).
4. Major contemporary urban planning approaches (Week 8 to 9).
5. Popular methods and tools in urban planning. (Week 9 to 12)
6. Urban governance and public participation (Week 13).
7. Current challenges of urban planning (Week 14)
8. Final presentations (Week 15)
9. Feedback class (Week 16)

[Class requirement]
None

[Method, Point of view, and Attainment levels of Evaluation]
Assignment -2 (25 X 2 = 50 Points)
Group Discussion - 1 (25 points)
Presentations - (25 points)

[Textbook]
Instructed during class
The City in History: Its Origins, Its Transformations, and Its Prospects : By Lewis Mumford (1972)
Good City Form - by Kevin Lynch (1995).

[Reference book, etc.]
Introduced during class

[Regarding studies out of class (preparation and review)]
- Prepare and review class contents, reading textbooks.
- Complete assignments.
- Participate in group discussion.
- Give presentations.

[Others (office hour, etc.)]
Course title*
Food and Globalization I-E2

Field(Classification)
Regions and Cultures(Issues)

Group
Humanities and Social Sciences

Language
English

Number of weekly time blocks
1

Day/period
Wed.2

Number of credits
2

Course offered year/period
2019 • First semester

Course Goals
In this course, students will learn about the basic trends that have impacted and shaped food systems around the world. Students will apply the approach of historical food systems using the 'One Food Method'.

Course Schedule and Contents

Introduction
1. A true global traveler: the story of the humble potato

Module 1: The mobility of food
2. The origins of food and their first travels
3. Early trade: diversity and survival
4. Middle trade: luxury and new tastes
5. Latter trade: efficiency and cultural exchange

Module 2: The mobility of farming
6. Farming overseas and comparative advantage
7. Technology transfer and the Green Revolution
8. The politics of food prices, subsidies, trade

Module 3: The transformation of our foods
9. Corporate consolidation of the global food trade
10. Local to global and back again: food movements
11. The single-food approach: The story of Milk

Module 4: Student Presentations
12. The story of a staple grain
13. The story of a livestock product
14. The story of a fruit
15. Final exam

Class requirement
English proficiency suitable for understanding lectures, reading basic texts, and participating in class discussion.

Method, Point of view, and Attainment levels of Evaluation
15% Attendance (* More than 3 absences without official excuse receives a fail)
25% Mini-quizzes and class activities
20% Group presentation
40% Final examination

Textbook
Not used
No textbook, but consultation of in-class materials and eBooks available at Kyoto University Library (see Reference book).

Reference book, etc.

Regarding studies out of class (preparation and review)
Students will be expected to do readings or watch movies in preparation for class and discuss them the following week. Alternatively, students will conduct take home practical exercises which must be submitted the following week.

Others (office hour, etc.)
Short meetings can be spontaneous or scheduled. Longer meetings scheduled only by email.
[Course title][1] Food and Globalization II-E2

Affiliated department, Job title, Name
Graduate School of Agriculture, Program-Specific Senior Lecturer, Hart Nadav FEUER

Group
Humanities and Social Sciences

Field (Classification)
Regions and Cultures (Issues)

Language
English

Number of weekly time blocks
1

Class style
Lecture

Course offered year/period
2019 • Second semester

Day/period
Wed. 2

Target year
Mainly 1st & 2nd year students

Eligible students
For all majors

[Outline and Purpose of the Course][2]

This course surveys modern transformations to food systems worldwide under globalization. The topics cover the debate between global vs. local from both sympathetic and critical perspectives. In more detail, we explore what happened after food became a globalized industry and how new food trends began to change the way farming is done and how people eat worldwide.

[Course Goals][3]

In this course, students will gain a basic understanding about the contemporary trends in food systems around the world, particularly the impact of globalization, dietary transition, and food movements. Students will apply the approach of class to analyze one contemporary trend in agriculture.

[Course Schedule and Contents][4]

Introduction

1. Food after globalization
2. Overproduction and alternative uses: sweeteners, fodder, energy
3. Global diet trends from malnutrition to overnutrition
4. Rising incomes, rising food prices
5. Environmental consequences of food production

Module 1: Challenges to global food

6. New farmer-consumer relationships: fairtrade, farmer markets, farm-to-fork
7. Urban agriculture
8. Challenges to local food in a global world

Module 2: Revival of local food

9. World trade in specialty local products: geographic indications
10. Unexpected local specialities: Hokkaido dairy

Module 3: Global-Local contradictions

11. Mega-agriculture
12. Small-scale food systems
13. New diets: innovation or marketing?

Module 4: Student Presentations

14. Key lessons of global food

[Class requirement][5]

English proficiency suitable for understanding lectures, reading basic texts, and participating in class discussion. [Not required, but to increase understanding of world food systems, interested students are encouraged to take Food and Globalization I in the Spring Semester.]

[Method, Point of view, and Attainment levels of Evaluation][6]

15% Attendance (* More than 3 absences without official excuse receives a fail)
25% Mini-quizzes and class activities
20% Group presentation
40% Final examination

[Textbook][7]

Not used
No textbook, but consultation of in-class materials and eBooks available at Kyoto University Library (see Reference book).

[Reference book, etc.][8]

Belasco, Warren
Food: the Key Concepts. (Bloomsbury) ISBN:9781845206734

Crowther, Gillian

[Regarding studies out of class (preparation and review)][9]

Students will be expected to do readings or practical exercises, or watch movies in preparation for class and take short quizzes. Students should be ready to discuss the topic of the week in class.

[Others (office hour, etc.)][10]

Short meetings can be spontaneous or scheduled. Longer meetings scheduled only by email.

[1]: Lecture code: H809001
[2]: U-LAS05 20043 LE31
[3]: Food and Globalization II-E2
[4]: 15. Final exam
16. Feedback (details in class)

[5]: English
[6]: Language
[7]: Group A
[8]: Number of credits
[9]: Old group
[10]: Day/period
This course will give an introduction to the Japanese law. It will explain the outline of constitutional law, substantive and procedural criminal and civil law, as well as enterprise law in Japan, and give an introduction to their basic structure and elements. Along the way, relevant cases decided by Japanese courts will also be discussed. The goal of this course is for students to acquire a basic knowledge of the structure and content of Japanese law. This will help them to further deepen their knowledge of it. An additional goal is for students to become able to analyze legal issues from various angles. During this course, students will be given the opportunity to actively participate in discussions and exchange of ideas.

[Course Goals]
- Understanding the outline of the current state and structure of law in modern Japanese society.
- Getting able to analyze legal issues from various angles.

[Course Schedule and Contents]
1 Introduction
2 Constitutional Law I: System of government
3 Constitutional Law II: Human rights
4 Criminal Trial
5 Criminal Law I: Crimes and punishments
6 Criminal Law II: Elements of crimes
7 Civil Law I: Juristic acts
8 Civil Law II: Real rights
9 Civil Law III: Contracts
10 Civil Law IV: Torts
11 Civil Law V: Marriage and divorce
12 Civil Law VI: Inheritance
13 Civil Trial
14 Enterprise Law
15 Final exam
Feedback (the method will be explained later)
Law and Culture in Japan-E2(2)

[Course title]
Law and Culture in Japan-E2

[Group]
Humanities and Social Sciences

[Field (classification)]
Jurisprudence, Politics and Economics (Foundations)

[Language]
English

[Number of weekly time blocks]
1

[Class style]
Lecture

[Course offered year/period]
2019 • First semester

[Target year]
Mainly 1st & 2nd year students

[Eligible students]
For all majors

[Number of credits]
2

[Outline and Purpose of the Course]
This course will give an outline of some major legal issues in Japan, and explain the cultural and social elements behind them. Further, it will demonstrate the mutual relation between law and culture in Japan, especially focusing on two topics: (1) law in everyday life, and (2) social issues and the law. Along the way, relevant cases decided by Japanese courts will also be discussed. The goal of this course is for students to acquire a basic knowledge of the structure and current state of Japanese law, and get able to comprehend and analyze representative legal issues of everyday life. An additional goal is for students to deepen their understanding of Japanese society and culture. During this course, students will be given the opportunity to actively participate in discussions and exchange of ideas.

[Course Goals]
- Understanding the basics of law in modern Japanese society.
- Getting able to comprehend and analyze representative legal issues of everyday life.
- Deepening the understanding of Japanese society and culture.

[Course Schedule and Contents]
1. Introduction
2. Significance and foundations of law
3. Sources and categories of law
4. Trials, structure of courts and legal professions
5. Law in everyday life I: Minors and the law
6. Law in everyday life II: Elderly people and the law
7. Law in everyday life III: Family and the law
8. Law in everyday life IV: Contracts in Japan
9. Law in everyday life V: Consumer protection/education and the law
10. Social issues and the law I: Organized fraud
11. Social issues and the law II: Product safety
12. Social issues and the law III: False accusations in criminal cases
13. Social issues and the law IV: Bioethics
14. Social issues and the law V: Artificial intelligence
15. Final exam
Feedback (the method will be explained later)

[Class requirement]
None

[Method, Point of view, and Attainment levels of Evaluation]
Class attendance and active participation: 20%
Final written examination (part of the questions will have to be answered in the form of a short essay): 80%

[Textbook]
Handouts will be distributed and further reading material will be indicated during the course.

[Reference book, etc.]
Introduced during class

[Regarding studies out of class (preparation and review)]
Will be indicated during the course if necessary.

[Others (office hour, etc.)]
Students may contact me by email for appointments or questions regarding the course.
Course title
Political Science I-E2

Affiliated department, Job title, Name
Center for Southeast Asian Studies
Associate Professor, TANGSEFA, Decha

Group
Humanities and Social Sciences

Field(Classification)
Intergovernmental Politics and Economics (Foundations)

Language
English

Number of weekly time blocks
1

Class style
Lecture

Course offered year/period
2019 • First semester

Day/period
Wed. 3

Target year
All students

Eligible students
For all majors

Outline and Purpose of the Course

Treating politics as a potentially humanizing enterprise, this course’s foci are: a) Rules of the Game; b) Political Philosophy and Ideology; and c) Application to the Japanese Contexts. The first part will take us to an exploration of the following notions: the meaning of and the factors affecting “politics”; the intertwining relations between value, choice and judgment; the basic characteristics of the discipline of political science. Second, we will discuss how the search for and the commitment upon certain notions of “good” political lives lead to different political ideologies. Toward the end, we will apply such explorations, conceptualizations and discussions to the Japanese context, hoping to shed some light on Japan’s multiple phenomena related to “the political”.

Course Goals

This course aims to equip students with a set of abilities to: (1) conceptually think through “the political” in different subfields of political science; (2) apply that conceptualization to the Japanese contexts.

Course Schedule and Contents

Week 1: Introduction and Course Queries
Part I: Rules of the Game
Week 2: Games Politicians Play
Week 3: Politics and Choice
Week 4: Political Science: Components, Tasks, and Controversies
Week 5: The Physical, Social, and Cultural Environment of Politics
Part II: Political Philosophy and Ideology
Week 6: The Quest for the Good Political Life
Week 7: Liberal Democracy
Week 8: Democratic Socialism and Communism: Ideologies of the Left
Week 9: Fascism
Part III: On “Japanese Politics”-- Writing a Paper
Week 10: On “Japanese Politics” -- 1
Week 11: Proposal Presentation
Week 12: Writing Workshop -- 1
Week 13: Writing Workshop -- 2
Thursday: Final Paper Due
Week 14: Course Summary
Week 15 Examination
Week 16: Feedback Session

Class requirement
None

Method, Point of view, and Attainment levels of Evaluation

Attendance and class participation (30%), team research paper (40%), final exam (30%).

Textbook

Reference book, etc.

Related URL
https://edge.sagepub.com/riemer5e

Regarding studies out of class (preparation and review)

On the first day of class, each weekly required reading(s) will be assigned. Throughout the semester, students will come to class having read the reading(s) and ready to engage with their peers.

Others (office hour, etc.)

Consultations can be arranged as needed.
This course treats politics as a potentially humanizing enterprise. Its foci are: a) Comparative and World Politics; b) Political Judgment and Public Policy; and c) Application to the Japanese Contexts. We will start with an exploration of various forms of governing in a few countries from different parts of the world, based on their different cultures and values. Second, we will examine how ethical judgments in different contexts unfold, through our discussions of war and peace; human rights; economy; and ecological degradation. In the process, we will also explore ways in which those judgments manifest themselves at the policy formation level. Toward the end, we will apply such explorations, conceptualizations and discussions to the Japanese context, hoping to shed some light on Japan’s multiple phenomena related to “the political”.

This course aims to equip students with a set of abilities to: (1) conceptually think through “the political” in different subfields of political science; (2) apply that conceptualization to the Japanese contexts.

Week 1: Introduction and Course Queries

Part I: Comparative and World Politics
Week 2: Key Dilemmas: Political Form, Culture and Value
Week 3: Comparative Politics
Week 4: International Politics and the Global Community-1
Week 5: International Politics and the Global Community-2

Part II: Political Judgment and Public Policy
Week 6: War and Peace in the Modern Age
Week 7: The Battle on Behalf of Human Rights
Week 8: The Struggle for Economic Well-Being
Week 9: The Imperative of Ecological Health

Part III: “Japanese Politics”: Writing a Paper
Week 10: On “Japanese Politics”
Week 11: Proposal Presentation
Week 12: Writing Workshop -- 1
Week 13: Writing Workshop -- 2
● Thursday: Final Paper Due
Week 14: Course Summary
Week 15: Examination

Continue to Political Science II-E2(2).
Course numbering

<table>
<thead>
<tr>
<th>Course title</th>
<th>Affiliated department, Job title, Name</th>
<th>Institute of Economic Research</th>
<th>Associate Professor, NEWTON, Jonathan Charles Scott</th>
</tr>
</thead>
<tbody>
<tr>
<td>Course title</td>
<td>Introduction to Economics-E2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Language</td>
<td>English</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Field (Classification)</td>
<td>Jurisprudence, Politics and Economics (Foundations)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Group</td>
<td>Humanities and Social Sciences</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Old group</td>
<td>Group A</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Number of weekly time blocks</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Number of credits</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Day/period</td>
<td>Wed. 1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Class style</td>
<td>Lecture</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Course offered year/period</td>
<td>2019 • First semester</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Target year</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Eligible students</td>
<td>For all majors</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

[Outline and Purpose of the Course]

This course is an introduction to economics, covering essential economic concepts (gains from trade, marginal costs, solutions to basic economic models) in both a qualitative and a quantitative manner.

The purpose of the course is to give students an understanding of economic concepts and methods which they can then take to further, more detailed, study of the subject.

[Course Goals]

- To introduce important economic concepts and illustrate these with examples.
- To give some ability to consider real world phenomena through economic thinking.
- To prepare students for further study of economics.

[Course Schedule and Contents]

Each week part of the textbook or other relevant readings will be covered in class. The course consists of the following 7 topics, each of which will be (approximately) covered in 2 time blocks (3 hours of class time):

1. Gains from trade.
2. Demand and supply.
3. Production, equilibrium and welfare.
4. Perfect competition and monopoly.
5. Monopolistic competition and oligopoly.
7. Public goods and common resources.

[Class requirement]

None

[Method, Point of view, and Attainment levels of Evaluation]

Grading (100%) will be based on quizzes and tests administered throughout the semester.

[Textbook]

Bonnie Nguyen and Andrew Wait "Essentials of Microeconomics" (Routledge) ISBN:978-1138891364

[Regarding studies out of class (preparation and review)]

The assigned chapters of the textbook, as well as any other readings assigned in class, should be read each week.

[Others (office hour, etc.)]

Office hours to be announced at first lecture.
This course is an exploration of key economic principles, illustrated and discussed via examples, both quantitative and qualitative, as well as by readings from some of the classic texts of economics. The purpose of the course is to give students a deep and thoughtful understanding of a few economic concepts, as well as an appreciation of the intellectual history of these concepts.

Course Goals

- To further understanding of important economic concepts.
- To gain an appreciation of the history of thought behind these concepts.
- To be able to consider and apply these concepts in a modern context.

Course Schedule and Contents

Each week we will consider an interesting economic concept. The course will cover some or all of the following 7 topics, each of which will be covered in 2 time blocks (an estimated 3 hours of class time):

1. Self-interest: do free choices make us better off?
2. The Invisible Hand: do free choices make society better off?
3. The marginal theory of value: why are diamonds more expensive than water?
4. Foresight and Ricardian equivalence.
6. Adverse selection and moral hazard.

Readings will be assigned by authors such as Adam Smith, David Ricardo, Thomas Malthus, Alfred Marshall, Carl Menger, Ludwig von Mises, Leon Walras, Vilfredo Pareto, Friedrich Hayek, Ronald Coase.
This course is a "Great books" seminar that discusses the book "Collective choice and social welfare" by Amartya Sen. The book is a classic study that analyzes the theory of collective choice. It addresses topics such as whether the values of individuals can be aggregated in a way that leads to a sensible rule for social decisions to be made. As well as relevance to economics it has important philosophical aspects and is related to ethics and the theory of justice.

The purpose of the course is to come to a thoughtful, nuanced understanding of this text.

[Course Goals]

- To read, understand and critique "Collective choice and social welfare" by Amartya Sen.
- To improve critical reading skills.
- To prepare students for further analytical work in game theory, economics, sociology or philosophy.

[Course Schedule and Contents]

Each week a chapter or part of a chapter will be discussed in class. The course consists of the following topics, each of which will be covered in 1 to 2 lectures (1.5 to 3 hours of class time):

1. Introduction and preferences
2. Unanimity
3. Collective Rationality
4. Choice Versus Orderings
5. Values and Choice
6. Conflicts and Dilemmas: the liberal paradox
7. Interpersonal Aggregation and Comparability
8. Cardinality With or Without Comparability
9. Equity and Justice
10. Majority Choice and Related Systems
11. Theory and Practice

[Class requirement]

Students are required to have the English and mathematical skills required to read the assigned texts, attend class and participate in discussion.

Students MUST have a copy of the book (either a hard copy or an electronic copy) as it will be used from the very beginning of the course.

[Method, Point of view, and Attainment levels of Evaluation]

Grading will predominantly be based on class presentations and discussion of ideas (70 to 100%). Up to 30% may be based on in-class tests that can take place from time to time throughout the semester.

[Textbook]

[Regarding studies out of class (preparation and review)]

The assigned chapters of the book, as well as any other readings assigned in class, should be read each week.

[Others (office hour, etc.)]

Office hour by appointment.
Economy and Society II-E2

[Class requirement]
Students are required to have the English and logical skills required to read the assigned texts, attend class and participate in discussion.

Students MUST have a copy of the book (either a hard copy or an electronic copy) as it will be used from the very beginning of the course.

[Method, Point of view, and Attainment levels of Evaluation]
Grading will predominantly (70-100%) be based on class presentations and discussion of ideas. Up to 30% may be based on tests taken in class throughout the semester.

[Textbook]

[Regarding studies out of class (preparation and review)]
The assigned chapters of the book, as well as any other readings assigned in class, should be read each week.

[Others (office hour, etc.)]
Office hour by appointment.

This course is a "Great books" seminar that discusses the book "Convention: A Philosophical Study" by David Lewis.

This book, one of the greatest game theoretic texts of the 20th Century, provides insight into (i) the formation of conventions (e.g. the understandings that cars drive on the left of the road in Japan, but on the right of the road in China); (ii) hierarchies of beliefs (e.g. I know that you know that I know that Alice has red hair); and (iii) signalling and language (conventions that involve information transmission).

The purpose of the course is to come to a thoughtful, nuanced understanding of this text.

[Course Goals]
- To read, understand and critique "Convention: A Philosophical Study" by David Lewis.
- To improve critical reading skills.
- To prepare students for further analytical work in game theory, economics, sociology or philosophy.

[Course Schedule and Contents]
Each week a chapter or part of a chapter will be discussed in class. The course consists of the following topics, each of which will be covered in approximately 3 hours of class time:

1. Coordination problems
2. What is a convention?
3. Common knowledge.
4. Knowledge and conventions.
5. Formation of conventions.
7. Language and convention.
Lecture code: H930001

<table>
<thead>
<tr>
<th>Course title</th>
<th>U-LAS06 20011 LE41</th>
</tr>
</thead>
<tbody>
<tr>
<td>Affiliated department, Job title, Name</td>
<td>Graduate School of Law, Associate Professor, KARAISKOS, Antonios</td>
</tr>
<tr>
<td>Field(Classification)</td>
<td>Jurisprudence, Politics and Economics(Issues)</td>
</tr>
<tr>
<td>Group</td>
<td>Humanities and Social Sciences</td>
</tr>
<tr>
<td>Language</td>
<td>English</td>
</tr>
<tr>
<td>Old group</td>
<td>Group A</td>
</tr>
<tr>
<td>Number of credits</td>
<td>2</td>
</tr>
<tr>
<td>Number of weekly time blocks</td>
<td>1</td>
</tr>
<tr>
<td>Day/period</td>
<td>Fri.3</td>
</tr>
<tr>
<td>Target year</td>
<td>2nd year or above</td>
</tr>
<tr>
<td>Eligible students</td>
<td>For all majors</td>
</tr>
</tbody>
</table>

[Outline and Purpose of the Course]

European law has many aspects. On the one hand, there are the various European states, each with their own legal system and legal tradition. On the other hand, the European Union has become an important factor in European politics, economy, and also law. Further, there are various projects which aim at harmonizing law in Europe. This course will give an overview of the various aspects of European law. Therefore, the first part of the course will give an introduction to the European Union, its history and legal framework. The second part will give an overview of the various European legal systems, their differences and what we can learn from comparative law studies. The third and final part will look at efforts in the harmonization and unification of law in Europe with a focus on private law.

The course will give students ample opportunity to actively participate in discussions and case-solving. This course is thus helpful both for students who want to learn more about the European Union and integration in Europe from a legal perspective, as well as for students who intend to study any of the national laws of European states which today are closely interrelated with European Union law.

[Course Goals]

- Getting to know the European Union, its history, structure, and legal framework.
- Learning about various European legal systems, their differences and what they have in common.
- Getting familiar with comparative law and its methods.
- Becoming able to discussing the benefits and problems of the harmonization of laws.

[Course Schedule and Contents]

1. **Introduction - What is European Law?**
2. European Union
3. Introduction, development
4. Institutions
5. Competences, legislative process
6. Implementation and effect of EU law
7. Court of Justice of the European Union, European Citizenship
8. Example - EU consumer protection law
9. Brexit
10. Private law systems in Europe
11. Case study: Formation of contract as an example
12. Interaction between legal systems - comparative law
13. Harmonization of laws within Europe
14. Outlook - where is European law going?
15. Feedback

Note: the content above might be adjusted depending on the state of progress.

[Class requirement]

As the course requires a certain level of knowledge of academic English, it is addressed to students of second year and above.

[Method, Point of view, and Attainment levels of Evaluation]

Students will be evaluated on the basis of a final written exam. Part of the exam questions will have to been answered in the form of a short essay.

[Textbook]

Lecture materials and indication of further reading will be provided in class.

[Reference book, etc.]

Reference book

Introduced during class

[Regarding studies out of class (preparation and review)]

Will be indicated in class if necessary.

[Others (office hour, etc.)]

Students may contact me by email for appointments or questions regarding the course.
Japan's Political Economy-E2

<table>
<thead>
<tr>
<th>Lecture code: H928001</th>
</tr>
</thead>
<tbody>
<tr>
<td>Course numbering</td>
</tr>
<tr>
<td>U-LAS06 20022 LE42</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Course title</th>
<th>Affiliated department, Job title, Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>Japan's Political Economy-E2</td>
<td>Graduate School of Law Associate Professor, HIJINO KEN</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Group</th>
<th>Field (Classification)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Humanities and Social Sciences</td>
<td>Jurisprudence, Politics and Economics (Issues)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Language</th>
<th>Old group</th>
<th>Number of weekly time blocks</th>
<th>Class style</th>
<th>Course offered year/period</th>
</tr>
</thead>
<tbody>
<tr>
<td>English</td>
<td>Group A</td>
<td>1</td>
<td>Lecture</td>
<td>2019 • Second semester</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Day/period</th>
<th>Target year</th>
<th>Eligible students</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tue.2</td>
<td>Mainly 1st & 2nd year students</td>
<td>For all majors</td>
</tr>
</tbody>
</table>

Outline and Purpose of the Course

This class presents an overview of Japan's post-war modern history and investigates select issues in its political economy. The class is organized into three parts: 1) an overview of Japan's post-war history; 2) an analysis of the politics, economics, society and foreign policy of the country's "lost decades"; and 3) an exploration of Japan's post-war cleavages, ideologies, and place in the world.

Course Goals

The goal of this course is for students to begin to contemplate the interactions between politics, economics, society, and foreign policy of a nation over time, i.e. historically. Another goal is for students to improve their English reading and writing skills through studying in English a subject that they may be familiar with in the Japanese language.

Course Schedule and Contents

1. Introduction: What is modern history? What is political economy? Why study Japan?

Part one: Japan's post-war history 1945 to 1989

2. Occupation-era Japan: democratization and demilitarization (1945-47)
3. Occupation-era Japan: the "reverse course" and the Yoshida doctrine (1947-51)
4. Post-war economic miracle: economic and social transformations (1952-73)
5. Political struggles and accommodation in the High-growth era (1952-73)

Part two: Japan's lost decades 1990 to 2013

8. The economics of Japan's lost decades: de-regulation and globalization
9. The politics of Japan's lost decades: institutional reform and transition
10. Social transformations during Japan's lost decades: fluidity and insecurity
11. The foreign policy of Japan's lost decades: towards a more "normal" country

Part three: Themes in Japan's post-war political economy (1945-2013)

12. Relations between the centre and periphery in the post-war period
13. Social classes and inequality in the post-war period
14. Political ideologies and cleavages in the post-war period

Japan's Political Economy-E2(2)

Class requirement

This course does not require any prior knowledge on Japan's post-war history or political economy. Students will be expected to read about 20-30 pages of rigorous and academic, though not technical, English. Students will also be expected to write their assignments in English (although this may change according to the class level).

Method, Point of view, and Attainment levels of Evaluation

Students will be evaluated on short quizzes = 30 % and a final exam = 70 % for their grade.

Textbook

Regarding studies out of class (preparation and review)

Students will be expected to spend at least 2-3 hours reading and preparing for each class.

Others (office hour, etc.)

I will not have fixed office hours, but students may contact me by email for appointments or questions about the course.

Continue to Japan's Political Economy-E2(2)
This is an introductory course on Japanese politics which considers the nature of Japan's political institutions from a comparative perspective. The course will analyze how variation in key political institutions (such as the electoral system) affects political outcomes in Japan and other democracies. The course is organized into three parts: 1) a brief survey of Japanese political history from the Meiji era to the present 2) a description and comparison of Japan's key political institutions 3) investigation into a number of political themes in post-war Japan.

Along the way, students are introduced to basic social science methodologies of comparison to generate causal inferences as well as some basic analytical models used in comparative politics (such as the principal-agent and veto player model).

The goal of this course is for students to begin to contemplate how the preferences of voters, politicians, parties and interest groups are constrained and channelled by political institutions. Another goal is for students to improve their English reading and writing skills through studying in English a subject that they may be familiar with in the Japanese language.

The course will be evaluated on pop quizzes = 30% and a final examination = 70% for their grade.

The textbook is:

Reference book, etc.

Students will be expected to read and prepare for at least 2-3 hours per class each week.

I will not have fixed office hours, but students may contact me by email for appointments or questions about the course.
This is a small-sized seminar-type class for students wishing to learn how to read critically in English by reading texts from leading scholars and commentators on modern democracy. The class will introduce key issues surrounding democracy, including its history, definition, limits, and current challenges.

We will be reading articles in journals and papers such as Foreign Affairs, New York Review of Books, the Economist, and the Guardian on ongoing topics relating to the health of democracy such as populism, inequality, social media, and illiberalism.

You do not need to have prior knowledge in political science or social sciences, or be a native English speaker/writer to join this seminar.

The goal of this seminar is for students to learn how to critically read and evaluate the theoretical arguments and empirical evidence provided in the very best of political science literature. Such an intense reading should train non-native English speakers to improve both their English reading and comprehension, but also their engagement with academic texts in other languages. Students are expected to be active in presenting and formulating their ideas during the course, giving them opportunity to improve their output in English.

Each class will involve a student presentation of the reading assignment (20 pages or so) and an in-class discussion of the text. The texts that will be read will be determined according to student interest and capacity at the beginning of the term.

Students will be evaluated on their participation in class discussion, class presentations and weekly reading reports, and a final term paper (2,000 words) – each worth approximately a third of their grade.

Instructed during class
International History 1900 to the Present-E2(2)

[Class requirement]
None

[Method, Point of view, and Attainment levels of Evaluation]
Written Examination during the Official Examination Term Evaluation on Class performance through attendance and participation

[Textbook]
Antony Best / An International History of the Twentieth Century and Beyond (3rd Edition) / (Routledge)

[Regarding studies out of class (preparation and review)]
Students will be assigned recommended reading for each class, usually one short article or primary source document.

[Others (office hour, etc.)]

Course title: International History 1900 to the Present-E2

Affiliated department, Job title, Name: Graduate School of Law, Associate Professor, MURPHY, Mahon

Group: Humanities and Social Sciences

Field (classification): Jurisprudence, Politics and Economics (Issues)

Language: English

Number of credits: 2

Number of weekly time blocks: 1

Class style: Lecture

Course offered year/period: 2019 • First semester

Day/period: Wed. 4

Target year: 2nd year students or above

Eligible students: For all majors

(Students of Faculty of Law cannot take this course as liberal arts and general education course. Please register the course with your department.)

[Outline and Purpose of the Course]
This course will introduce Students to the international history of the modern world. It will stretch from the origins of the First World War up to the War on terror in the early 21st century. It will give students an overview of the international history of the world outside of East Asia. The lectures will focus on main theme as outlined below with students encouraged to study deeply on a chosen area. The course will focus on the international implications of each topic under discussion with primary sources and other media such as photographs, music and film to give students a true understanding of the broad sweep of the international history of the last 120 years.

[Course Goals]
Students will obtain a working knowledge of the history of the modern world and will be able to demonstrate this through essays.

[Course Schedule and Contents]
The lectures will develop as follows:

1. Introduction Lecture
2. Great Power Rivalry and the First World War 1900-1917
3. The Russian Revolution and the Comintern
4. International Cooperation and The Creation of the League of Nations
5. The Rise of Fascism
6. The Origins of the Second World War
7. The Beginning of the Cold War
8. Neutralism and the Rise of the Third World
9. Africa: Decolonisation and Independence
10. The Arab-Israeli Conflict
11. European Integration
12. The End of the Cold War
13. The era of the War on Terror
14. Review lecture
This course will introduce students to the International History of East Asia from the First Opium War in 1839 to the end of the Second World War in 1945. Students will understand how global connections affected the development of the history of East Asia from the period beginning with the Opium Wars and ending with Japan’s defeat in the Second World War. The lecture series as outlined below will discuss how commodities such as opium played a role in initially ‘opening up’ East Asia to modern trade and how this helped to create two opposing modernising trends in the Japanese Empire and China. It will discuss the global flow of ideas such as the racist ‘Yellow Peril’ doctrine, the Pan-Asian movement, feminism, communism and imperialism. The course will throughout focus on international cooperation and the transfer of ideas not just within East Asia but with also with the wider world. Japan’s interaction with the League of Nations and the Kuomintang’s flirtations with the Comintern dominated the 1920s. It will then analyse the global context in which the Second Sino Japanese War broke out in which these two opposing modernising forces clashed.

[Course Goals]

Students will gain a knowledge of the international relations of East Asia and be able to demonstrate this through a written essay.

[Course Schedule and Contents]

1. Introduction Lecture
2. Opium, Tea, Silk and Silver: East Asia in the mid-1800s
Seminar Primary Source Discussion, Treaty of Nanjing 1842,
3. Modernisation: The Meiji Restoration in Japan and Self Strengthening in China, a collision course
4. The Boxer Rebellion and the Anglo-Japanese Alliance
5. ‘The Yellow Peril’ in Public Discourse
6. Creating an Empire: The Japanese takeover of Taiwan and Korea
8. The First World War and Empire in Asia
9. Riots, Protests and Self-Determination
10. Ensuring an Everlasting Peace?: The League of Nations and The Institute of Pacific Relations
11. International Communism and the Kuomintang
12. The Path to Global War: The Second Sino-Japanese War
13. The Second World War and the end of the Japanese Empire
14. Review Lecture
[Outline and Purpose of the Course]

Calculus and linear algebra form the essential mathematical background necessary for understanding and developing modern science and technology. In this lecture, basics of calculus required for further pursuing of studies major in science are explained. Calculus with Exercises A strengthens the theoretical base of high school knowledge of differentiation and integration for real functions of one variable, and provides instructions on other more advanced methods of mathematical analysis.

[Course Goals]

The objective of this course is to learn and understand basic notions of differentiation and integration of functions of one variable and methods of mathematical analysis based on them, as well as to become able to apply this knowledge to solving problems. In addition to learning the basic calculus, students can learn through this course how to discuss and present mathematical topics in English.

[Course Schedule and Contents]

This subject is composed of two interrelated parts: Lecture and Exercises. The exercises sessions will take place basically once in two weeks, their purpose being to deepen the students' understanding of the contents of the lecture sessions through active participation in problem solving and through regular submission of reports.

In the course outline below, the order in which the given items will be presented is not fixed and depends on the background and understanding of the enrollees.

1. Fundamental concepts (1 week)
 Numbers, sets, mappings, basic notions of mathematical logic.
2. Properties of real numbers and continuous functions (3-4 weeks)
 Infimum and supremum of sets of real numbers, convergence of sequences, infinite series, limits of functions, definition and basic properties of continuous functions (intermediate value theorem, etc.).
3. Differentiation of functions of one variable (4-5 weeks)
 Differential coefficients, derivative, differentiation of composite functions and inverse functions, derivatives of higher order, Taylor expansion, the mean-value theorem and its applications (monotonicity, convexity, extrema), infinitesimals, calculation of approximations*.
4. Integration of functions of one variable (3-4 weeks)
 Riemann integral, integrability of continuous functions, definite integrals, the fundamental theorem of calculus, integration by parts and by substitution, improper integrals, length of curve*.

Moreover, topics related to
5. Important functions (1-3 weeks)
 Exponential function, trigonometric functions, logarithm, inverse trigonometric functions, Gamma function. will be explained according to necessity at the corresponding place.

* denotes optional topics.

[Class requirement]
None

[Method, Point of view, and Attainment levels of Evaluation]

Students will be evaluated based on their performance in both the lecture and the exercises sessions. * Lecture will be graded based mainly on the final examination. * Exercices will be evaluated based mainly on submitted reports and participation in class. The details of the evaluation system will be given by the lecturer in the first lecture.

Students who fail to pass the examination but reach a certain standard are eligible for reexamination.

[Textbook]

Textbook will be announced at the lecture.

[Reference book, etc.]

Reference book
A. M. Bruckner, J. B. Bruckner, B. S. Thomson Elementary Real Analysis (This book can be downloaded for free at http://classicalrealanalysis.info/Free-Downloads.php.)
M. Spivak Calculus (Publish or Perish) ISBN:978-0914098911

[Regarding studies out of class (preparation and review)]

It is difficult to follow the lecture without regular study. Therefore, students are expected to devote an amount of time equivalent to the time of the lecture to solve report problems and to review the contents of previous lectures.

[Others (office hour, etc.)]

It is advisable to attend the lecture "Linear Algebra with Exercises A" in parallel. Moreover, it is recommended to register for "Calculus with Exercises B" in the second semester.

There are no fixed office hours. If you wish to have a consultation, please feel free to contact the lecturer.
Calculus and linear algebra form the essential mathematical background necessary for understanding and developing modern science and technology. In this lecture, basics of calculus required for further pursuing of studies majored in science are explained. The course Calculus with Exercises B, after providing some more topics on functions of one variable that were not mentioned in "Calculus with Exercises A", explains differentiation and integration of functions of several variables.

[Course Goals]
The objective of this course is to learn and understand basic notions of differentiation and integration of functions of one and several variables and methods of mathematical analysis based on them, as well as to become able to apply this knowledge to solving problems.

In addition to mastering the basic calculus, students can learn through this course how to discuss and present mathematical topics in English.

[Course Schedule and Contents]
This subject is composed of two interrelated parts: Lecture and Exercises. The exercises sessions will take place basically once in two weeks, their purpose being to deepen the students' understanding of the contents of the lecture sessions through active participation in problem solving and through regular submission of reports.

In the course outline below, the order in which the given items will be presented is not fixed and depends on the background and understanding of the enrollees.

1. Series and sequences of functions (3-4 weeks)
 Infinite series (convergence criteria, absolute and conditional convergence), power series (radius of convergence, termwise differentiation and integration), sequences and series of functions (uniform convergence, termwise differentiation and integration).

2. Sets of points in a plane and in space (2-3 weeks)
 Distance, convergence of sequences of points, open sets, closed sets, properties of continuous functions.

3. Differentiation of functions of several variables (4-5 weeks)
 Partial differential coefficients, total differentiability, tangential plane, gradient vector, differentiation of composite functions (chain rule), Jacobian matrix and determinant, implicit functions, inverse mapping, Taylor's formula, extreme value problems, extreme value problems with constraints.

4. Integration of functions of several variables (4-5 weeks)
 Multiple integrals, iterated integrals, calculation of area and volume, change of variables for multiple integrals, improper integrals.

[Class requirement]
Students must attend the course "Calculus with Exercises A" before taking "Calculus with Exercises B". Moreover, students are expected to have mastered the contents of the course "Linear Algebra with Exercises A".

[Method, Point of view, and Attainment levels of Evaluation]
Students will be evaluated based on their performance in both the lecture and the exercises sessions.

* Lecture will be graded based mainly on the final examination.
* Exercises will be evaluated based mainly on submitted reports and participation in class.

The details of the evaluation system will be given by the lecturer at the first lecture.

Students who fail to pass the examination but reach a certain standard are eligible for reexamination.

[Textbook]
Textbook will be announced at the lecture.

[Reference book, etc.]
- I. Kriz, A. Pultr "Introduction to Mathematical Analysis." (Birkhauser) ISBN:978-3-0348-0635-0

[Regarding studies out of class (preparation and review)]
It is difficult to follow the lecture without regular study. Therefore, students are expected to devote an amount of time equivalent to the time of the lecture to solve report problems and to review the contents of previous lectures.

[Others (office hour, etc.)]
It is desirable to take the course "Linear Algebra with Exercises B" in parallel.

There are no fixed office hours. If you wish to have a consultation, please feel free to contact the lecturer.
Linear Algebra with Exercises A(2)

[Class requirement]
None

[Method, Point of view, and Attainment levels of Evaluation]
Students will be evaluated based on their performance in both the lecture and the exercises sessions.
- Lecture will be graded based mainly on the final examination.
- Exercises will be evaluated based mainly on submitted reports and participation in class.
The details of the evaluation system will be given by the lecturer at the first lecture.
Students who fail to pass the examination but reach a certain standard are eligible for reexamination.

[Textbook]
Not used

[Reference book, etc.]
Jim Hefferon
Linear Algebra and Its Applications,
This text is Free, either the GNU Free Documentation License or the Creative Commons License Creative Commons Attribution-ShareAlike 2.5 License.
Website:
http://joshua.smcvt.edu/linearalgebra/

[Regarding studies out of class (preparation and review)]
To be announced.

[Others (office hour, etc.)]
It is advisable to attend the lecture "Calculus with Exercises A" in parallel.
Moreover, it is recommended to register for "Linear Algebra with Exercises B" in the second semester.
Students are welcome to ask questions during, at the beginning or at the end of the class.
The instructor encourages students to arrange an appointment with him if they have questions.

Outline and Purpose of the Course

Calculus and linear algebra form the essential mathematical background necessary for understanding and developing modern science and technology. In this lecture, basics of Linear Algebra required for further pursuing of studies majored in science are explained.

In the Linear Algebra A class, students will learn to manipulate concretely vectors, matrices, and systems of linear equations.

Course Goals
The goal of this class is to learn to manipulate concretely vectors, matrices, and systems of linear equations. In addition to learning linear algebra, students can learn how to discuss and present mathematical topics in English through this course.

Course Schedule and Contents
This subject is composed of two interrelated parts: Lecture and Exercises. The exercises sessions will take place basically once in two weeks, their purpose being to deepen the students' understanding of the contents of the lecture sessions through active participation in problem solving and through regular submission of reports.

The course outline below, in the order in which the given items will be presented is not fixed and depends on the background and understanding of enrollees.

1. Fundamental concepts (1 week)
 - numbers, sets, mappings, basic notions of mathematical logic
2. Vectors in the plane and 2x2 matrices (2 weeks)
 - matrix and vector calculus, matrix inverses, Cayley Hamilton theorem
3. Linear transformations of the plane (rotation, reflections, etc) and matrices
4. Linear systems of equations and matrices
5. Concrete vector spaces and matrices (5-7 weeks)
 - vectors, vector calculus, linear span
 - matrices, matrix calculus (addition, scalar product, product)
 - examples of matrices (2-3 weeks)
 - elementary operations on matrices, rank, invertible matrices, inverse matrix
 - solving linear equations, structure of solutions (3-4 weeks)
6. Determinant (4-6 weeks)
 - row/column substitution and signature; definition of determinant and properties (3-4 weeks)
 - computation of determinant, Cramer's rule, volume and determinant (1-2 weeks)

Lecture code: N160001

<table>
<thead>
<tr>
<th>Course numbering</th>
<th>U-LAS10 10011 LE55</th>
</tr>
</thead>
<tbody>
<tr>
<td>Course title</td>
<td>Linear Algebra with Exercises B</td>
</tr>
<tr>
<td><English></td>
<td>Linear Algebra with Exercises B</td>
</tr>
<tr>
<td>Affiliated</td>
<td>Graduate School of Science</td>
</tr>
<tr>
<td>department, Job title, Name</td>
<td>Associate Professor.COLLINS, Benoit Vincent Pierre</td>
</tr>
<tr>
<td>Group</td>
<td>Natural Sciences</td>
</tr>
<tr>
<td>Field(Classification)</td>
<td>Mathematics(Foundations)</td>
</tr>
<tr>
<td>Language</td>
<td>English</td>
</tr>
<tr>
<td>Old group</td>
<td>B</td>
</tr>
<tr>
<td>Number of credits</td>
<td>3</td>
</tr>
<tr>
<td>Number of weekly time blocks</td>
<td>2</td>
</tr>
<tr>
<td>Class style</td>
<td>Lecture</td>
</tr>
<tr>
<td>Course offered year/period</td>
<td>2019 • Second semester</td>
</tr>
<tr>
<td>Day/period</td>
<td>Mon.3 • Tue.2</td>
</tr>
<tr>
<td>Target year</td>
<td>Mainly 1st year students</td>
</tr>
<tr>
<td>Eligible students</td>
<td>For science students</td>
</tr>
</tbody>
</table>

[Outline and Purpose of the Course]
Linear algebra is one of the fundamental and important parts of mathematics. With Linear Algebra A and B, students are expected to understand not only the fundamental concepts of vector spaces and linear mappings, but also the concrete treatments of matrices and systems of linear equations.

[Course Goals]
The objective of this course is to introduce linear algebra concepts such as vector spaces, linear mappings, matrices and systems of linear equations. In addition to learning linear algebra, students can learn how to discuss and present mathematical topics in English through this course.

[Course Schedule and Contents]
1. Abstract Vector spaces
 (1--3) Basis, dimension, linear mappings and matrices,
 (4--5) change of bases, subspaces, direct sums, kernel and image

2. Euclidean Spaces
 (6--7) Inner product, orthogonal matrices, unitary matrices,
 (8--10) orthonormal basis and orthogonal complements

3. Eigenvalues and diagonalization of matrices
 (11--12) Eigenvalues and eigenvectors, eigenpolynomials,
 (13--14) diagonalization of symmetric matrices by orthogonal matrices (diagonalization of Hermitian matrices by unitary matrices)

[Class requirement]
Students are expected to understand Calculus with Exercises A and Linear Algebra with Exercises A.

[Method, Point of view, and Attainment levels of Evaluation]
Students will be evaluated based on their performance in both the lecture and the exercises sessions.
* Lecture will be graded based mainly on the final examination.
* Exercises will be evaluated based mainly on submitted reports and participation in class.
The details of the evaluation system will be given by the lecturer at the first lecture. Students who fail to pass the examination but reach a certain standard are eligible for reexamination.

Linear Algebra with Exercises B(2)

<table>
<thead>
<tr>
<th>[Textbook]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Not used</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>[Reference book, etc.]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Introduced during class</td>
</tr>
</tbody>
</table>

[Regarding studies out of class (preparation and review)]
To be announced.

[Others (office hour, etc.)]
It is advisable to attend the lecture “Calculus with Exercises B” in parallel.
Students are welcome to ask questions during, at the beginning or at the end of the class. The instructor encourages students to arrange an appointment with him if they have questions.
One of the major reasons of providing this course is the noticeable gap between high school mathematics and college mathematics. The gap has led to a marked decline in the students' ability not only to grasp physical phenomena observed in engineering disciplines but also to explain principles behind the phenomena - e.g. to describe and analyze natural phenomena by means of differential equations. This course aims at bridging the gap between high school mathematics and college mathematics. Through this course, students learn how the physical phenomena in engineering disciplines - e.g. vibration of a structure, wave propagation, fluid dynamics and so on - are described in differential equations. They also learn how those physical phenomena are solved by differential equations.

[Course Goals]
1. To understand the relationship between scientific observation and mathematics.
2. To understand how the physical phenomena in engineering disciplines are described in differential equations, as well as how to solve them.

[Course Schedule and Contents]
1. Picture of Calculus, basics of differentiation and integration
2. e, the base of the natural logarithm
3. Complex numbers, exponential function, logarithmic function and trigonometric functions
4. Differential equations and physical phenomena modelling

The lecture is designed to cover following topics, in detail.
1. Introduction
 - Describing phenomena, input-output system model, etc. [2 weeks]
2. Basics of Calculus
 - Picture of Calculus, derivatives, basic rules, chain rule, implicit differentiation, inverse functions and their derivatives, etc. [4 weeks]
 - Exponential and logarithmic functions, their derivatives, characterizations of exponential functions, etc. [2 weeks]
3. Differential equations and phenomenon descriptions

[Class requirement]
None

[Method, Point of view, and Attainment levels of Evaluation]
Quizzes and exercises (50%) and final examination (50%)

[Textbook]
Instructed during class
Handouts distributed in class or uploaded to PandA

[Reference book, etc.]
- W.F. Trench, "Elementary Differential Equations" (Brooks/Cole)

[Regarding studies out of class (preparation and review)]
Students are expected to spend at least 2 hours on this course for preview and review. More than half of that time is spent preparing for class and doing assignments.

[Others (office hour, etc.)]
Any inquiry to the instructor: chang.kai.chun.4z(at)kyoto-u.ac.jp (replace {at} with @)
Mathematics is a powerful tool to understand the nature. Generally, only problem-solving techniques are taught till high school. However, the beauty of mathematics lies in creating abstractions. Abstraction is creating new names for some values, processes or understandings. We understand a particular phenomenon first and then we name that phenomenon so that we can use that name in further calculation to help our understanding. For example, we have named PI as a particular value that requires some explanation. But, when we use PI in calculations we do not break down that concept every time. This course aims at developing a solid understanding of several mathematical concepts. Through this course, students will learn how various physical phenomena such as vibration of a structure, wave propagation, fluid dynamics and so on - can be described in differential equations. They will also learn how to solve those physical problems using different techniques.

Course Goals

- To understand the relationship between scientific observation and mathematics
- To learn why and how most physical phenomena can be expressed using differential equations
- To learn how to formulate differential equations from physical problems
- To learn how to solve the differential equations

Course Schedule and Contents

1. Introduction [2 weeks]
 a) Types of natural phenomena
 b) Different types of problems and relationship with differential equations
2. Basics of Calculus [6 weeks]
 a) Review of calculus: derivatives, basic rules, chain rule, implicit differentiation, inverse functions, and their derivatives, etc.
 b) Exponential and logarithmic functions, their derivatives, characterizations of exponential functions, etc.
3. Complex number [2 weeks]
4. Differential equations and partial differential equations [2 weeks]
5. Modeling of natural phenomena using differential equations [2 weeks]
6. Examinations [1 week]
7. Feedback [1 week]
[Outline and Purpose of the Course]
This class aims at introduction of calculus for those who did not study "Mathematics III (of the Japanese high school standard)).

[Course Goals]
The goal of the class is to solve problems of the same level with those in entrance examination for science students. An additional goal of this course is to give a chance to the students to present and discuss mathematics in English.

[Course Schedule and Contents]
The course will cover the following topics, and each of them is read in 3-4 weeks:
1. Limit of series and continuous functions
2. Differentiation of elementary functions (i.e. sine, cosine, exponential etc.)
3. Brief introduction of the Riemann integral and differential equations
4. Applications.

[Class requirement]
None

[Method, Point of view, and Attainment levels of Evaluation]
The evaluation of the course will take into account the following criteria:
-homework (20%)
-presentation (10%)
-final exam (70%)

[Textbook]
Not used

[Reference book, etc.]
-Thomas 'Calculus' (Pearson)

[Regarding studies out of class (preparation and review)]
Exercises are given in class and students are required to solve them for clear understanding of the topics in class.

[Others (office hour, etc.)]
High school text book "Mathematics III (高等学校 数学 III)" based on the Japanese high school standard is useful to understand of the subject of the class.

Office hours are not assigned and it is advisable to make comments willingly during and after the class.
Course title
Quest for Mathematics I-E2
Quest for Mathematics I-E2

Affiliated department, Job title, Name
Graduate School of Engineering, Senior Lecturer, Arseniy Aleksandrovich, Kuzmin

Group
Natural Sciences

Field(Classification)
Mathematics(Foundations)

Language
English

<table>
<thead>
<tr>
<th>Old group</th>
<th>Group B</th>
<th>Number of credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Lecture</td>
<td>2019 • First semester</td>
</tr>
</tbody>
</table>

Day/period
Tue.2

Target year
Mainly 1st & 2nd year students

Eligible students
For all majors

[Outline and Purpose of the Course]

In the "Quest for Mathematics", complex numbers and their applications are introduced. At first, we will follow some of the steps of their invention and learn to understand their basic properties. The importance of these numbers in physics and engineering will be explained: quantum mechanics or even calculation of some electric circuits rely on them. In this course we explore geometrical applications of complex numbers, geometrical transformations, and complex functions.

[Course Goals]

- To understand the origins and importance of complex numbers
- Understanding of the geometric representation of complex numbers
- Learn the complex numbers arithmetic
- Learn the relation between trigonometric and exponential functions
- Acquire the ability to use complex numbers

[Course Schedule and Contents]

In this course the following topics are covered:

1. Introduction and history of complex numbers, their definition and basic properties.
2. The complex plane (Argand diagram).
3. Cubic equation.
4. De Moivre's formula, trigonometric functions
5. Vectors and complex numbers.
6. Euler's formula.
7. Introduction to complex analysis.

Each subject will be covered in 1 to 3 lectures.

[Class requirement]

No knowledge of complex numbers is required to join this class. All necessary concepts are introduced during the lecture.

Quest for Mathematics I-E2(2)

[Method, Point of view, and Attainment levels of Evaluation]

Evaluation will be based on:
10% Attendance
20% Homework
20% Quiz
50% Final exam

[Textbook]
Not used

[Reference book, etc.]

(Reference book)
Introduced during class

[Regarding studies out of class (preparation and review)]

Preparation for lectures will include revision of class materials and homework assignments. Detailed instructions will be given during the class.

[Others (office hour, etc.)]
Quest for Mathematics II-E2(2)

- Jacobi symbols, binary quadratic forms.
- Two squares theorem.

(5) Some functions in number theory (Week 10)
- Arithmetic functions, the Mobius inversion formula, Riemann Zeta function.

(6) Continued fractions (Weeks 11-12)
- Finite/infinite continued fractions, irrational numbers;
- Pell's equation, four squares theorem.

(7) Diophantine equations (Weeks 13-14)
- Linear equations, Pythagorean triangles;
- Fermat's infinite descent, rational points on conics.

Class requirement

There are no formal prerequisites for the class. Some familiarity with mathematical proofs (e.g. as one sees in Calculus and Linear Algebra) will be helpful, but not required. If you are not used to proofs, you will hopefully pick up these skills during the course!

[Method, Point of view, and Attainment levels of Evaluation]

The evaluation consists of three weighted parts, which may be modified, depending on the number of students in class:
- Discussion performance in class (30%).
- In-class presentation (30%): Each student reviews some mathematical material assigned by the instructor.
- Final presentation (40%): Each student covers one mathematical topic assigned by the instructor. It is possible for a student to choose their own topic, with the instructor’s approval.

[Textbook]

- Teiji Takagi 《Lectures on Elementary Theory of Numbers.》 (Kyoritsusha) ISBN:9784320010017 (This text is classical and goes further. It is in Japanese, available at Kyoto U Library.)
- Ivan Niven, Herbert Zuckerman, and Hugh Montgomery 《An Introduction to the Theory of Numbers.》 (Wiley) ISBN:9780471625469 (This book is quite comprehensive. It is in English, available at Kyoto U Library.)

[Reference book, etc.]

- Kenneth Ireland and Michael Rosen 《A Classical Introduction to Modern Number Theory.》 (Springer) ISBN:9780387973296 (This book may be helpful to the students who have studied modern algebra systematically.)
- J. S. Milne 《Algebraic Number Theory.》 (This lecture note may be helpful to the students who have studied modern algebra systematically.)
Along with preparation and review, students are encouraged to form study groups.
[Outline and Purpose of the Course]

You might have heard of the following expression from Gauss (1777-1855): "Mathematics is the queen of sciences and number theory is the queen of mathematics. She often condescends to render service to astronomy and other natural sciences, but in all relations she is entitled to the first rank."

What is number theory? At the most basic level, it is the study of the properties of the integers $\mathbb{Z} = \{..., -2, -1, 0, 1, 2, ...\}$.

In this course, we will study certain topics in elementary number theory, including (but not limited to) divisibility, congruences, quadratic forms, and Diophantine equations. Although modern number theory uses techniques from algebra, analysis, geometry, topology, and logic, this course, as an elementary introduction to number theory, does not require the use of these advanced tools.

[Course Goals]

The class is meant to help students of all disciplines improve their knowledges in number theory. Moreover, students will improve their communication skills in English via oral discussions and presentations.

[Course Schedule and Contents]

Below is the contents and schedules of the course. Some of these topics may be assigned to the students for their presentations. The lectures and presentations, as well as their orders, may be modified, depending on students' backgrounds and understanding of the course materials. The instructor will provide corrections and comments on students' presentations.

1. Introduction (Week 1)
 - Some basics in set theory and logic, motivating examples and conjectures, remarks on the course materials.

2. Divisibility (Weeks 2-3)
 - The division algorithm, the Euclidean algorithm, prime numbers;
 - The fundamental theorem of arithmetic, infinity of the set of prime numbers, the binomial theorem.

3. Congruences (Weeks 4-6)
 - Basic definitions and properties, Fermat's theorem and Euler's generalization, Wilson's theorem;
 - The Chinese Remainder theorem, Hensel's lemma;
 - Prime (power) moduli, primitive roots.

4. Quadratic reciprocity (Weeks 7-9)
 - Legendre symbols, Lemma of Gauss, the Gaussian reciprocity law;
 - Jacobi symbols, binary quadratic forms;
 - Two squares theorem.

5. Some functions in number theory (Week 10)
 - Arithmetic functions, the Mobius inversion formula, Riemann Zeta function.

6. Continued fractions (Weeks 11-12)
 - Finite/infinite continued fractions, irrational numbers;
 - Pell's equation, four squares theorem.

7. Diophantine equations (Weeks 13-14)
 - Linear equations, Pythagorean triangles;
 - Fermat's infinite descent, rational points on conics.

[Class requirement]

There are no formal prerequisites for the class. Some familiarity with mathematical proofs (e.g. as one sees in Calculus and Linear Algebra) will be helpful, but not required. If you are not used to proofs, you will hopefully pick up these skills during the course!

[Method, Point of view, and Attainment levels of Evaluation]

The evaluation consists of three weighted parts, which may be modified, depending on the number of students in class:

- Discussion performance in class (30%).
- In-class presentation (30%): Each student reviews some mathematical material assigned by the instructor.
- Final presentation (40%): Each student covers one mathematical topic assigned by the instructor. It is possible for a student to choose their own topic, with the instructor's approval.

[Textbook]

Teiji Takagi 「Lectures on Elementary Theory of Numbers」 (Kyoritsu) ISBN:9784320010017 (This text is classical and goes further. It is in Japanese, available at Kyoto U Library.)

Ivan Niven, Herbert Zuckerman, and Hugh Montgomery 「An Introduction to the Theory of Numbers」 (Wiley) ISBN:9780471625469 (This book is quite comprehensive. It is in English, available at Kyoto U Library.)

[Reference book, etc.]

Kenneth Ireland and Michael Rosen 「A Classical Introduction to Modern Number Theory」 (Springer) ISBN:9780387973296 (This book may be helpful to the students who have studied modern algebra systematically.)

J. S. Milne 「Algebraic Number Theory」 (This lecture note may be helpful to the students who have studied modern algebra systematically.)
[Regarding studies out of class (preparation and review)]
Along with preparation and review, students are encouraged to form study groups.

[Others (office hour, etc.)]
Course title: Advanced Calculus I-Vector Calculus

Affiliated department: Graduate School of Engineering
Job title: Associate Professor
Name: Qureshi, Ali Gul

Group: Natural Sciences
Field (Classification): Mathematics (Development)

Language: English
Old group: Group B
Number of credits: 2

Number of weekly time blocks: 1
Class style: Lecture
Course offered year/period: 2019 • First semester
Day/period: Wed. 5
Target year: 2nd year students or above
Eligible students: For science students

[Outline and Purpose of the Course]
Based on the knowledge of Calculus with Exercises A/B and Linear Algebra with Exercises A/B, or Calculus A/B and Linear Algebra A/B, this course explains calculus of multiple variables and vector calculus. The course introduces the concepts of motion and potential in more than 2 dimensions, which are based on partial differentiation and integration related with multiple dimensions (such as line integral and surface integral).

[Course Goals]
To learn basics of calculus in functions of two or more variables, which are used in many other courses in natural sciences (such as Physics) and engineering.

[Course Schedule and Contents]
1. Basic operations with vectors (5 Weeks)
 - Dot and cross products; derivatives and integration of Vector Valued Functions
2. Vectors in other coordinate systems (2 Weeks)
 - Frenet-Serret frame, Spherical and Cylindrical coordinate systems
3. Vector fields and potentials at n-dimensional Euclidean spaces (2 weeks)
 - Operations over the vector fields (gradient, curl and divergence), scalar potential and vector potential
4. Line integrals and surface integrals (5 Weeks)
 - Line integrals at 2-dimensional plane, surface integrals at 3-dimensional space, and integral theorems
 (Divergence theorem of Gauss, the Green’s formula and the Stokes’s theorem)

[Class Requirement]
To understand Calculus with Exercises A/B and Linear Algebra with Exercises A/B, or Calculus A/B and Linear Algebra A/B.

[Method, Point of view, and Attainment levels of Evaluation]
Based on Mid-term Examination (40%), and final examination (60%).

[Textbook]
Instructed during class

[Reference book, etc.]
Joel R. Hass, Christopher E. Heil and Maurice D. Weir "Thomas’ Calculus, 14th ed." (Pearson)
Erwin Kreyszig "Advanced Engineering Mathematics, 10th ed." (Wiley)

[Regarding studies out of class (preparation and review)]
Students are encouraged to do assigned homework related to the classes.

[Others (office hour, etc.)]

Continue to Advanced Calculus I-Vector Calculus (2)
[Outline and Purpose of the Course]
Based on the knowledge of Calculus with Exercises A/B and Linear Algebra with Exercises A/B or Calculus A/ B and Linear Algebra A/B, this course explains ordinary differential equations. Starting from the basic solutions techniques (such as separation of variables and integrating factors) for differential equations, the course introduces the second order linear differential equations and their solution. Differential equations are studied in context of modelling of various physical situations (for example, vibrations, mixing problem, population dynamics, etc.).

[Course Goals]
To learn the different types of differential equations and their solution methods.

[Course Schedule and Contents]]
1. Elementary methods of solution (6 weeks)
 - Separation of variables, linear first order differential equations, total differential equations (exact differential equations) and integrating factors
2. Existence and uniqueness of the solution of initial value problems (4 weeks)
 - Space of continuous functions and its properties (normed spaces, completeness), iterated approximation, Cauchy-Lipschitz's theorem and the connection of solution
3. Linear differential equations (4 weeks)
 - Space of solutions of homogeneous equations, variation of parameters, exponential function for matrices and Wronskian determinant.

[Class requirement]
To understand Calculus with Exercises A/B and Linear Algebra with Exercises A/B or Calculus A/ B and Linear Algebra A/B.

[Method, Point of view, and Attainment levels of Evaluation]
Mid-term Examination (40%), final examination(60%).

[Textbook]
Instructed during class

[Reference book, etc.]
Richard Bronson and Gabriel Costa 『Differential Equations, 4th ed.』 (McGraw-Hill)
Wolfgang Walter 『Ordinary Differential Equations』 (Springer)
Erwin Kreyszig 『Advanced Engineering Mathematics, 10th ed.』 (Wiley)
Advanced Linear Algebra

[Lecture code: N106001]

Course title: Advanced Linear Algebra

Affiliated department: Graduate School of Engineering
Senior Lecturer: Chang, Kai-Chun

Group: Natural Sciences
Field: Mathematics
Field Classification: Development
Language: English

Old group: B
Number of weekly time blocks: 1

Number of credits: 2

Day/period: Fri. 2

Course offered year/period: 2019 • First semester

Target year: 2nd year students or above
Eligible students: For science students

Group

<table>
<thead>
<tr>
<th>English</th>
<th>Natural Sciences</th>
</tr>
</thead>
<tbody>
<tr>
<td>Course</td>
<td>Advanced Linear Algebra</td>
</tr>
<tr>
<td>Affiliated department</td>
<td>Graduate School of Engineering</td>
</tr>
<tr>
<td>Job title, Name</td>
<td>Senior Lecturer, Chang, Kai-Chun</td>
</tr>
<tr>
<td>Language</td>
<td>English</td>
</tr>
<tr>
<td>Field(Classification)</td>
<td>Mathematics(Development)</td>
</tr>
<tr>
<td>Old group</td>
<td>Group B</td>
</tr>
<tr>
<td>Number of credits</td>
<td>2</td>
</tr>
</tbody>
</table>

Number of weekly time blocks

1	Lecture
3 weeks	Orthogonality and its applications
4 weeks	Eigenvalues, eigenvectors, and their applications
3 weeks	Jordan canonical form
2 weeks	Optional topics

Continue to Advanced Linear Algebra(2)

Advanced Linear Algebra(2)

[Class requirement]
Suggested prerequisites: Calculus A/B and Linear Algebra A/B or Calculus with Exercises A/B and Linear Algebra with Exercises A/B.

[Method, Point of view, and Attainment levels of Evaluation]
Quizzes or assignments (50%), final examination (50%)

[Textbook]
Instructed during class

[Reference book, etc.]

[Regarding studies out of class (preparation and review)]
Students are expected to spend at least 2 hours per week on preview and review. More than half of that time is spent preparing for class and doing assignments.

[Others (office hour, etc.)]
Any inquiry to the instructor: chang.kaichun.4z@kyoto-u.ac.jp. (replace {at} with @)

Outline and Purpose of the Course
Linear Algebra is a fundamental tool commonly used in many fields, in not only mathematics but also natural sciences, engineering, etc. This course extends the contents in "Linear Algebra A/B" courses (provided majorly for 1st year students) and discusses advanced concepts of linear algebra, such as orthogonality, diagonalization, Singular Value Decomposition (SVD) of a matrix, Jordan canonical form, and their applications to real-world problems, etc.

Outline and Purpose of the Course

[Course Goals]
- To acquire the advanced concepts of linear algebra, such as orthogonality, diagonalization, SVD of matrix.
- To understand the applications of linear algebra to real-world problems.

[Course Schedule and Contents]
1. Review of linear algebra [2 week]
 - Big picture, rank, dimension, LU/LDU factorization, Gauss-Jordan elimination, etc.
 - vector spaces, subspaces, nullspace, complete solutions, four subspaces and their dimensions and orthogonality, etc.

2. Orthogonality and its applications [3 weeks]
 - Orthogonality and orthogonality complement, projections, least square approximations, orthogonal bases, Gram-Schumidt process, etc.

3. Eigenvalues, eigenvectors, and their applications [4 weeks]
 - Eigenvalues and eigenvectors, diagonalization, matrix power, singular value decomposition (SVD) and their application to difference equations, differential equations and Markov process, etc.

4. Jordan canonical form [3 weeks]
 - minimal polynomials, generalized eigenvectors, Jordan canonical form, and their applications.

5. Optional topics [2 weeks]
 - numerical solutions, complex vectors and matrices, other applications, etc.

Continue to Advanced Linear Algebra(2)
Based upon knowledge of calculus, this is an introductory course to the function theory of one complex variable (i.e. introduction of complex analysis), and its goal is to understand fundamentals about holomorphic functions and meromorphic ones, which are dealt through the Cauchy's integral formula. The purpose of this course is not only to understand rigorous theories but to obtain some skills about the residue calculus. The theory for complex functions are not only beautiful in a mathematical sense but also very useful in applied fields e.g. physics, engineering and medical sciences etc. Almost all the mathematical theories in this course are rigorously dealt with, and some examples related with physics are also explained. An additional goal of this course is to give a chance to the students to present and discuss mathematics in English.

Course Goals

The goal is to understand fundamentals about holomorphic functions and meromorphic ones, which are dealt through the Cauchy's integral formula. In addition to learning modern mathematics and proofs, students can also learn how to discuss and present mathematical topics in English through this course.

Course Schedule and Contents

The course will cover the following topics, and each of them is read in 2 or 3 weeks:
1. complex numbers, the complex number plane and the Riemann sphere
2. differential of complex functions; holomorphic functions and the Cauchy- Riemann equation etc.
3. power series and analytic functions
4. integral; the Stieltjes integral and Cauchy's integral formula
5. fundamental theories for holomorphic functions
6. singularities and residue; the Laurent expansion and the residue calculus.

Class requirement

(Eligible students) mainly the sciences of the second grade

Students are required good understanding of both calculus and linear algebra.

Method, Point of view, and Attainment levels of Evaluation

The evaluation of the course will take into account the following criteria:
- homework (20%)
- presentation (10%)
- final exam (70%)
<table>
<thead>
<tr>
<th>Title</th>
<th>Honors Mathematics A-E2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Group</td>
<td>Natural Sciences</td>
</tr>
<tr>
<td>Language</td>
<td>English</td>
</tr>
<tr>
<td>Year/period</td>
<td>2019 - Second semester</td>
</tr>
<tr>
<td>Field(Classification)</td>
<td>Mathematics(Development)</td>
</tr>
<tr>
<td>Number of weekly time blocks</td>
<td>1</td>
</tr>
<tr>
<td>Class style</td>
<td>Lecture</td>
</tr>
<tr>
<td>Course offered year/period</td>
<td>2019 - Second semester</td>
</tr>
<tr>
<td>Eligible students</td>
<td>For science students</td>
</tr>
</tbody>
</table>

[Outline and Purpose of the Course]

This course provides opportunities to learn mathematics in depth for highly motivated students. It supplements Calculus A and Linear Algebra A, and treats more advanced related topics.

[Course Goals]

In addition to learning modern mathematics and proofs, students can learn how to discuss and present mathematical topics in English through this course.

[Course Schedule and Contents]

One of the goals of this course is to help students to get used to rigorous proofs of mathematical statements and abstract mathematical notions. These two features are central to and represent the power of modern mathematics, because rigorously proven facts are true forever, and an abstract notion is applicable to various different situations as far as they share one key property.

If the number of students permits, the course will be interactive. In particular, an additional goal of this course is to give a chance to the students to discuss mathematics in English.

Topics will be chosen according to the level of the students. Below is a tentative and non-exhaustive list of themes that could be covered:

1. Rigorous treatment of real numbers.
2. Convergence of sequences and series.
 - Alternating sequences, power series, Abel summation method, subadditive sequences.
3. Convex functions.
4. Stirling formula.
5. Linear algebra over general fields.
 - Examples of linear spaces. Dual spaces and quotient spaces.
6. Permutations and combinatorics.

The course will be covered within 14 classes

[Class requirement]

Calculus A and Linear Algebra A. Students are strongly encouraged to take Calculus B and Linear Algebra B in parallel to this course.

[Method, Point of view, and Attainment levels of Evaluation]

The evaluation of the course will take into account the following criteria:

- Homework (20%)
- Midterm (20%)
- Final exam (60%)

[Textbook]

Not used

[Reference book, etc.]

To be announced.

[Regarding studies out of class (preparation and review)]

To be announced.

[Others (office hour, etc.)]

Students are welcome to ask questions during or at the end of the class. The schedule of office hours will be announced later.
Course Title
Honors Mathematics B-E2

Affiliated Department, Job Title, Name
Graduate School of Science
Associate Professor, Karel SVADLENKA

Group
Natural Sciences

Field (Classification)
Mathematics (Development)

Language
English

Number of Weekly Time Blocks
1

Course Style
Lecture

Course Offered Year/Period
2019 • First semester

Eligible Students
For science students

Target Year
Mainly 2nd year students

Field (Classification)
Mathematics (Development)

Number of Credits
2

Course Schedule and Contents

<table>
<thead>
<tr>
<th>Theme</th>
<th>Duration</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Hilbert spaces (tentatively 5 weeks)</td>
<td></td>
</tr>
<tr>
<td>1.1 Inner product spaces</td>
<td></td>
</tr>
<tr>
<td>1.2 Riesz representation theorem</td>
<td></td>
</tr>
<tr>
<td>1.3 Self-adjoint and normal operators</td>
<td></td>
</tr>
<tr>
<td>1.4 The spectral theorem</td>
<td></td>
</tr>
<tr>
<td>2. Orthogonal functions and Fourier series (tentatively 5 weeks)</td>
<td></td>
</tr>
<tr>
<td>2.1 Orthonormal system of functions</td>
<td></td>
</tr>
<tr>
<td>2.2 Space of continuous functions on the circle and its completion</td>
<td></td>
</tr>
<tr>
<td>2.3 Fourier series</td>
<td></td>
</tr>
<tr>
<td>2.4 Notions of convergence of the Fourier series</td>
<td></td>
</tr>
<tr>
<td>2.5 Fourier series and Fourier transform</td>
<td></td>
</tr>
<tr>
<td>3. Linear programming (tentatively 4 weeks)</td>
<td></td>
</tr>
<tr>
<td>3.1 Introduction to optimization with constraints</td>
<td></td>
</tr>
<tr>
<td>3.2 Basic properties of convex sets and convex functions</td>
<td></td>
</tr>
<tr>
<td>3.3 Duality</td>
<td></td>
</tr>
</tbody>
</table>

Class Requirement
Calculus A, B and Linear Algebra A, B. Familiarity with materials covered in Honors Mathematics A may be helpful.

Method, Point of View, and Attainment Levels of Evaluation
The evaluation of the course will take into account the following criteria:
1. Homework and presentation of students during the course (about 40%)
2. Final examination (about 60%)

Details will be discussed with students during the first classes.

Textbook
Not fixed

Reference Book, etc.
Introduced during class

Regarding Studies Out of Class (Preparation and Review)
As in every math course, students should read notes carefully and repeatedly after the class, solve exercise problems and try to find alternative proofs, counterexamples, etc. After many hours of such practice you may get an intuitive understanding of the materials covered.

Others (Office Hour, etc.)
Students are welcome to ask questions during or at the end of the class. The schedule of office hours will be announced in the first lecture.
[Outline and Purpose of the Course]
Statistical methods are used throughout science, but there is often a wide gap between basic statistics courses and how statistical methods are applied in the scientific literature. This course intends to narrow this gap by introducing students to basic statistical concepts and by providing insight into how these concepts are used in the "real" scientific world. This will entail descriptive statistics, inferential statistics, and data visualization. Real-world examples will be drawn from the behavioral and life sciences, medicine, and epidemiology. The language of instruction in this course is English which will help to understand the statistical terminology in the scientific literature.

[Course Goals]
- To acquire basic statistical knowledge and the ability to conduct basic statistical analysis.
- To be able to critically read scientific reports and to judge their quality in terms of statistical methodology.

[Course Schedule and Contents]
1) Introduction
2) Data collection: Survey sampling
3) Data collection: Experiments and clinical trials
4) Data editing and summary
5) 2 by 2 tables: Chi-square tests
6) Tests for independence: Fisher's exact tests
7) Risk ratios and odds ratios
8) Tests of difference of two proportions
9) Random sampling, randomization, and sample size calculations
10) Probability distributions and limit theorems
11) Tests of two means
12) Correlations and regressions
13) How to use statistics correctly?
14) Further studies
15) Feedback

[Class requirement]
None

[Method, Point of view, and Attainment levels of Evaluation]
Evaluation will be based on class attendance and active participation (30 points), written reports as homework (50 points) and 5 random in-class (open-note) quizzes, the lowest of which will be dropped (20 points). The quizzes and reports are to test whether the students have achieved the course goals. Students who are absent more than four times will not be credited.

[Textbook]
Not used
Lecture notes will be provided during the course.

[Reference book, etc.]
Klein, Dabney 《The cartoon introduction to statistics》 (Hill and Wang Pub) ISBN: 0809033593

[Regarding studies out of class (preparation and review)]
To achieve the course goals, students should review the lecture material and practice with homework provided in class. This class uses the statistical software JMP which is available to Kyoto University students. The time necessary for review should be in the range of 3 hours per class.

[Others (office hour, etc.)]
No fixed office hours, but students are welcome to arrange appointments by email.
[Outline and Purpose of the Course](#)

Statistics is arguably the most important science in the world, because every other field of science depends upon it. Nowadays, science is becoming increasingly driven by large amounts of data. The key problem is how to extract knowledge from this data. Statistical analysis is a necessary step in solving this problem. This course will introduce the theory behind basic statistics and practical applications.

[Course Goals](#)

Students will learn about basic concepts in statistics, and learn to apply them on real datasets. Students will develop a feeling for critical thinking when faced with data, be able to make hypotheses, and suggest relevant ways to test them.

[Course Schedule and Contents](#)

In principle, the course will be offered according to the following plan. However, depending on the progress of the course the order or the number of lectures for each topic may change.

1. **Introduction to statistics and data analysis** (part 1). Statistics in the context of the general process of investigation, including a brief introduction to data collection, sampling, and experimental design.
2. **Introduction to statistics and data analysis** (part 2). Introduction to numerical and categorical data. Simple ways of visual inspection (scatter plots, histograms, etc) and summary statistics.
3. **Probability** (part 1). Formal introduction to probability, probability distributions, independent and dependent variables, and conditional, marginal, and joint probability.
4. **Probability** (part 2). Introduction to random variables. How to calculate the expected value and variability of a random variable?
5. **Distributions of random variables**. Introduction to the normal distribution and its properties. Other common probability distributions will also be discussed, including the geometric and binomial distributions.
6. **Foundations for inference** (part 1). We will discuss the principles of parameter inference, and the reliability of parameter estimates, including standard errors and confidence intervals. We will also introduce hypothesis testing and p-values based on these principles.
8. **Mid-term exam**.
9. **Inference for numerical data**. Practical applications of parameter inference on numerical data. The t-test and illustrations of its use for hypothesis testing.
10. **Inference for categorical data** (part 1). In this lesson, we introduce parameter inference for categorical (non-numerical) variables. For example, we examine proportions, their confidence intervals, hypothesis testing, and comparison.
11. **Inference for categorical data** (part 2). Discussion of the widely used Chi-square test for goodness of fit, and randomization tests.
12. **Introduction to linear regression**. We will cover line fitting, residuals, correlation, and least squares regression. The assumptions, interpretation, and weaknesses of linear regression will be introduced.
13. **Multiple and logistic regression**. We expand the principles of simple linear regression to cases where there are many variables (multiple regression), and cases where the outcomes are binary categorical (logistic regression).
14. **Review of course material**.
15. **Final examination**
16. **Feedback**

[Class requirement](#)

None

[Method, Point of view, and Attainment levels of Evaluation](#)

Grading: attendance and active participation (20%), mid-term exam (20%), quizzes/assignment (20%), and final exam (40%)

[Textbook](#)

Diez, Barr, and Cetinkaya-Rundel, *OpenIntro Statistics (Third Edition)* (OpenIntro, Inc.) ISBN:978-1943450039 (The course lectures will follow the content of this textbook. Please note that this textbook is also freely (legally) available for download at https://www.openintro.org/stat/textbook.php?stat_book=os)

[Regarding studies out of class (preparation and review)](#)

The course will follow a textbook. At the end of each lecture I will specify the sections to read before the next lecture.

[Others (office hour, etc.)](#)

No fixed office hours. Students are requested to make appointments directly or by email.
Lecture code: N815001

Course number:
U-LAS11 10010 LE55

<table>
<thead>
<tr>
<th>Course title (English)</th>
<th>Affiliated department, Job title, Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mathematical Statistics-E2</td>
<td>Research Institute for Mathematical Sciences Program Specific Associate Professor, (Joyn), David Alexander</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Group</th>
<th>Field Classification</th>
<th>Language</th>
</tr>
</thead>
<tbody>
<tr>
<td>Natural Sciences</td>
<td>Data Science (Foundations)</td>
<td>English</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Number of weekly time blocks</th>
<th>Class style</th>
<th>Course offered year/period</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Lecture</td>
<td>2019 • First semester</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Day/period</th>
<th>Target year</th>
<th>Eligible students</th>
</tr>
</thead>
<tbody>
<tr>
<td>Thu.2</td>
<td>Mainly 2nd year students</td>
<td>For science students</td>
</tr>
</tbody>
</table>

[Outline and Purpose of the Course]

This course will develop the theory of statistical inference, which has applications across the natural and social sciences, and beyond. It will focus on the key topics of parameter estimation and hypothesis testing. As well as presenting the theoretical justification for various techniques covered, it will also be a goal to show how these can be applied in examples. The topics covered in this course will be further developed in Mathematical Statistics 2, which is held in the second semester.

[Course Goals]

- To understand the basic concepts of, and mathematical justification for, point estimation and hypothesis testing
- To be able to apply key techniques of statistical inference in applications

[Course Schedule and Contents]

The following indicates possible topics that will be covered and approximate schedule, though the precise details may vary depending on the student's proficiency level and background.

1. Review of probability theory [3 weeks]
 Distribution and expectation, multivariate distributions, conditional distributions, notions of convergence, common families of distributions, random samples
2. Point estimates [5 weeks]
 Estimators, sampling distribution, parametrized statistical models, maximum likelihood estimates, sampling distributions, confidence intervals, point estimation for linear models
3. Hypothesis testing [4 weeks]
 Likelihood ratio tests, methods of evaluating tests, goodness of fit tests
4. Applications [2 weeks]
 Extended example applications of the main techniques covered earlier in the course

[Class requirements]

None

[Method, Point of view, and Attainment levels of Evaluation]

There will be 3 exercise sheets throughout the course, for which students will be expected to return work and present some of their answers in class. This will account for 30% of the final mark. The remaining 70% will be based on a final exam.

[Textbook]

There will be no set textbook for the course, as the lectures will contain all the material needed for the homework and exams. However, students might find the following useful as additional reading:

Statistical Inference, Casella and Berger, Duxbury, 2002

[Regarding studies out of class (preparation and review)]
Details will depend on the number of students enrolling on the course, and will be discussed in the first class.

[Others (office hour, etc.)]
Mathematical Statistics-E2

[Method, Point of view, and Attainment levels of Evaluation]
There will be 3 exercise sheets throughout the course, for which students will be expected to return work and present some of their answers in class. This will account for 30% of the final mark. The remaining 70% will be based on a final exam.

[Textbook]
There will be no set textbook for the course, as the lectures will contain all the material needed for the homework and exam. However, students might find the following useful as additional reading: Statistical Inference, Casella and Berger, Duxbury, 2002

[Regarding studies out of class (preparation and review)]
Details will depend on the number of students enrolling on the course, and will be discussed in the first class.

[Others (office hour, etc.)]

This course provides a further exploration of the concepts covered in the first semester course, Mathematical Statistics 1. This will include deriving some of the fundamental properties of the maximum likelihood estimators introduced there, and explaining why these are important. Moreover, the course will introduce the Bayesian approach to statistics, under which uncertainty concerning parameters is described by a prior distribution, which is modified in light of new data to yield the posterior distribution, and compare and contrast this with the classical frequentist approach, whereby parameters are treated as fixed unknown quantities. Finally, the course will also give an introduction to statistical decision theory, in which inference is used to make a decision between competing estimators or hypotheses.

[Course Goals]
- To understand some of the fundamental properties of the maximum likelihood estimators
- To understand the Bayesian approach to statistics, and how it differs from the frequentist one
- To be able to apply statistical techniques in tackling a decision problem

[Course Schedule and Contents]
The following indicates possible topics that will be covered and approximate schedule, though the precise details may vary depending on the student's proficiency level and background.

1) Likelihood and maximum likelihood estimators [7 weeks]
 Review of basic principles of inference, likelihood and score functions, Fisher information, Cramer-Rao lower bound, maximum likelihood estimators and their asymptotic properties

2) Bayesian inference [4 weeks]
 Prior and posterior distributions, conjugate families, asymptotic theory for posterior distributions, point estimation, comparison with frequentist approach

3) Statistical decision theory [3 weeks]
 Decision problems, loss and risk functions, decision rules, admissibility

[Class requirement]
None

Course numbering

<table>
<thead>
<tr>
<th>Course title</th>
<th>Affiliated department</th>
<th>Job title</th>
<th>Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>Basic Data Analysis-E2</td>
<td>Institute for Frontier Life and Medical Sciences Program-Specific Senior Lecturer</td>
<td>VANDENBON, Alexis</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Group</th>
<th>Field(Classification)</th>
<th>Language</th>
<th>Old group</th>
<th>New group</th>
<th>Number of credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Natural Sciences</td>
<td>Data Science(Foundations)</td>
<td>English</td>
<td>Group B</td>
<td></td>
<td>2</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Number of weekly time blocks</th>
<th>Class style</th>
<th>Course offered year/period</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Lecture</td>
<td>2019 • First semester</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Day/period</th>
<th>Target year</th>
<th>Eligible students</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tue.2</td>
<td>All students</td>
<td>For all majors</td>
</tr>
</tbody>
</table>

[Outline and Purpose of the Course]

Nowadays, research in many fields of science is becoming increasingly driven by large amounts of data. The key problem is how to turn this data into new knowledge. This course covers a wide variety of data analysis and machine learning approaches. The course starts with an introduction of the basic concepts in machine learning. After that, we will introduce regression and classification methods, including linear models, tree-based methods, support vector machines, and principal component analysis. Practical applications will be demonstrated using the statistical programming language R.

[Course Goals]

Students will learn about basic concepts in data analysis and statistical learning, such as regression and classification problems, and supervised and unsupervised machine learning. Students will become familiar with strengths and weaknesses of several approaches, and learn how to apply them on real datasets.

[Course Schedule and Contents]

In principle, the course will be offered according to the following plan. However, depending on the progress of the course the order or the number of lectures for each topic may change.

Lectures 1 and 2. Introduction to data analysis and machine learning: We will discuss data analysis in the context of scientific investigation. Using several examples, the concepts of supervised and unsupervised learning, regression and classification problems, and assessment of model accuracy will be introduced.

Lectures 3 and 4. Linear regression: Introduction to linear regression as a simple supervised learning approach. We will cover simple and multiple linear regression, discuss how to interpret models, and compare linear regression with K-nearest neighbors.

Lectures 5 and 6. Classification methods: We will introduce classification methods, including logistic regression, linear discriminant analysis, and quadratic discriminant analysis. We will discuss the differences between them, and their strong and weak points.

Lecture 7: Mid-term exam

Lecture 8. Model assessment: We will introduce several approaches for evaluating the accuracy of models, including cross-validation and bootstrapping.

Lectures 9 and 10. Tree-based methods: Focusing on decision trees, we will introduce tree-based methods for regression and classification. After that, we will cover more advanced methods, such as Bagging, Random Forests, and Boosting.

Lecture 11. Support Vector Machines (SVMs): We will introduce maximal margin classifiers, and use this as a base to exploring SVMs.

Lectures 12 and 13. Unsupervised learning: Introduction to unsupervised learning problems. We will introduce Principal Component Analysis, K-means clustering, and hierarchical clustering.

Lecture 14. Review of course material

Lecture 15. Final examination

Basic Data Analysis-E2(2)

Lecture 16. Feedback

[Class requirement]

The course is intended for students who have had at least an elementary course in statistics. Programming experience is useful but not required.

[Method, Point of view, and Attainment levels of Evaluation]

Grading: attendance and active participation (20%), mid-term exam (20%), quizzes/assignment (20%), and final exam (40%)

[Textbook]

James, Witten, Hastie and Tibshirani ْ An Introduction to Statistical Learning: with Applications in R (Springer) ISBN:978-1461471370 (The course lectures will follow the content of this textbook. Sections of the book to read in preparation of each class will be announced. This textbook contains theoretical parts as well as practical exercises. Please note that this textbook is also freely (legally) available for download at http://www-bcf.usc.edu/~gareth/ISL/)

[Regarding studies out of class (preparation and review)]

The course will follow a textbook. At the end of each lecture I will specify the sections to read before the next lecture.

[Others (office hour, etc.)]

No fixed office hours. Students are requested to make appointments directly or by email.

Source: "An Introduction to Statistical Learning: with Applications in R" (by James, Witten, Hastie, and Tibshirani; Springer)
Lecture code: N816001

Course title: Second Course in Statistics-E2
Affiliated department, Job title, Name: Research Institute for Mathematical Sciences Program Specific Associate Professor, Troy, David Alexander

Group: Natural Sciences
Field(Classification): Data Science(Development)
Language: English
Old group: Group B
Number of credits: 2
Number of weekly time blocks: 1
Class style: Lecture
Course offered year/period: 2019 • Second semester
Day/period: Thu.3
Target year: Mainly 2nd year students
Eligible students: For all majors

[Outline and Purpose of the Course]
This second course in statistics provides an in-depth mathematical introduction to regression, which is the area of statistics in which a dependent variable is modelled as a linear function of one or more predictor variables, together with a random error. Regression has applications across scientific research, engineering, and various other fields, and it will be an additional goal of the course to explore some of these. Whilst some knowledge of introductory statistical theory might be helpful, the course is intended to be self-contained.

[Course Goals]
- To gain a mathematical foundation in regression analysis
- To understand how to interpret and evaluate a linear model
- To be able to apply simple linear regression, multiple linear regression, and generalized linear models in examples

[Course Schedule and Contents]
The following indicates possible topics that will be covered and approximate schedule, though the precise details may vary depending on the student's proficiency level and background. Moreover, in addition to the mathematical content, applications will be considered throughout the course.

1. Simple linear regression [4 weeks]
 - Definition of the model, parameter estimation, model interpretation and evaluation
2. Multiple linear regression [5 weeks]
 - Estimators for significance of regression, tests on individual regression coefficients and subsets of coefficients, confidence intervals on regression coefficients, polynomial regression
3. Generalized linear models [5 weeks]
 - Link functions and linear predictors, parameter estimation, model analysis, specific examples of generalized linear models including logistic regression and Poisson regression

[Class requirement]
Whilst not essential, it will benefit students if they have previously taken an introductory statistics course.

[Method, Point of view, and Attainment levels of Evaluation]
There will be 3 exercise sheets throughout the course, for which students will be expected to return work and present some of their answers in class. This will account for 30% of the final mark. The remaining 70% will be based on a final exam.

[Textbook]
There will be no set textbook for the course, as the lectures will contain all the material needed for the homework and exam. However, students might find the following useful as additional reading:

- Introduction to Linear Regression Analysis, Montgomery, Peck, and Vining, Wiley, 2012

[Regarding studies out of class (preparation and review)]
Details will depend on the number of students enrolling on the course, and will be discussed in the first class.

[Others (office hour, etc.)]

Second Course in Statistics-E2(2)
Research Institute for Mathematical Sciences Program Specific Associate Professor, Troy, David Alexander
[Outline and Purpose of the Course]

Media and web apps regularly infiltrate our daily lives and we are confronted with a constant flow of information. How can we use public data to our advantage and discover patterns or extract useful information? This course is designed to impart essential data analytics skills. Prior specialized knowledge is not required and topics will be introduced at a beginner’s level. The course aims to teach students how to obtain, clean, analyze, and visualize data from the web via Python and communicate basic concepts of data mining and statistical analyses.

[Course Goals]

In this course, students will:
- learn about the theoretical basis of data mining and statistical learning
- gain the skills to retrieve, analyze, explore, and visualize data and draw conclusions for decision making
- become familiar with computational operations, Python, and data structures

[Course Schedule and Contents]

- **WEEKS 01-07** THEORY:
 - Fundamental statistics and exploratory data analysis
 - Data visualization
 - Linear regression
 - Classification
 - Supervised learning: decision trees, random forest, support vector machines, others
 - Unsupervised learning: clustering

- **WEEKS 08-14** PRACTICE:
 Introduction to Python (Jupyter), demonstration and execution of data analysis workflows based on concepts covered in preceding theory section.

[Class requirement]

Access to a personal computer is required in order to complete homework assignments.

[Method, Point of view, and Attainment levels of Evaluation]

- 20% Class attendance
- 30% Mid-term exam
- 50% Homework assignment

[Textbook]

Instructed during class

[Reference book, etc.]

Introduced during class

[Regarding studies out of class (preparation and review)]

Weekly review of course content is advised. The completion of the homework assignment in groups of 1 to 3 students requires additional time investment outside of class.

[Others (office hour, etc.)]

Announced during class.
Course numbering

<table>
<thead>
<tr>
<th>Course title</th>
<th>Affiliated department, Job title, Name</th>
<th>Graduate School of Pharmaceutical Sciences, Senior Lecturer, RAKERS, Christin</th>
</tr>
</thead>
<tbody>
<tr>
<td>Data Analysis Practice I-E2</td>
<td>Natural Sciences</td>
<td>Data Science (Development)</td>
</tr>
<tr>
<td>Number of weekly time blocks</td>
<td>Class style</td>
<td>Course offered year/period</td>
</tr>
<tr>
<td>1</td>
<td>Seminar</td>
<td>2019 • Second semester</td>
</tr>
<tr>
<td>Day/period</td>
<td>Target year</td>
<td>All students</td>
</tr>
<tr>
<td>Thu.4</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

[Outline and Purpose of the Course]

Today’s research landscape is characterized by an increasing amount of publicly accessible scientific data, e.g. from chemical or genomic screenings. This course is aimed at students from all disciplines who want to learn essential data analytics skills that help to interpret and explore scientific data. Prior specialized knowledge is not required to attend the course and topics will be introduced at a beginner’s level. The lectures impart methods to obtain, clean, analyze, and visualize data from the web via Python and illustrate basic concepts of data mining and statistical analyses.

[Course Goals]

In this course, students will
- learn about the theoretical basis of data mining and statistical learning
- gain the skills to retrieve, analyze, explore, and visualize data and draw conclusions for decision making
- become familiar with computational operations, Python, and data structures

[Course Schedule and Contents]

[WEEKS 01-07] THEORY:
- Fundamental statistics and exploratory data analysis
- Data visualization
- Linear regression
- Classification
- Supervised learning: decision trees, random forest, support vector machines, others
- Unsupervised learning: clustering

[WEEKS 08-14] PRACTICE:
Introduction to python (jupyter), demonstration and execution of data analysis workflows based on concepts covered in preceding theory section.

[Class requirement]

Access to a personal computer is essential to complete homework assignments.

[Method, Point of view, and Attainment levels of Evaluation]

20 % Class attendance
30 % Mid-term exam
50 % Homework assignments

[Textbook]

Instructed during class

[Reference book, etc.]

Introduced during class

(Reference book)

Related URL

(Announced during class.)

[Regarding studies out of class (preparation and review)]

Weekly review of course content is advised. The completion of homework assignments in groups of 1 to 3 students requires additional time investment outside of class.

[Others (office hour, etc.)]

Announced during class.
This course aims to explore a wide variety of data analysis methods in a manner that emphasizes data interpretation. Probability and distributions will be explored using graphical and numerical approaches. Concepts from classical hypothesis testing and machine learning will be emphasized through example. No prior knowledge of statistics or data science is required. Computer programming experience is useful but not required.

Course Goals

Students will learn the basics of data science, statistics and computer programming. Students will understand when certain data science tools are useful and when they are less useful or even inappropriate. This course will extensively use the Python programming language (python.org) and Jupyter Notebooks (jupyter.org).

Course Schedule and Contents

Over this 15-week lecture the following topics will be covered in each class:

1. What is Data Science?
2. Python I: Basics
3. Python II: Data visualization
4. Describing Data I: Central Tendency and Dispersion
5. Describing Data II: Correlation
6. Probability I: Random Variables
7. Probability II: Hypothesis testing
8. Probability III: Simulating experiments
9. Working with Real Data I: Getting Data
10. Working with Real Data II: Exploring Data
12. Machine Learning II: k-Nearest Neighbors
14. Machine Learning IV: Neural Networks
15. Final example: Natural Language Processing

Class requirement

None

Method, Point of view, and Attainment levels of Evaluation

None

Textbook

Not used

Reference book, etc.

Joel Grus, *Data Science from Scratch: First Principles with Python*. (O'Reilly Media) ISBN: 978-1491901427 (Lectures will loosely follow this textbook's content. This textbook is OPTIONAL, but will be useful for reviewing concepts and for independent study.)

Related URL

https://github.com/joelgrus/data-science-from-scratch (Software (data and Code) for ‘Data Science from Scratch’ by Joel Grus)

Regarding studies out of class (preparation and review)

There will be a small software-based assignment each week based on lecture content; students should submit these assignments more than one day before the next lecture.
Outline and Purpose of the Course
Lectures on the topics of physics (classical mechanics) that are common and necessary to all students who study natural sciences.

Course Goals
To acquire knowledge of basic concepts of physics such as motion, energy, gravitation, and the related laws of these topics.

Course Schedule and Contents
1. Kinematics, velocity and acceleration, components of polar coordinates (3 weeks)
2. Laws of motion, equations of motion and application (3 weeks)
3. Law of conservation, work and energy, angular momentum, momentum (3 weeks)
4. Motion due to a central force, planetary motion under the gravitation of the sun (3 weeks)
5. Motion of a system of particles (2 weeks)

Class requirement
This course is intended mainly for students who studied physics at high school. Those who did not study physics are recommended to take "Elementary Course of Physics A".

Method, Point of view, and Attainment levels of Evaluation
Class performance and quizzes (20%), Midterm examination (30%), and a final examination (50%).

Textbook
Not used

Reference book, etc.

Regarding studies out of class (preparation and review)
Students are advised to refer to the class handouts and readings provided in the classes. Homework is assigned to strengthen the learning of the topics covered in class, therefore, it is advised to students to do their homework regularly and carefully.

Others (office hour, etc.)
Office hours will be provided during the first lecture.
Course title
Fundamental Physics A-E2

Affiliated department, Job title, Name
Institute for Frontier Life and Medical Sciences
Senior Lecturer, OKEYO, Kennedy Omondi

Group, Field(Classification)
Natural Sciences, Physics(Foundations)

Language
English

Number of weekly time blocks
<table>
<thead>
<tr>
<th>Class style</th>
<th>Course offered year/period</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lecture</td>
<td>2019 • First semester</td>
</tr>
</tbody>
</table>

Day/period
Thu.2

Target year
Mainly 1st year students

Eligible students
For science students

Field(Classification)
Physics(Foundations)

Old group, Group B
Number of credits 2

[Outline and Purpose of the Course]

Focusing on classical mechanics, this lecture will introduce basic but important concepts in physics which are widely applied in other fields of natural sciences. Although prior knowledge of high school level physics will be advantageous, it is not absolutely necessary. Basic concepts and laws of classical mechanics will be introduced and expanded upon systematically, with focus on enabling students to master and apply them to practical problems in science and engineering.

[Course Goals]

1. To help students grasp important concepts and laws of physics and be able to apply them to common problems in science and engineering.
2. To enable students to nurture problem solving skills in mathematics and physics.

[Course Schedule and Contents]

In dealing with the following topics, particular attention will be given to their application in different fields of natural sciences and engineering:

1. Introduction to vectors and equations of motion (3 weeks)
 In this lecture, we will learn about vectors (basic) and how to derive equations of motion, with focus on kinematic equations which are important when describing motion without considering the masses and forces involved. We will also learn about the Cartesian and polar coordinate systems and how to use them to analyze motion.

2. Newton's laws of motion and their applications (3 weeks)
 This lecture will consider motion of a mass (or masses) under the influence of a force (or forces). We will look at the famous Newton's laws of motion and discuss how to apply them to different types of motion, including circular motion.

3. Centripetal forces and motion of solar systems (2 weeks)
 This lecture will explain motions of bodies orchestrated by a central force, and extend the argument to derive equations of circular motion of celestial bodies (such as the revolution of earth around the sun).

4. Conservation of energy (3 weeks)
 The concept of energy conservation is undoubtedly the most important in physics. This lecture will discuss the concept of work and energy, and explore the conservation of energy principle considering kinetic energy and potential energy under the action of different types of forces.

5. Motion of a system of particles and rigid bodies (3 weeks)

[Outline and Purpose of the Course (Continued)]

In this lecture, we will analyze motions of system of particles and rigid bodies, focusing on concrete examples from the world around us.

We will take a look at linear momentum, angular momentum, rotation of rigid bodies and related applications.

6) Exam and feedback (2 weeks)

[Class requirement]

Knowledge of high school physics will be essential but not a requirement.

[Method, Point of view, and Attainment levels of Evaluation]

Short assessment tests 40%, Endterm examination 60%.

[Textbook]

Instructed during class
Handouts will be given where necessary.

[Reference book, etc.]

- **Reference book**

[Regarding studies out of class (preparation and review)]

Students are strongly encouraged to study introductory mathematical textbooks and other materials to ensure that they are comfortable with the mathematical concepts such as differentiation and integration which are important in formulating equations of motion.

[Others (office hour, etc.)]

Office hour will be announced weekly. However, you can always request for discussion time or send in a question/comment by email.
Course title: Fundamental Physics B
Affiliated department: Graduate School of Engineering
Job title, Name: Associate Professor, QURESHI, Ali Gul

Group: Natural Sciences
Field(Classification): Physics(Foundations)

Language: English
Old group: Group B
Number of credits: 2

Number of weekly time blocks: 1
Class style: Lecture
Course offered year/period: 2019 • Second semester
Day/period: Thu.4
Target year: Mainly 1st year students
Eligible students: For science students

[Outline and Purpose of the Course]
The objective of this course is to introduce fundamental concepts of physics relating with electricity and magnetism.

[Course Goals]
To understand the basic concepts of electricity and magnetism.
To be able to relate and appreciate the role of these concepts in many natural phenomenon.
To learn about the working of inventions (such as motors, generators, etc.) based on applications of these concepts.

[Course Schedule and Contents]
1) Introduction to Electric fields, electric charge, Coulomb's law, Electric Flux, Gauss's law, Electric Potential, Equipotential lines and electric fields. (3 weeks)
2) Capacitance and capacitors: Capacitors connected in parallel and series, Equivalent Capacitance (2 weeks)
3) Electric Current, Ohm's Law, Resistors in parallel and series, Equivalent resistance, Kirchhoff’s rules (3 weeks)
4) Introduction to Magnetic Fields, Torque on a Current Loop, charged particle in uniform magnetic field, Magnetic flux (2 weeks)
5) Electromagnetic Induction: Faraday's Law, Lenz's law, generators (2 weeks)
6) Maxwell's Equations and Electromagnetic Waves (2 weeks)

[Class requirement]
This course is intended mainly for students who studied physics at high school.

[Method, Point of view, and Attainment levels of Evaluation]
Class performance and quizzes (20%), Midterm examination (30%), and a final examination (50%).

[Textbook]
Instructed during class

[Reference book, etc.]
Outline and Purpose of the Course

This course will explain students the fundamental concepts of electricity and magnetism. To obtain a better understanding of the concepts, solve the problems during the lectures.

Course Goals

- Understand the basic laws of electricity and magnetism.
- Understand the concepts better by applying the laws and concepts to solve problems.

Course Schedule and Contents

1. Overview of the course, introduction to vector calculus (1 week)
2. Coulomb's law, electric field, electrostatic potentials (2 weeks)
3. Gauss's law (1 week)
4. Electric field around conductors (1 week)
5. Electrostatic capacitance (2 weeks)
6. Electrostatic energy and force (2 weeks)
7. Boundary-value problems (2 weeks)
8. Electric current (1 week)
9. Magnetic field of moving charges (2 weeks)

Class requirement

None

Method, Point of view, and Attainment levels of Evaluation

Evaluation will be based on attendance and participation (20%), mid-term examination (30%) and final examination (50%).

Textbook

Not used

Reference book, etc.

- **Reference book**
 - David J. Griffiths: *Introduction to Electrodynamics*

Regarding studies out of class (preparation and review)

Students are required to do their homework. When trouble is encountered during homework, please refer recommended textbook or please ask the instructor.

Others (office hour, etc.)

Office hour: Anytime by email and appointments should be made via email.
Outline and Purpose of the Course

Natural sciences are the product of experimental investigation and theoretical interpretation. In this course, students will learn to use various measurement instruments to perform experiments. Basic topics in physics will be covered, enabling students to get a deeper understanding of the natural sciences. In addition, techniques for processing and analyzing experimental data will be mastered. Finally, students will learn how to write scientific reports.

Course Goals
- Learn physics by carrying out experiments.
- Learn basic skills for processing and analyzing experimental data.
- Learn how to keep a laboratory notebook, and write up experimental reports.
- Learn to give a scientific presentation explaining the results of an experiment.

Course Schedule and Contents

1. Coupled oscillations experiment
2. Measurement of electrical resistances
3. Measurement of the magnetic field of a coil using a Hall element
4. Thermionic emission experiment
5. Experiments with lasers
6. Measuring the wavelength of light using diffraction gratings
7. Atomic spectroscopy using prisms
8. Franck-Hertz experiment
9. Measurement of Planck's constant

Students will perform 6 experiments from this list.

Class requirement
None

Method, Point of view, and Attainment levels of Evaluation
Evaluation will be based on in-lab experimentation, experimental reports (6), and one oral presentation. Details will be explained in class.

Textbook
Instructed during class
[Outline and Purpose of the Course]

By using simplified models, we will describe the movement of particles, and learn the physical meaning of force, energy, work, and potential. We will learn how to predict the movement of objects in different situations. With these concepts, we will analyze simple examples such as the linear movement, rotations, the harmonic oscillator, collisions of two bodies and thereby understand theoretical approaches to physical problems.

[Course Goals]
- getting a basic understanding of theoretical approaches to physical problems in mechanics
- learning fundamentals of kinematics and dynamics
- being able to use the learned concepts in simple problems.

[Course Schedule and Contents]

The course will be adapted to the level of the students! Therefore, the number of weeks may change in order to increase or decrease the speed of the lecture.

- introduction into necessary mathematics used during the course (1-2 weeks)
- Kinematics (speed, acceleration, rotation) (2-3 weeks)
- Dynamics (Newton axioms, examples, rotating systems) (4 - 6 weeks)
- harmonic oscillator (1-2 week)
- energy, work, potential (2-3 weeks)
- collisions of two bodies (1-2 weeks)
- Summary and repetition of the whole course (1 week)

[Class requirement]

This course is intended mainly for students who did not select [physics] in the entrance examination. Although no specific knowledge about physics is needed for taking this course, basic skills in differential and integral calculus are expected.

The worksheets will give students an opportunity to practice their English skills in science.
[Outline and Purpose of the Course]

This course is oriented for those who did not learn physics at high school. This course follows the "Elementary Course of Physics A". It aims to teach the basics of physics and its methods. This course consists of two main topics: Electricity and Thermodynamics.

In Electricity, electrostatic field and charges are introduce, and their interaction is explained.

In Thermodynamics, ideas of heat, pressure, temperature, and entropy are explained.

[Course Goals]

Understanding of the main ideas in Electricity and Thermodynamics will give the listener the ability to make basic calculations and estimations of various phenomena surrounding us in the everyday life.

The main goal is to introduce students to the scientific method and physical thinking.

[Course Schedule and Contents]

The following topics are explained in one to three lectures.

1. Electrostatic field and charged particles.
2. Electrostatic potential and energy.
3. Motion of charges in electrostatic field, current, power.
4. Particle collisions, limit of Newtonian dynamics.
5. Gas pressure and temperature.
7. Irreversibility and entropy.

[Class requirement]

This course is for those students who did not select physics as the entrance examination subject.
[Outline and Purpose of the Course]

This course deals with the mechanics of rigid body based on Newton's mechanics. Description of motion of rigid bodies and related applications will be explained in detail.

[Course Goals]

To understand various dynamic topics comprehensively based on many practical examples and problems.

[Course Schedule and Contents]

The main topics in this lecture are as follows; (Each items will be covered by 2-3 weeks)

1. Curvilinear motion of a particle
 - Rectangular components, normal and tangential components, cylindrical components
2. Planer motion of a rigid body
 - Translation, rotation about a fixed axis, relative motion analysis using rotating axes
3. General motion of a rigid body
 - Rotation about a fixed point, inertial and non-inertial reference frame
4. Force and energy of a rigid body
 - Mass moment of inertia, equations of motion, principle of work and energy, conservation of energy
5. Impulse and momentum of a rigid body
 - Linear and angular momentum, impact, principle of impulse and momentum, conservation of momentum
6. Three dimensional motion
 - Moments and products of inertia, equations of motion, gyroscopic motion

[Class requirement]

Having taken the course “Fundamental Physics A” is recommended.

[Method, Point of view, and Attainment levels of Evaluation]

Evaluation is based on written tests (midterm exam: 40%, final exam: 40%), assignment (10%), and class participation (10%).

[Textbook]

Not used
Some handout materials will be provided during the class.

[Reference book, etc.]

R. C. Hibbeler
Dynamics
(Prentice Hall) ISBN:978-0-13-291127-6
(very well organized textbook)

Advanced Dynamics(2)

(with abundant examples)

[Regarding studies out of class (preparation and review)]

Self-review is strongly recommended after each lecture.

[Others (office hour, etc.)]

No specific office hour. Email communication is preferred through [kim.sunmin.6x@kyoto-u.ac.jp].
Physics of Wave and Oscillation

[Outline and Purpose of the Course]
This course deals with fundamentals of oscillations and waves which commonly relate to various fields in nature such as dynamic motion as well as electromagnetic phenomenon.

[Course Goals]
To understand the basic concepts of wave and oscillation with its mathematical description method.

[Course Schedule and Contents]
The course contents are as follows:
(Each items will be covered by 2-3 weeks)

1) Simple harmonic motion
 Equation and solution of simple harmonic motion, energy of harmonic oscillator
2) Damped oscillation and forced vibration
 Resistance and damped vibration, forced vibration and resonance
3) Coupled vibration and normal mode coordinates
 Coupled vibration of spring pendulum, normal mode coordinates of normal vibration, normal vibration of multi degree-of-freedom system
4) Vibration of continuous system
 String vibration, vibration of elastic element, acoustic vibration, Fourier series, natural vibration
5) Waves
 Wave equation and solution, sine wave, plane wave, reflection & transmission
6) Waves superposition and interference
 Wave interference, phase velocity, group velocity

[Class requirement]
Having taken the course "Fundamental Physics A & B" is recommended.

[Method, Point of view, and Attainment levels of Evaluation]
Evaluation is based on written test (midterm exam: 40%, final exam: 40%), assignments (10%), and class participation (10%).
Advanced Course of Electromagnetism-E2(2)

[Textbook]
Study guides will be provided every week (~20 pages per week), to help you expand your knowledge. The study guides closely match the week's topic, providing in-depth explanations, problem solving strategies, and summaries of key points.

[Reference book, etc.]

[Regarding studies out of class (preparation and review)]
Study guides will be provided every week (~20 pages per week), to help you expand your knowledge. The study guides closely match the week's topic, providing in-depth explanations, problem solving strategies, and summaries of key points.

[Others (office hour, etc.)]
Questions can be sent by email, and will be answered either electronically or by appointment (depending on the case).

Course title
Advanced Course of Electromagnetism-E2

Affiliated department, Job title, Name
Graduate School of Engineering
Senior Lecturer, BEAUCAMP, Anthony Tadeus Here

Group
Natural Sciences

Field(Classification)
Physics(Foundations)

Language
English

Old group
Group B

Number of weekly time blocks
1

Class style
Lecture

Course offered year/period
2019 • First semester

Day/period
Tue. 1

Target year
Mainly 2nd year students

Eligible students
For science students

Outline and Purpose of the Course

Based on the knowledge you gained from the Fundamental Physics B course, this course will expand your understanding of electromagnetic theory. After a review of the basics of classical electromagnetism up to Maxwell's equations, we will explore the subjects of electromagnetic wave propagation, interference and diffraction, as well as the derivation of electric and magnetic properties in substances and their boundaries.

Course Goals
- Follow the historical progression in our understanding of electromagnetic laws.
- Understand the meaning of physical properties in electromagnetism.
- Apply the laws electromagnetism to solve practical problems.

Course Schedule and Contents

1. Mathematics review: Coordinate systems, fields, gradient, divergence, curl [2 weeks].
2. Electrics review: Coulomb's force, dipoles, electric potential, Gauss's law [2 weeks].
4. AC circuits: Resistive, inductive, and capacitive load [1 week].
5. Maxwell's equations: Electromagnetic radiation, interference, diffraction [4 weeks].
6. Electromagnetic properties in substances and at boundaries [2 weeks].
7. Metamaterials, Cherenkov radiation [1 week].

Final examination [1 week].
Feedback session [1 week].

Class requirement
Fundamental Physics B course.

Method, Point of view, and Attainment levels of Evaluation

Evaluation will be based on:
- Class Participation (10%): Student participation will be asked in solving problems and discussing theories and their application.
- Homework (20%): Typical problems will be assigned, which you can solve by applying the laws and methods learnt during lectures (every 2 weeks).
- Quizzes (20%): Mini-exams, to check that you remember important laws and principles from previous lectures and study guides (every 4 weeks).
- Final examination (50%): You will be tested with a series of problems that combine previously studied cases and original cases.
This course will discuss the fundamentals of classical (Newtonian) mechanics, the first step in understanding many phenomena in the natural world. Lectures will be discussion-oriented and will provide many opportunities for student's to improve their scientific English abilities. In addition, the end of the course will introduce students to topics in modern physics.

[Course Goals]
To learn and understand basic phenomena from fundamental physical principles and conservation laws.

[Course Schedule and Contents]]
Lectures on the basics of classical Newtonian mechanics will cover the following topics with each covered in two or three weeks:

1) Principles of momentum, velocity, and acceleration
2) Equations of linear and rotational motion, applications
3) Conservation laws, work and energy
4) Gravitation and physical phenomena in our daily lives
5) Introduction to topics in modern physics, such as relativity and quantum mechanics

[Class requirement]
None

[Method, Point of view, and Attainment levels of Evaluation]
Student's comprehension of the course material will be evaluated based on participation in in-class discussions (20 points), homework sets (worth 60 points total), and a final exam or report (20 points).

[Textbook]
Not used

[Regarding studies out of class (preparation and review)]
Will be presented in class

[Others (office hour, etc.)]
Students interested in improving their scientific English are encouraged to join this course.
[Outline and Purpose of the Course]

With the widespread of mobile communication, humans are now exposed to electromagnetic fields severely. As today's society is based on various electromagnetic phenomena, it has become a necessity to understand electromagnetics for all. In this course, the purpose will be to focus on the philosophical view to enrich the understanding of electromagnetics. We will learn that all the complex phenomena found in the universe actually consist of some basic rules. We will try to understand the basic rules using several experiments and illustrations. We will give concrete graphical representations of how basic rules work and then construct some complex phenomena using the rules. On our journey toward understanding electromagnetism, we will learn that the universe is more mysterious than we thought.

[Course Goals]

- To understand the concept of electric and magnetic fields, and vector analysis concepts.
- To understand wave propagation and relationship of Maxwell's equation in electromagnetic wave propagation.
- To be able to explain various natural phenomena.
- To understand the role of electromagnetic in modern society and the importance of being aware of electromagnetic radiation.

[Course Schedule and Contents]

Basic outline of the course is given below. The subject and order may change during the course depending on the progress level and feedback.

1. Communication and wave [1 week]
2. Review of vector analysis [2 weeks]
 - a) Field and Space
 - b) Differentiation and Integration
 - c) Gradient, Divergence and Curl
3. Wave theory [3 weeks]
 - a) What is wave?
 - b) Energy transportation
 - c) Propagation of wave
4. Electric and magnetic fields [2 weeks]
5. Introduction to electromagnetism [3 weeks]
 - a) Road to Maxwell’s equation
6. Electromagnetic radiation and hygiene [2 weeks]
7. Natural phenomena by electromagnetics [1 week]
8. Examination [1 week]

[Continue to Physics for All-E2(2)]
Physics for All-E2

The lecture will focus on enabling students of non-physics majors to grasp basic concepts and principles of physics, and to learn how to apply them to understand the physical world around us. Particular focus will be on problem solving in mechanics, which will be presented systematically so that students gain a deeper understanding of mathematical and logical treatment of familiar physical problems. To further cement understanding and nurture students' love for science, theory will be supplemented with experiments as may be necessary.

Course Goals

1) To nurture students' problem solving ability.
2) To impact a deeper understanding of familiar physical phenomena.

Course Schedule and Contents

1) Introduction to vectors and motion (2 weeks)
Here we will learn about vectors and how to use them to describe objects in motion.

2) How to understand linear motion of objects and points (3 weeks)
This topic will introduce basics of motion in a straight line such as displacement, velocity, acceleration. Newton's law of motion will also be discussed. By the end of this topic, you will be able to perform differentiation or integration to find displacement, velocity and acceleration of a body in motion in a straight line.

3) Introduction to simple circular motions and oscillations (3 weeks)
Sometimes motion occurs in a circular path, like when you drive around a curved road. This topic will introduce you to forces involved in circular motion such as centripetal and centrifugal forces. We will make everything pretty simple so that by the end of this topic, you will be able to derive the basic equations of circular motion. We will also look at harmonic oscillation exhibited by a mass attached to spring, which obeys Hooke's law.

4) Introduction to momentum (2 weeks)
We will learn about the relationship between force and velocity, i.e., momentum and how to solve the principle of conservation of momentum in solving equations of motion.

5) Introduction to work and energy (2 weeks)
Work and energy are important physical properties. We will learn about how to move from force to obtain work, and also from work to obtain energy (work-energy theorem). Concepts of potential energy and kinetic energy will be introduced and also, the principle of energy conservation will be discussed.

A simplified introduction will be given to highlight the basics of both electricity and magnetism.

7) Exam and feedback (2 weeks)

Class requirement

None

Textbook

Handouts

Reference book

Regarding studies out of class (preparation and review)

Students are encouraged to spare enough time for revision and review of previous lectures and read ahead in preparation for future lectures.

Others (office hour, etc.)

Office hour will be announced during class. Questions and requests are always welcome by email.
Introduction to Modern Optics-E2

Course Schedule and Contents

1. A brief history of optics and the nature of light [1 week].
2. Basic of optics: Wavefronts, Fermat's principle, Snell's law [1 week].
4. Imaging systems: Aperture/field stops, pupils, field of view [2 weeks].
5. Optical aberrations: Chromatic and geometric aberrations [2 weeks].
7. Wave optics 2: Fraunhofer diffraction, point spread function [2 weeks].
8. The Optical Software for Layout and Optimization (OSLO):
 - Learn how to layout optical systems [1 week].
 - Learn how to optimize the performance of optical systems [1 week].

Final examination [1 week].
Feedback session [1 week].

Method, Point of view, and Attainment levels of Evaluation

Evaluation will be based on:
- Class Participation (10%): Student participation will be asked in solving problems and discussing theories and their application.
- Homework (20%): Typical problems will be assigned, which you can solve by applying the laws and methods learnt during lectures (every 2 weeks).
- Quizzes (20%): Mini-exams, to check that you remember important laws and principles from previous lectures and study guides (every 4 weeks).
- Final examination (50%): You will be tested with a series of problems that combine previously studied cases and original cases.

Textbook

Reference book, etc.

Introduced during class

Regarding studies out of class (preparation and review)

Personal study using book by Hecht (10–15 pages per week).

Others (office hour, etc.)

Questions can be sent by email, and will be answered either electronically or by appointment (depending on the case).
| Lecture code: N263001 |

| Course numberings | U-LAS12 10027 LE57 |

<table>
<thead>
<tr>
<th>Course title</th>
<th>Introduction to Light Control-E2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Field(Classification)</td>
<td>Physics(Foundations)</td>
</tr>
<tr>
<td>Group</td>
<td>Natural Sciences</td>
</tr>
<tr>
<td>Language</td>
<td>English</td>
</tr>
<tr>
<td>Number of weekly time blocks</td>
<td>1</td>
</tr>
<tr>
<td>Class style</td>
<td>Lecture</td>
</tr>
<tr>
<td>Course offered year/period</td>
<td>2019 • First semester</td>
</tr>
<tr>
<td>Day/period</td>
<td>Wed.1</td>
</tr>
<tr>
<td>Target year</td>
<td>Mainly 2nd year students</td>
</tr>
<tr>
<td>Eligible students</td>
<td>For science students</td>
</tr>
</tbody>
</table>

[Outline and Purpose of the Course]

The objective of the course is to introduce the light control. Starting with explaining the wave equation and basic properties of light, we will expand the lectures up-to cutting-edge technologies of light control by performing some experimental demonstrations.

[Course Goals]

- Understand basic properties of light and light control.
- Follow the cutting-edge technologies.

[Course Schedule and Contents]

1. Introduction to light (1 week)
2. Introduction to vector calculus (1 week)
3. Maxwell's equations, wave equations (2 weeks)
4. Reflection, transmittance, total internal reflection (2 weeks)
5. Interference theory and its control (2 weeks)
6. Diffraction theory and experiments (2 weeks)
7. Light emission and absorption, and its control (2 weeks)
8. Introduce cutting-edge light control technologies (2 weeks)

[Class requirement]

Fundamental Physics B (recommended)

[Method, Point of view, and Attainment levels of Evaluation]

Evaluation will be based on attendance and participation (10%), homework (40%) and final examination (50%).

[Textbook]

Not used

[Reference book, etc.]

- Reference book
 - Max Born and Emil Wolf, Principles of Optics

[Regarding studies out of class (preparation and review)]

Students are required to do their homework. When trouble is encountered during homework, please refer recommended textbook or please ask the instructor.

[Others (office hour, etc.)]

Office hour: Anytime by email and appointments should be made via email.
Course numbering

<table>
<thead>
<tr>
<th>Course title</th>
<th>Field(Classification)</th>
<th>Language</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fundamentals of Materials I-E2</td>
<td>Physics(Foundations)</td>
<td>English</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Group</th>
<th>Language</th>
</tr>
</thead>
<tbody>
<tr>
<td>Natural Sciences</td>
<td>English</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Number of weekly time blocks</th>
<th>Class style</th>
<th>Course offered year/period</th>
<th>Day/period</th>
<th>Target year</th>
<th>Eligible students</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Lecture</td>
<td>2019 • First semester</td>
<td>Thu.2</td>
<td>Mainly 1st & 2nd year student</td>
<td>For science students</td>
</tr>
</tbody>
</table>

[Outline and Purpose of the Course]

This is the first half of a two-semester course Fundamentals of Materials. The purpose of this course is to give a concise but comprehensive introduction covering all major classes of materials to the students majored in physical engineering. The characteristics of all main classes of materials - metals, polymers and ceramics, as well as their physical properties, are explained with reference to real-world examples. In the first semester we will firstly introduce the elements and atomic structure, and then mainly focus on the structure and mechanical properties of metallic materials.

[Course Goals]

Students are expected to have a broad understanding of fundamental aspects of metallic materials, such as atomic microstructure, microstructures and mechanical properties of metallic materials by taking this course.

[Course Schedule and Contents]

Week 1. Introduction to materials and materials science
Week 2. Atomic structure and interatomic bonding
Week 3. Structure of crystalline solids
Week 4-5. Imperfections in solids
Week 5. Diffusion
Week 6-7. Mechanical properties of metals
Week 8. Strengthening mechanisms in crystalline materials
Week 9. Failure of materials
Week 10. Phase diagrams
Week 11. Phase transformations
Week 12-13. Engineering alloys
Week 14. Characterization techniques of the materials

[Class requirement]

None

[Method, Point of view, and Attainment levels of Evaluation]

Attendance [50%]
Homework assignments [50%]

[Textbook]

Not used

[Reference book, etc.]

Reference book

[Regarding studies out of class (preparation and review)]

Assignment (Quiz) are set for the review after class. The necessary time for assignments is around 1.5 hours for each class.

[Others (office hour, etc.)]
Fundamentals of Materials II-E2

This is the second half of a two-semester course Fundamentals of Materials. The purpose of this course is to give a concise but comprehensive introduction covering all major classes of materials to the students majored in physical engineering. The characteristics of all main classes of materials, metals, polymers and ceramics, as well as their physical properties, are explained with reference to real-world examples. In the second semester we will mainly focus on the structure and physical properties of ceramics, polymers and composites. Electrical, thermal, magnetic and optical properties of materials will also be introduced.

Course Goals
By taking this course the students are expected to have a broad understanding of fundamental aspects regarding to the processing and properties of ceramics, polymers and composites.

Course Schedule and Contents
Week 1-2. Structures and properties of ceramics
Week 3. Applications and processing of ceramics
Week 4-5. Polymer structures
Week 6. Characteristics, applications and processing of polymers
Week 7-8. Composites
Week 9. Corrosion and degradation of materials
Week 10. Electrical properties
Week 11. Thermal properties
Week 12. Magnetic properties
Week 13. Optical properties
Week 14. Economic, environmental, and societal issues in materials science and engineering

Class requirement
None

Method, Point of view, and Attainment levels of Evaluation
Attendance [50%]
Homework assignments [50%]

Textbook
Not used

Reference book, etc.
Reference book

Regarding studies out of class (preparation and review)
Assignment (Quizes) are set for the review after class. The necessary time for assignments is around 1.5 hours for each class.

Others (office hour, etc.)
[Outline and Purpose of the Course]

The first part of the lecture covers basic thermodynamics such as the laws of thermodynamics and thermodynamic potentials. In this part, we will study a variety of examples and applications. The second part of the lecture deals with statistical physics. The goal of the second part is to derive and understand the laws of thermodynamics starting from a microscopic view. Among the subjects covered in this part is the statistical interpretation of temperature and entropy. We will learn the concept of probability and introduce the microcanonical and canonical ensembles and their applications.

[Course Goals]

- Understanding the laws of thermodynamics and the thermodynamic potentials;
- Understanding the connection between microscopic properties (e.g., velocity-probability) and macroscopic properties (temperature, pressure);
- Understanding the connection between a microscopic Hamiltonian and macroscopic properties.

[Course Schedule and Contents]

The lecture can be divided into two parts. The first part deals with the laws of thermodynamics and the second part with deriving these laws from microscopic level.

1) **Thermodynamics**

 - Introduction to the laws of thermodynamics (3-5 weeks)
 - equation of state (temperature, pressure, work, heat)
 - energy and entropy
 - applications and examples

 - thermodynamic potentials (2-3 weeks)
 - Legendre transformation
 - free energy, enthalpy, ...

 - More Applications (2-3 weeks)
 - chemical reactions
 - phase transitions

2) **Statistical Physics**

 - probability (1 week)
 - microcanonical ensemble and entropy (2-3 weeks)
 - canonical ensemble, fluctuations (2-3 weeks)

Introduction to Statistical Physics-E2(2)

[Course offering year/period]

2019 • Second semester

[Eligible students]

For science students

[Target year]

Mainly 1st & 2nd year students

[Number of weekly time blocks]

1

[Number of credits]

2

[Day/period]

Wed.4
[Outline and Purpose of the Course]

The aim of this lecture is to introduce the basic concepts of Einstein's theory of relativity. First, the theory of special relativity will be explained in detail. After this, the basics of general relativity will be introduced in an elementary way. The lecture is supposed to be interactive.

[Course Goals]

The students will learn the formalism needed to study special/general relativity. They will learn a geometrical intuition in the theory of relativity.

[Course Schedule and Contents]

1. Introduction and Historical backgrounds
2. Einstein's Principle of Relativity
3. Special Relativity and Lorentz Transformation
4. Relativistic Mechanics
5. Interesting Examples of Lorentz Transformation
6. Maxwell Equation and Lorentz Invariance
7. Relativistic Momentum and Energy II: Four Vectors and Transformation Properties
8. General Relativity

It will be offered to 14 classes for each week of the semester.

[Class requirement]

Fundamental Physics A (necessary), Fundamental Physics B (recommended)

[Method, Point of view, and Attainment levels of Evaluation]

Evaluation method: 25%: mid term exam; 75%: final exam.

[Textbook]

Antonio De Felice
Lecture notes (given in the class as a pdf file).

[Reference book, etc.]

Hans Stephani
Relativity.

Wolfgang Pauli
Theory of Relativity.

[Regarding studies out of class (preparation and review)]

The students will know the topic to be discussed in the next lecture, so that they can study on the book and my notes (of which they can have a copy, if needed).

[Others (office hour, etc.)]

2 hours of office hours per week to be decided with students.
[Outline and Purpose of the Course]
Starting from Newton mechanics, we will introduce the principle of stationary action, and the Lagrangian formalism for solving problems in theoretical mechanics. Using this formalism, we will analyze different important examples such as oscillations, central forces and the rigid body. Thereafter, we will introduce the Hamiltonian formalism, which is the basis for Quantum mechanics.

[Course Goals]
- to understand and be able to use the Lagrangian formalism;
- to understand the basics of the Hamiltonian formulation of classical mechanics

[Course Schedule and Contents]
The course can be roughly divided into three parts.

1) theoretical introduction into Lagrangian mechanics with simple examples (4-6 weeks)
 - repetition of Newton mechanics
 - D'Alembert's principle
 - Lagrangian multiplier
 - introduction into variational calculus

2) application of Lagrangian mechanics to more complex situations (6-8 weeks)
 - oscillations
 - central forces
 - rigid body

3) introduction into Hamiltonian formalism (1-2 weeks)
Depending on the progress, a possible extension at the end of the course is an introduction into special relativity.

[Class requirement]
Understanding of kinematics and Newton mechanics; basic knowledge of differential equations.

[Method, Point of view, and Attainment levels of Evaluation]
Worksheets/reports (50%) + examination (50%)
Introduction to Quantum Physics-E2

Course Goals
To understand the fundamental concepts of quantum mechanics. To learn mathematical methods which describe quantum objects.

Course Schedule and Contents
1. Introduction.
2. Black body radiation.
3. Quantization of energy.
7. Wave-particle duality: Compton scattering, wave nature of electron.
8. Wave function and Schrodinger equation: Schrodinger equation.
9. Wave function and Schrodinger equation: meaning of the wave function, its properties.
11. One dimensional quantum system: time independent Schrodinger equation.
12. One dimensional quantum system: particle in the infinite potential well.
13. One dimensional quantum system: harmonic oscillator.
14. Physical states and operators.

Class requirement
It is desirable to take introduction to physics A and B courses. Knowledge of mechanics and wave theory is welcome.

Method, Point of view, and Attainment levels of Evaluation
Evaluation will be based on:
- 10% Attendance
- 20% Homework
- 20% Quiz
- 50% Final exam

Textbook
Instructed during class

Reference book, etc.
Introduced during class

Regarding studies out of class (preparation and review)
Preparation for lectures will include revision of class materials and homework assignments. Detailed instructions will be given during the class.

Others (office hour, etc.)
Plasma is diverse and very abundant. Almost 99% of the visible matter in the observable Universe is in the state of plasma. It is everywhere in Space and on Earth, naturally occurring and produced in laboratories or used in factories. Stars, nebulae, aurora borealis, sparks, arc welding, thermonuclear reactors - this is just a beginning of a list of various plasmas. In this course, the so-called fourth state of matter - plasma, will be introduced. The main plasma properties and behavior are explained. Cosmic plasma, laboratory plasma and its application, plasma in technology and in thermonuclear fusion research are explained in this course.

[Course Goals]

The goal of this course is to introduce listeners to the "forth state of matter" - plasma.

To understand what is plasma and what are its properties.

To learn the role of plasma in the cosmic phenomena.

To learn about scientific and technological applications of plasma.

To understand basic idea of the fusion energy research.

[Course Schedule and Contents]

1. What is plasma, its definition and fundamental properties.
2. Formation of plasma and ionization of gases.
3. Laboratory plasma: glow, arc and corona discharges.
4. Cosmic plasma: core of a star, its corona and solar wind
5. Aurora and how it is formed.
6. Technological applications of plasma.
7. The ultimate energy source on Earth: thermonuclear fusion.

Each topic will be introduced in 2-3 lectures.

[Class requirement]

None
Lecture code: N248001

<table>
<thead>
<tr>
<th>Course number</th>
<th>U-LAS12 20017 LE57</th>
</tr>
</thead>
<tbody>
<tr>
<td>Course title</td>
<td>Introduction to Cosmology-E2</td>
</tr>
<tr>
<td>Affiliated department, Job title, Name</td>
<td>Yukawa Institute for Theoretical Physics, Associate Professor, Antonio De Felice</td>
</tr>
<tr>
<td>Group</td>
<td>Natural Sciences</td>
</tr>
<tr>
<td>Language</td>
<td>English</td>
</tr>
<tr>
<td>Number of weekly time blocks</td>
<td>1</td>
</tr>
<tr>
<td>Course offered year/period</td>
<td>2019 • First semester</td>
</tr>
<tr>
<td>Day/period</td>
<td>Wed.2</td>
</tr>
<tr>
<td>Target year</td>
<td>Mainly 1st & 2nd year students</td>
</tr>
<tr>
<td>Eligible students</td>
<td>For all majors</td>
</tr>
<tr>
<td>Field(Classification)</td>
<td>Physics(Development)</td>
</tr>
<tr>
<td>Old group</td>
<td>Group B</td>
</tr>
<tr>
<td>Number of credits</td>
<td>2</td>
</tr>
</tbody>
</table>

[Outline and Purpose of the Course]

The aim of this lecture is to introduce the basic concepts of modern cosmology. Our current understanding about the history of the universe is explained so that one can capture how observational data are interpreted with the aid of the law of physics in an elementary way. For this purpose, the development of the basic theories of physics necessary to describe modern cosmology will be reviewed in a less rigorous way. The lecture is supposed to be interactive.

[Course Goals]

Students will be able to understand how to approach the study of cosmology in a mathematical and physical way. They will be introduced to the problems of modern cosmology, and to the methods cosmologist use to try to solve them. The discussion will tend to link cosmology to other fields in physics, e.g. thermodynamics, (some notions of) particle physics.

[Course Schedule and Contents]

I. Introduction and Historical backgrounds
II. The Role of the Speed of Light in Special Relativity
III. Newtonian Gravity and General Relativity
IV. Homogeneous Universe Model based on General Relativity and Discovery of the Expanding Universe
V. Tips of Thermodynamics
VI. Nucleosynthesis in the Early Universe
VII. Prediction and Discovery of Cosmic Microwave background
VIII. Shortcoming of the Big-Bang Cosmology
IX. Inflationary universe
X. Inevitable Quantum fluctuation
XI. Structure Formation of the Universe
XII. Inflation Again in the Present Universe?

It will be offered to 14 classes for each week of the semester.

[Class requirement]

None

[Method, Point of view, and Attainment levels of Evaluation]

Evaluation method: 25%: mid term exam; 75%: final exam.

[Textbook]

Antonio De Felice "Lecture notes." (given in the class as a pdf file)

[Reference book, etc.]

A. Liddle "An Introduction to Modern Cosmology" (John Wiley & Sons, Inc.)

[Regarding studies out of class (preparation and review)]

The students will be given the opportunity to have copies of the notes. They will know a week before the subject to be discussed in the next lecture.

[Others (office hour, etc.)]

Office hours: 2hrs per week to be decided with the students.
[Outline and Purpose of the Course]
We learn about the structure, properties and reactions of matters for the base of physical chemistry. Contents are covered by following fields of the structure and properties of the atom and molecules, quantum chemistry, thermodynamics, and chemical reactions. Aim of this course is the understanding of these concepts.

[Course Goals]
The aim of this class is to understand the basic principles of physical chemistry for beginners.

[Course Schedule and Contents]
1. Basics and units of chemistry
2. Structure and property of the atom: Bohr's atomic model
3. Structure and property of the atom: Electronic waviness and orbit function
4. Structure and property of the atom: Electron configuration and periodic table
5. Structure and property of the atom: Ionization energy and electron affinity
6. Molecules: Covalent bonds (s and p-bonds), hybrid orbitals
7. Molecules: Coordinate bond
8. Molecules: Ionic bonds, van der Waals force, and hydrogen bond
9. Thermodynamics: 1st & 2nd law of thermodynamics and phase diagram
10. Chemical equilibrium: Equilibrium constant and Le Chatelier's principle
11. Chemical equilibrium: A rate equation and reaction mechanism
12. Oxidation and reduction: Oxidation state and battery
13. Acid and base: Definition and dissociation equilibrium
14. Acid and base: Neutralization titration, hydrolysis, and buffer solution
15. Term examination

[Class requirement]
None

[Method, Point of view, and Attainment levels of Evaluation]
Results will be evaluated by the submission of homework written in English (30%), attendance and discipline (20%), and assignment (50%).
Basic Physical Chemistry (thermodynamics)-E2

[Class requirement]
None

[Method, Point of view, and Attainment levels of Evaluation]
One final exam (60%), 6 tasks (30% = 6 X 5%; quiz, homework, or report), attendance and class participation (10%)

[Textbook]
D. W. Oxtoby and H. P. Gillis Principles of Modern Chemistry, 8th ed.] ISBN:978-1305079113 (Optional, other elementary-level chemistry books are OK.)

[Reference book, etc.]

[Regarding studies out of class (preparation and review)]
Basic mathematical knowledge such integration and differentiation is necessary, but most of them will be introduced in the class, in supplementary materials, or in office-hours. Students are responsible for reviewing each class and preview.

[Others (office hour, etc.)]
Instructor: Jaehong Park (email: j.park@moleng.kyoto-u.ac.jp)
Course meeting: (Yoshida South campus, TBD), 1 session/week, 90 mins/session
Office hour:
Option 1- At Katsura campus(A4-205), any date could be possible, but appointment by email.
Option 2- At Yoshida campus, on Thursday appointment by email.

[Outline and Purpose of the Course]
Physical chemistry is a discipline that aims to reveal the basic concepts and principles of the formation of molecules and substances, the nature and characteristics of chemical bonds and molecular structures, chemical equilibrium, and reaction rates. This course is designed as an introductory physical chemistry, specifically aims to learn and understand the principles and applications of thermodynamics. The knowledge learned from this course will be a foundation for learning all areas of chemistry, including advanced-level physical chemistry, organic chemistry and inorganic chemistry, which are available in grades 2-4.

[Course Goals]
In this course, we learn the phases of substances, quantitative description of the behaviors of gases in accordance with state functions of ideal gas and real gas. Also, thermodynamic quantity, entropy and free energy will be discussed. Finally, we will apply this knowledge to chemical reactions and learn the practical utility of thermodynamics in chemistry.

[Course Schedule and Contents]
Contents will be discussed in the class. (The number does not mean the number of classes) The course schedule is subject to change, depending on the student's understanding. (Each item will be covered by 1-2 weeks.)

1. Basic concepts of thermodynamics (system, surroundings, work, heat, energy, state functions, heat capacities)
2. Gas, ideal and real gases
3. States of a system
4. Phase transition
5. The 0th law of thermodynamics
6. The 1st law of thermodynamics
7. Enthalpy
8. The spontaneity of physical and chemical changes,
9. Entropy, Gibbs energy, the third law of thermodynamics
10. Chemical equilibrium
11. The response of equilibrium to the conditions
Outline and Purpose of the Course

We learn about the thermodynamics in the state-change of matter, also in the chemical reactions. Contents of the lecture covers the following fields of change of state, thermodynamic laws, definition of the quantities (enthalpy, entropy, free energy, chemical potential), chemical equilibrium, and reaction kinetics. Aim of this course is the understanding of these concepts.

Course Goals

The aim of this class is to understand the basic principles of thermodynamics.

Course Schedule and Contents

1. Change of the system and quantity of state
2. Thermal energy and work
3. 1st law of thermodynamics: Change of internal energy and enthalpy
4. Chemical reaction and thermal energy
5. Interpretation of internal energy in molecular level
6. Change of state of the ideal gas
7. 2nd law of thermodynamics: Entropy
8. Entropy change in the change of state
9. 3rd law of thermodynamics: Conversion from heat to work
10. Gibbs energy
11. Change of the Gibbs energy when temperature and pressure change
12. Chemical potential
13. Change of state and chemical potential change of matter
14. Chemical equilibrium and rate of chemical reaction
15. Term examination

Class requirement

None

Method, Point of view, and Attainment levels of Evaluation

Results will be evaluated by the submission of homework written in English (30%), attendance and discipline (20%), and assignment (50%).

Textbook

Reference book

- Thermodynamics: An Engineering Approach, 8th Edition in SI Units.

I recommend that the students should review the points to be learned.

Regarding studies out of class (preparation and review)

Office hours are set at 15:00-17:00 in every Friday.
Course title (English): Basic Physical Chemistry (quantum theory)-E2

Course goals
In this course, we learn the fundamental principles of the formation of atoms and molecules using basic quantum chemistry knowledge. Through this course, students will be able to equip knowledge and techniques to interpret and explain logically the natural phenomena of molecules and substances.

Course Schedule and Contents
Contents will be discussed in the class. (The number does not mean the number of classes) The course schedule is subject to change, depending on the student's understanding. (Each item will be covered by 1-2 weeks.)

1. Atoms and their physical structures
2. Basic definitions useful for modern chemistry
3. Wave & light
4. Bohr model
5. Wave-particle duality
6. Schrodinger equation
7. Particle-in-a-box models
8. Hydrogen atom
9. Shell model, Aufbau principle, electron configuration, atomic orbital
10. Chemical bond
11. Molecular orbital
12. Valence bond theory
13. Molecular orbital theory
14. Linear-combination of atomic orbitals

Outline and Purpose of the Course
Physical chemistry is a discipline that aims to reveal the basic concepts and principles of the formation of molecules and substances, the nature and characteristics of chemical bonds and molecular structures, chemical equilibrium, and reaction rates. This course is designed as an introductory physical chemistry, specifically aims to learn and understand the principles and applications of quantum theory. The knowledge learned from this course will be a foundation for learning all areas of chemistry, including advanced-level physical chemistry, organic chemistry and inorganic chemistry, which are available in grades 2-4.

Course offered year/period
2019 • First semester

Number of credits
2

Textbook
D. W. Oxtoby and H. P. Gillis (Principles of Modern Chemistry, 8th ed.) ISBN:978-1305079113 (Optional, other elementary-level chemistry books are OK.)

Reference book, etc.
Atkins and J. de Paula (Physical Chemistry, 9th ed.) (Oxford University Press) ISBN:9780199697403 (Another edition is also fine)

Regarding studies out of class (preparation and review)
Basic mathematical knowledge such vector, integration, and differentiation is necessary, but most of them will be introduced in the class or in supplementary materials, or office-hours. Students are responsible for reviewing each class and preview.

Class requirements
None

Method, Point of view, and Attainment levels of Evaluation
One final exam (60%), 6 tasks (30% = 6 X 5%; quiz, homework, or report), attendance and class participation (10%)

Textbook
D. W. Oxtoby and H. P. Gillis (Principles of Modern Chemistry, 8th ed.) ISBN:978-1305079113 (Optional, other elementary-level chemistry books are OK.)

Reference book, etc.
Atkins and J. de Paula (Physical Chemistry, 9th ed.) (Oxford University Press) ISBN:9780199697403 (Another edition is also fine)

Regarding studies out of class (preparation and review)
Basic mathematical knowledge such vector, integration, and differentiation is necessary, but most of them will be introduced in the class or in supplementary materials, or office-hours. Students are responsible for reviewing each class and preview.

Others (office hour, etc.)
Instructor: Jaehong Park (email: j.park@moleng.kyoto-u.ac.jp)
Course meeting: (Yoshida South campus, TBD), 1 session/week, 90 mins/session
Office hour:
Option 1- At Katsura campus(A4-205), any date could be possible, but appointment by email.
Option 2- At Yoshida campus, on Tuesday appointment by email.
Course numbering
- U-LAS13 10006 LE60

Course title
- <English> Basic Physical Chemistry (quantum theory)-E2
- Basic Physical Chemistry (quantum theory)-E2

Affiliated department, Job title, Name
- Institute of Advanced Energy
- Senior Lecturer, ARIVAZHAGAN RAJENDRAN

Group, Field, Language, Old group
- Natural Sciences, Chemistry (Foundations), English, Group B

Number of weekly time blocks
- 1

Class style, Course offered year/period
- Lecture, 2019 • Second semester

Day/period, Target year, Eligible students
- Mon.2, Mainly 1st & 2nd year students, For science students

[Outline and Purpose of the Course]
We learn about the basics of quantum chemistry including the duality of the wave and the particle, the quantization of the energy, the wave function and orbitals of atoms, Schrödinger wave equation and spin of electron. Aim of this course is the understanding of these concepts.

[Course Goals]
The aim of this class is to understand the basic principles of quantum chemistry.

[Course Schedule and Contents]
1. Property of the electromagnetic wave
2. Bohr's atomic model
3. De Broglie wave of matter
4. Time independent Schrödinger wave equation
5. Time dependent Schrödinger wave equation
6. One dimensional potential wells
7. One dimensional harmonic oscillation
8. Wave equation of hydrogen atom
9. Wave function and energy eigenvalue of hydrogen atom
10. Angular momentum and Zeeman effect
11. Spin of electron
12. Spin-orbit interaction
13. Wave function of the hydrogen molecular ion and approximation
14. Application of quantum chemistry
15. Term examination

[Class requirement]
None

[Method, Point of view, and Attainment levels of Evaluation]
Results will be evaluated by the submission of homework written in English (30%), attendance and discipline (20%), and assignment (50%).

[Textbook]
[Outline and Purpose of the Course]

The course will provide a complete cover for the first part basics of organic chemistry. This course gives the opportunity to learn English while studying chemistry, an important skill for chemists. This course is suitable for chemistry major students and covers the Basic Organic Chemistry I E2 course held for classes T17-22 in Japanese.

[Course Goals]

The students will learn the fundamentals of chemical bonding, stereochemistry and selected organic reactions. Also, the course provides the information for successive attendance in Basic Organic Chemistry II course.

[Course Schedule and Contents]

- **Course Introduction** (1 Lesson)
- **Structure and Bonding** (2 Lessons) Chapter 1
- **Polar Covalent Bonds; Acids and Bases** (2 Lessons) Chapter 2
- **Organic Compounds: Alkanes and Their Stereochemistry** (2.5 Lessons) Chapter 3
- **Organic Compounds: Cycloalkanes and Their Stereochemistry** (2.5 Lessons) Chapter 4
- **An Overview of Organic Reactions** (2 Lessons) Chapter 6
- **Alkenes and Alkynes** (2 Lessons) Chapter 7

[Class requirement]

This course is suitable for chemistry major students from groups T17-T22.

[Method, Point of view, and Attainment levels of Evaluation]

Class performance, homework, and final test.

[Textbook]

McMurry *Organic Chemistry with Biological Applications* (Cengage Learning) 2nd and 3rd Editions, Chapters 1-4, 6-7

Japanese version of McMurry is also OK.

[Regarding studies out of class (preparation and review)]

Home work studies.

[Others (office hour, etc.)]
Course title
Basic Organic Chemistry I-E2

Affiliated department, Job title, Name
Institute for Chemical Research
Senior Lecturer, Amelie Perron

Group
Natural Sciences

Field(Classification)
Chemistry(Foundations)

Language
English

Number of weekly time blocks
1

Class style
Lecture

Course offered year/period
2019 • First semester

Day/period
Tue. 5

Target year
Mainly 1st & 2nd year students

Eligible students
For science students

[Outline and Purpose of the Course]

This course is intended for Japanese and international students registered in natural science majors who are interested in learning chemistry in English.

Basic Organic Chemistry I explains the fundamental concepts of organic chemistry, aiming to help students understand the structures and properties of organic compounds. This course can be taken alone or in combination with Basic Organic Chemistry II.

[Course Goals]

Students will be able to analyze the structure of organic compounds and predicting their properties based on their bonding, atomic orbitals, hybridization state, intermolecular forces and resonance structures.

[Course Schedule and Contents]

The semester will be divided as follows:

Week 1: Introduction to Organic Chemistry
Week 2: Atomic Orbitals
Week 3: Molecular Representations
Week 4: Geometry of Compounds
Week 5: Intermolecular Forces
Week 6: Resonance
Week 7: Mid-term Exam
Week 8: Acids and Bases (Part 1)
Week 9: Acids and Bases (Part 2)
Week 10: IUPAC (International Union of Pure and Applied Chemistry) Nomenclature (Part 1)
Week 11: IUPAC Nomenclature (Part 2)
Week 12: Conformations of Alkanes and Cycloalkanes
Week 13: Amino Acids and Proteins
Week 14: Classification and Structures of Carbohydrates
Week 15: Final Exam

[Class requirement]

None

Basic Organic Chemistry I-E2(2)

[Method, Point of view, and Attainment levels of Evaluation]

Evaluation will be based on class attendance and active participation (30%), mid-term exam (30%) and final examination (40%).

[Textbook]

David Klein • Organic Chemistry • Wiley ISBN:1118452283 (not mandatory)

[Reference book, etc.]

Handouts will be provided at the beginning of each lecture.

[Regarding studies out of class (preparation and review)]

Students should review the course materials after each class.

[Others (office hour, etc.)]

Teaching Approach:

The new concepts are introduced in a skill-building format with practice problems (in class) and exercises (in class) to help students master the course material (no homework).
[Outline and Purpose of the Course]
The course will provide a complete cover for the second part basics of organic chemistry. This course gives the opportunity to learn English while studying chemistry, an important skill for chemists. This course is suitable for chemistry major students and covers the Basic Organic Chemistry II course held for classes T17-22 in Japanese.

[Course Goals]
The students will learn the detailed basics of stereochemistry and selected organic reactions for aliphatic and aromatic compounds. Also, the course provides the information for successive attendance in Organic Chemistry 2nd year courses for chemistry major students.

[Course Schedule and Contents]
- Reactions of Alkenes and Alkynes (3 Lessons) Chapter 8
- Aromatic Compounds (3 Lessons) Chapter 9
- Stereochemistry (2 Lessons) Chapter 5
- Alkylhalides: Nucleophilic Substitutions and Eliminations (3 Lessons) Chapter 12
- Alcohols, Phenols, and Thiols (3 Lessons) Chapter 13
- Feedback (1 Lesson)

[Class requirement]
This course is suitable for chemistry major students from groups 1T17-1T22 who passed Basic Organic Chemistry I course.

[Method, Point of view, and Attainment levels of Evaluation]
Class performance, home work, and final test.

[Textbook]
McMurry ‘Organic Chemistry with Biological Applications,’ (Cengage Learning) (2nd and 3rd Editions, Chapters 5, 8-9, 12-13)
Japanese version of McMurry is also OK.

[Regarding studies out of class (preparation and review)]
Home work studies.
Course title
Basic Organic Chemistry II-E2

Institute for Chemical Research
Senior Lecturer, Amelie Perron

Field (Classification)
Chemistry (Foundations)

Language
English

Number of weekly time blocks
1

Course style
Lecture

Course offered year/period
2019 • Second semester

Day/period
Tue. 5

Target year
Mainly 1st & 2nd year students

Eligible students
For science students

Outline and Purpose of the Course

This course is intended for Japanese and international students registered in natural science majors who are interested in learning chemistry in English.

Basic Organic Chemistry II explains the fundamental concepts behind the reactivity of organic compounds. This course can be taken alone or in combination with Basic Organic Chemistry I.

Course Goals

Students will be able to describe basic organic reaction mechanisms (nucleophilic substitutions, eliminations and electrophilic additions) and apply this knowledge to predict the major product in organic reactions, such as those involving hydrocarbons, alcohols, alkyl halides and alkenes.

Course Schedule and Contents

The semester will be divided as follows:

Week 1: General Concepts and Stereoisomerism
Week 2: Enantiomers and Optical Activity
Week 3: Resonance (Review)
Week 4: Chemical Reactivity
Week 5: Substitution Reactions (Part 1)
Week 6: Substitution Reactions (Part 2)
Week 7: Mid-term Exam
Week 8: Alkene and Elimination Reactions (Part 1)
Week 9: Alkene and Elimination Reactions (Part 2)
Week 10: Substitution vs. Elimination
Week 11: Addition Reactions (Part 1)
Week 12: Addition Reactions (Part 2)
Week 13: Synthesis
Week 14: Review of the Main Concepts
Week 15: Final Exam

Textbook

Reference book, etc.
Handouts will be provided at the beginning of each lecture.

Regarding studies out of class (preparation and review)

Students should review the course materials after each class.

Others (office hour, etc.)
Teaching Approach:

The new concepts are introduced in a skill-building format with practice problems (in class) and exercises (in class) to help students master the course material (no homework).
Course title: Fundamental Chemical Experiments-E2

Field(Classification): Chemistry(Foundations)

Language: English

Number of weekly time blocks: 2

Day/period: Wed.3 • 4

Target year: mainly 1st year students

Eligible students: For science students

Class style: Experiment

Course offered year/period: 2019 • First semester

Department: Natural Sciences

Graduate School: Graduate School of Engineering

Associate Professor: Juha Lintuluoto

Senior Lecturer: ALCANTARA AVILA, Jesus Rafael

Graduate School: Graduate School of Engineering

Associate Professor: Cedric Tassel

Senior Lecturer: LANDENBERGER, Kira Beth

Course Goals

You will get understanding basic chemical concepts by the actual hands-on work performing fundamental analysis of chemical compounds.

Outline and Purpose of the Course

The purpose of this laboratory class is to practice the basic identification techniques and synthesis procedures of chemical compounds as well as to understand the underlying principles involved.

Course Schedule and Contents]

- Qualitative Inorganic Analysis Experiments
 1. Basic Reactions of Fe^{3+} and Al^{3+} (3rd Analytical Group).
 2. Basic Reactions of Ag^{+}, Pb^{2+}, Cu^{2+} and Bi^{3+} (1st and 2nd Analytical Groups).
 4. Analysis of an unknown sample containing some cations.

- Volumetric Analysis Experiments
 5. Chelometric Titration: Quantitative Determinations of Ca^{2+} and Mg^{2+} in tap water.
 7. Oxidation Reaction Rate: Measurement of pseudo-first-order reaction rate constant.

- Experiments in Organic Chemistry

- Qualitative Organic Analysis Experiments
 1. Identification of unknown Organic Compounds.

Textbook

Fundamental Chemistry Experiments (This textbook will be delivered at the class.)

Regarding studies out of class (preparation and review)

Preparation should be done in advance. Understand principles involved, and summarize these beforehand in the experimental note regarding the reagents, equipment, and procedures and methods to be used.

Others (office hour, etc.)

- For the registration of the class, please see *1 below.
- Detailed information of the registration will be given at the homepage "KULASIS" in the beginning of April.
- Attend the first class, the course guidance will be given there.
- When you decide to take the class, you must have your own safety glasses as well as obtain the insurance for study and research "學生教育研究災害補償保険". (Safety glasses can be purchased at the COOP Shop "生協" and the insurance "學生教育研究災害補償保険" is processed at the Education Promotion and Student Support Department Desk "教育推進・学生支援部"").

*1 Students must apply for the course before registration if they intend to register for experiment or exercise class of Natural Sciences Group. Please register at the class if you are permitted to participate.

- Application period:
 1st semester and 2nd semester / Before the guidance of the first class
 * Posted:
 1st semester / Details will be posted on "Notification" (Academic affairs information on liberal arts and sciences) in KULASIS in early April.
 2nd semester / Details will be posted on "Notification" (Academic affairs information on liberal arts and sciences) in KULASIS in mid September.

- Application method:
 1st semester and 2nd semester / Please bring your student ID card and apply at the venue of the guidance. Students not assigned classes are free to choose the day.
 * Selection method:
 1st semester and 2nd semester / If the students who wish to take the class are oversubscribed, a lottery will be held. The results will be announced immediately after the guidance.

- Notice: Unlike the other class designated courses, students can register "Fundamental Chemical Experiments" course even if it is not the day/period of their class designated course. However, this shall not apply in the case if the class is oversubscribed.
Course Information

Lecture code: N374002

Course numbering: U-LAS13 10012 EE60

<table>
<thead>
<tr>
<th>Course title</th>
<th>Field(Classification)</th>
<th>Language</th>
<th>Number of credits</th>
<th>Number of weekly time blocks</th>
<th>Class style</th>
<th>Course offered year/period</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fundamental Chemical Experiments-E2</td>
<td>Natural Sciences</td>
<td>English</td>
<td>2</td>
<td>2</td>
<td>Experiment</td>
<td>2019 • Second semester</td>
</tr>
</tbody>
</table>

Group
- **Group B**
- **Target year**: mainly 1st year students
- **Eligible students**: for science students

Field(Classification)
- **Chemistry(Foundations)**

Day/period
- **Wed.3 • 4**

[Class requirement]
None

[Method, Point of view, and Attainment levels of Evaluation]
Mark submitted reports and performance of totally 12 hands-on chemical experiments.

[Textbook]
- "Fundamental Chemical Experiments" (This textbook will be delivered at the class.)

Related URL
http://www.chem.zenkyo.h.kyoto-u.ac.jp/group/index_e.html

[Regarding studies out of class (preparation and review)]
Preparation should be done in advance. Understand principles involved, and summarize these beforehand in the experimental note regarding the reagents, equipment, and procedures and methods to be used.

[Outline and Purpose of the Course]
The purpose of this laboratory class is to practice the basic identification techniques and synthesis procedures of chemical compounds as well as to understand the underlying principles involved.

Course Goals
You will get understanding basic chemical concepts by the actual hands-on work performing fundamental analysis of chemical compounds.

Course Schedule and Contents

[Qualitative Inorganic Analysis Experiments]
1. Basic Reactions of Fe3+ and Al3+ (3rd Analytical Group).
2. Basic Reactions of Ag+, Pb+, Cu2+ and Bi3+ (1st and 2nd Analytical Groups).
4. Analysis of an unknown sample containing some cations.

[Volumetric Analysis Experiments]
5. Chelatometric Titration: Quantitative Determinations of Ca2+ and Mg2+ in tap water.
7. Oxidation Reaction Rate: Measurement of pseudo-first-order reaction rate constant.

[Experiments in Organic Chemistry]

Continue to Fundamental Chemical Experiments-E2(2)
All matter in the nature world is composed of one or more substances called elements. Human beings use variety kinds of matter to create materials that can be used for certain purpose. This course intends to give an introduction to the first and second year students on the fundamental elements and matter in the nature world, as well as the man-made materials composed of those elements, such as metals, ceramics and polymers which are quite important to modern society.

[Course Goals]

Students are expected to learn the basic knowledge of elements, matter in the nature world. Moreover, they will learn various kinds of materials that can be seen in our daily life and realize how important they are to the modern society.

[Course Schedule and Contents]

Week 1: Atom and elements
Basic concept of atoms is introduced in this part. Such as atomic number, atomic weight, atomic size, etc.

Week 2: Periodical table of the elements
In this part we will learn what periodical table is and how to use it to derive relationships between various elements properties.

Week 3-12: From elements to matters and materials
In this part we will firstly introduce the important elements and the matter composed of them. After that, materials composed of those elements, which are being used in our modern society are to be introduced. For example, iron (Fe) and carbon (C) in steels, aluminium (Al) and magnesium (Mg) in aluminium alloys, copper (Cu) in electrical conductor, Gadolinium (Gd) in magnetic material, Lithium (Li) in battery, Si and semiconductor materials are to be introduced. Oxygen (O) Nitrogen (N) and carbon (C) in ceramics, carbon (C) and hydrogen (H) in polymers will also be introduced. In addition, the relationship between the structure, processing and the properties of the above mentioned materials will to be introduced, which is the core of materials science.

Week 13-14: How to identify and analyze the elements and materials?
In this part we will introduce the characterization techniques, such as spectrosopy and electron microscopy, by which we can identify the elements or visualize the atoms and microstructures of the materials.
Everyday Life Chemistry-E2(2)

[Outline and Purpose of the Course]
This course is intended for Japanese and international students registered in liberal arts or science. It is designed to provide a basic understanding of the chemistry behind daily life.

[Course Goals]
After this class, you will be able to explain the chemistry behind the aroma of bacon, your morning coffee, why butter is solid, low-calorie foods, trans fats, chocolate crystals, snake venoms, no-tear shampoo and why toothpaste makes your orange juice taste bad.

[Course Schedule and Contents]
The following topics will be covered:

1. A Day without Chemistry
2. Taste Chemistry and Science of Spiciness
3. Sugar and Artificial Sweeteners
4. What is Fat?
5. How do we Smell?
6. Caffeine and Alcohol
7. Chemistry of the Macaroni Salad
8. Forensic Science and Chemistry
9. Chemistry of Love, Pheromones and Chocolate
10. Chemistry of Pain Killers and Poisons
11. Soap and Shampoo Chemistry
12. Chemistry of Colors
13. Group Presentations (Part I and Part II)

[Class requirement]
None

[Method, Point of view, and Attainment levels of Evaluation]
Evaluation will be based on class attendance and active participation (30%), quizzes during classes (50%) and a 10 min group presentation (20%).

[Textbook]
Not used

[Reference book, etc.]
Handouts will be provided to the students at the beginning of each class.

[Regarding studies out of class (preparation and review)]
Students should review the course materials after each class. Students will also be asked to prepare a short group presentation at the end of the semester.

[Others (office hour, etc.)]
Teaching Approach:
Short animation videos followed by throughout explanation of key concepts mixed with open discussions with the students based on quizzes and activities.
Course title
Chemistry of Sustainable Energy-E2

Affiliated department, Job title, Name
Institute of Advanced Energy
Senior Lecturer, ARIVAZHAGAN RAJENDRAN

Group
Natural Sciences

Field(Classification)
Chemistry(Foundations)

Language
English

Number of weekly time blocks
1

Class style
Lecture

Course offered year/period
2019 • Second semester

Day/period
Mon. 3

Target year
All students

Eligible students
For science students

Outline and Purpose of the Course
We learn about the basics and application of "sustainable energy" which can provide inexhaustible energy supply without releasing the greenhouse gases to the atmosphere, from a chemical point of view. The lecture covers the following contents of solar, wind, geothermal, and biomass energies, photo-catalyst and environmental clean-up, and materials for sustainable energy. The aim of this lecture is to acquire the basic knowledge about materials related to renewable energy and also to understand the mechanism of energy conversion.

Course Goals
The aim of this class is to understand the basic principles of chemistry of sustainable energy.

Course Schedule and Contents
1. What is sustainable energy?
2. Solar energy: Inorganic solar cells
3. Solar energy: Organic solar cells
4. Solar energy: Dye-sensitized and quantum dot solar cells
5. Wind energy: Types of wind turbines
6. Wind energy: How wind turbines work?
7. Geothermal energy: Direct use of geothermal energy
8. Geothermal energy: Geothermal power generation
9. Biomass energy: Thermochemical conversion
10. Biomass energy: Biochemical conversion
11. Photo-catalyst: Air purification and sterilization
12. Photo-catalyst: Water purification
13. Materials: Structure and thermal insulation
14. Materials: Polymers and sustainable energy
15. Term examination

Class requirement
None

Method, Point of view, and Attainment levels of Evaluation
Results will be evaluated by the submission of homework written in English (30%), attendance and discipline (20%), and assignment (50%).

Textbook

Reference book, etc.

Introduced during class

Regarding studies out of class (preparation and review)
I recommend that the students should review the points to be learned.

Others (office hour, etc.)
Office hours are set at 15:00-17:00 in every Friday.
This course provides an opportunity for students to revisit material covered in the first semester of basic organic chemistry using English. The two purposes of this course are to ensure that students have a firm foundation in basic organic chemistry and to learn to proficiently apply these concepts in English. This course is beneficial for students who have already taken the first semester of basic organic chemistry or who have an interest in learning organic chemistry in English.

Course Goals

This course aims to help students have good understanding of basic organic chemistry, particularly in regards to the fundamentals of chemical bonding, acid and base chemistry, stereochemistry, alkanes, alkenes, alkynes and select organic reactions.

Course Schedule and Contents

The course will cover the following topics:

- Introduction to Organic Chemistry
- Structure and Bonding (Chapter 1)
- Polar Covalent Bonds and Acids and Bases (Chapter 2)
- Alkanes and Functional Groups (Chapter 3)
- Conformation and Stereochemistry of Alkanes (Chapter 4)
- Introduction to Organic Reactions (Chapter 6)
- Alkenes and Alkynes (Chapter 7)

Each topic will be covered in approximately 1 to 3 weeks based upon the needs of the class.

Course offered year/period

2019 • Second semester

Target year

Mainly 2nd year students

Eligible students

For science students

Old group

Group B

Number of credits

2

Day/period

Thu. 4
Course title
Revisiting Basic Organic Chemistry II-E2

Affiliated department, Job title, Name
Graduate School of Engineering, Senior Lecturer, LANDENBERGER, Kira Beth

Group
Natural Sciences

Field(Classification)
Chemistry(Foundations)

Language
English

Old group
Group B

Number of credits
2

Number of weekly time blocks
1

Class style
Lecture

Course offered year/period
2019 • First semester

Day/period
Thu. 4

Target year
Mainly 2nd year students

Eligible students
For science students

[Outline and Purpose of the Course]
This course provides an opportunity for students to revisit material covered in the second semester of basic organic chemistry using English. The two purposes of this course are to ensure that students have a firm foundation in basic organic chemistry and to learn to proficiently apply these concepts in English. This course is beneficial for students who have already taken the second semester of basic organic chemistry or who have an interest in learning organic chemistry in English.

[Course Goals]
This course aims to help students have good understanding of basic organic chemistry, particularly in regards to basic organic reactions of alkenes, alkynes, aromatic compounds, alkyl halides, alcohols, phenols and thiols.

[Course Schedule and Contents]
The course will cover the following topics:

- Introduction
- Stereochemistry (Chapter 5)
- Reactions of Alkenes and Alkynes (Chapter 8)
- Aromatic Compounds (Chapter 9)
- Alkyl Halides: Nucleophilic Substitutions and Eliminations (Chapter 12)
- Alcohols, Phenols and Thiols (Chapter 13)

Each topic will be covered in approximately 1 to 3 weeks based upon the needs of the class.

[Class requirement]
None

[Method, Point of view, and Attainment levels of Evaluation]
Class attendance and participation (20%), homework (10%), quizzes (30%), final exam (40%)

[Textbook]

[Regarding studies out of class (preparation and review)]
Students should complete assigned homework and turn it in at the beginning of class on the due date.

[Others (office hour, etc.)]

Lecture code: N381001

Course numbering

Course title <English>: Revisiting Basic Physical Chemistry (thermodynamics)-E2

Group: Natural Sciences
Field(Classification): Chemistry(Foundations)
Language: English

Number of weekly time blocks: 1
Class style: Lecture
Course offered year/period: 2019 • First semester

Day/period: Thu.4
Target year: Mainly 2nd year student
Eligible students: For science students

[Outline and Purpose of the Course]
The objective of the course is to strengthen the knowledge in thermodynamics.

[Course Goals]
- Understand the basic concepts of physical chemical properties
- Review the first and second law of thermodynamics
- Use thermodynamic laws in physical and chemical changes of substances

[Course Schedule and Contents]
1. Review basic concepts in thermodynamics
2. Perfect and real gases
3. First law of thermodynamics: Work and heat
4. First law of thermodynamics: Internal energy and Enthalpy
5. First law of thermodynamics: physical and chemical changes
6. Second law of thermodynamics
7. Gibbs energy
8. Physical transformations: pure component
9. Physical transformations: mixtures
10. Thermodynamics of chemical reactions
11. Equilibrium constant
12. Proton transfer equilibria
13. Acid-base equilibria
14. Electrochemical equilibria
15. Final Examination

[Class requirement]
None

[Method, Point of view, and Attainment levels of Evaluation]
The grade will be evaluated as follows: final exam (60%), assignments (6×5=30%), attendance and participation (10%)

[Textbook]
ISBN:9780198727873
Other editions are acceptable. However, students must be responsible for checking the differences between editions.

[Reference book, etc.]
(Reference book)
If necessary, the instructor will provide extra material during the class.

[Regarding studies out of class (preparation and review)]
Students are required to study the class contents in advance. It is desired that students check additional study sources (books, internet).
The assignments (6 in total) must be submitted on the due date at the class beginning. No late assignment turn-in will be accepted.

[Others (office hour, etc.]]
Instructor: Jesus Rafael Alcantara Avila (e-mail: jrafael@cheme.kyoto-u.ac.jp)
Office hour: (Katsura Campus, A4-222, appointment by e-mail)
<table>
<thead>
<tr>
<th>Lecture code: N382001</th>
</tr>
</thead>
</table>

Course numbering

<table>
<thead>
<tr>
<th>Course title</th>
<th>Revisiting Basic Physical Chemistry (quantum theory)-E2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Affiliated department, Job title, Name</td>
<td>Graduate School of Engineering, Senior Lecturer, ALCANTARA ÁVILA, Jesus Rafael</td>
</tr>
<tr>
<td>Group</td>
<td>Natural Sciences</td>
</tr>
<tr>
<td>Field (Classification)</td>
<td>Chemistry (Foundations)</td>
</tr>
<tr>
<td>Language</td>
<td>English</td>
</tr>
<tr>
<td>Number of weekly time blocks</td>
<td>1</td>
</tr>
<tr>
<td>Class style</td>
<td>Lecture</td>
</tr>
<tr>
<td>Course offered year/period</td>
<td>2019 • Second semester</td>
</tr>
<tr>
<td>Day/period</td>
<td>Thu.4</td>
</tr>
</tbody>
</table>

Eligible students

For science students

Target year

Mainly 2nd year students

Number of credits

2

Course offered year/period

2019 • Second semester

Day/period

Thu.4

Target year

Mainly 2nd year students

Eligible students

For science students

Course Schedule and Contents

1. Introduction to quantum theory
2. The Schrödinger Equation
3. Quantum theory: translation
4. Quantum theory: rotation
5. Quantum theory: vibration
6. Hydrogen atom
7. Atoms with many electrons
8. Atomic properties
9. Atomic spectroscopy
10. Valence bond theory
11. Homonuclear diatomics
12. Heteronuclear diatomics
13. Polyatomic molecules
14. Molecular interactions
15. Final Examination

Class requirement

None

Method, Point of view, and Attainment levels of Evaluation

The grade will be evaluated as follows: final exam (60%), assignments (6 × 5 = 30%), attendance and participation (10%)

Textbook

Other versions are acceptable. However, students must be responsible for checking the differences between editions.

Reference book, etc.

If necessary, the instructor will provide extra material during the class.

Regarding studies out of class (preparation and review)

Students are required to study the class contents in advance. It is desired that students check additional study sources (books, internet). The assignments (6 in total) must be submitted on the due date at the class beginning. No late assignment turn-in will be accepted.

Others (office hour, etc.)

Instructor: Jesus Rafael Alcantara Avila (e-mail: jrafael@cheme.kyoto-u.ac.jp)
Office hour: (Katsura Campus, A4-222, appointment by e-mail)
In this lecture you will learn about the fundamental ideas of thermodynamics in an understandable and fun way. If you are going to study natural sciences, especially physics or chemistry, you will come across these ideas again and again. Chemical reactions in nature, industrial processes, and of course all processes in your daily life are dependent on energy. As it turns out, energy comes in many different forms, and its flow and transformation follows fundamental laws, which we want to study in this course.

[Course Goals]
Students will gain the following form this lecture:
- Interest and fun to learn more about how things work in daily life and technical processes.
- An intuitive understanding of thermodynamic laws, which is fundamental to further studies of physics and chemistry.
- The ability to understand scientific terminologies and express their own ideas of natural sciences in English.

[Course Schedule and Contents]
The course will cover the following topics:
1) The big picture: Introduction to thermodynamic systems and their states, and phases. (3 weeks)
 We learn how processes in nature are controlled by a few simple properties, like pressure and temperature.
2) It gets hot: Temperature and its scales. (3 weeks)
 We ask “What is temperature?” and answer this question from various viewpoints.
3) Order and disorder: Phases, the phase diagram, and mixtures. (4 weeks)
 We discuss the changes substances undergo when varying temperature and pressure.
4) One-way flow: Forms of energy, energy conservation and transformation. (4 weeks)
 We learn about different forms of energy, laws for energy flow and their application in daily life.

[Class requirement]
None
Introduction to Inorganic Chemistry A-E2(2)

[Textbook]

[Reference book, etc.]
Introduced during class
Will be announced during the lecture

[Related URL]
(Will be announced during the lecture)

[Regarding studies out of class (preparation and review)]
Students are required to do their homeworks and when trouble is encountered during homework, please consult the various recommended textbooks or please ask me.

[Others (office hour, etc.)]
Office hour: Anytime by email and appointments should be made via email.

Outline and Purpose of the Course
These lectures will introduce students to the fundamentals of inorganic chemistry. Atoms, molecules and solids surround us and this lecture will aim at providing students with the tools to better understand their structures, energetics and properties. This course is designed for both Japanese and International students.

Course Goals
1. To understand the basic structure of atoms as a function of their position in the periodic table.
2. To be able to draw simple molecular structures and orbital diagrams to understand their properties and reactivity.
3. To be able to visualize and comprehend the basic crystal structures of solids and their related stability and properties.

Course Schedule and Contents
The course will cover the following topics, and each of them is read in 1 or 2 weeks:
1. The structure of hydrogen
2. The structure of many-electron atoms
3. Lewis structures
4. Valence bond theory
5. Molecular orbital theory
6. Bond properties
7. The structure of solids and packing of spheres
8. The structure of metals, alloys and intermetallic compounds
9. Ionic bonding and ionic solids
10. Electronic structures and properties of inorganic solids

Class requirement
None

Method, Point of view, and Attainment levels of Evaluation
Evaluation will be based on attendance and participation (10%), homework (40%) and final examination (50%).

Introduction to Inorganic Chemistry A-E2(1)

Group
Natural Sciences

Field(Classification)
Chemistry(Development)

Number of weekly time blocks
1

Class style
Lecture

Affiliated department, Job title, Name
Graduate School of Engineering, Associate Professor, Cedric Tassel

Language
English

Old group
Group B

Number of credits
2

Number of weekly time blocks
1

Course offered year/period
2019 • First semester

Day/period
Tue.3

Target year
Mainly 1st & 2nd year students

Eligible students
For science students

Introduction to Inorganic Chemistry B-E2(2)

[Outline and Purpose of the Course]
These lectures will introduce students to the fundamentals of inorganic chemistry. This series of lectures will aim at giving students a basic comprehension of chemical reactions (acid-base and redox) as well as the structure of inorganic substances, their properties and their applications in our daily lives. This course is designed for both Japanese and International students.

[Course Goals]
(1) To understand the theories of acid-base and redox reactions. (2) To be able to analyze the symmetry of complex molecules and their related properties. (3) To understand the fundamental theories and their applications.

[Course Schedule and Contents]
The course will cover the following topics, and each of them is read in 1 or 2 weeks

1. Bronsted acids and bases
2. Lewis acids and bases
3. Oxidation and reduction
4. Representation of potentials and applications
5. Molecular symmetry and coordination compounds
6. Electronic structure of d-metal complexes: crystal-field theory and ligand-field theory
7. Properties of d-metal complexes
8. Introduction to the characterization techniques in inorganic chemistry
9. Material chemistry
10. Catalysis

[Class requirement]
None

[Method, Point of view, and Attainment levels of Evaluation]
Evaluation will be based on attendance and participation (10%), homework (40%) and final examination (50%).

[Textbook]

[Reference book, etc.]
(Reference book)
Introduced during class
Will be announced during the lecture
(Related URL)
(Will be announced during the lecture)

[Regarding studies out of class (preparation and review)]
Students are required to do their homeworks and when trouble is encountered during homework, please ask me.

[Others (office hour, etc.)]
Office hour: Anytime by email and appointments should be made via email.
<table>
<thead>
<tr>
<th>Lecture code: N361001</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Course numbering</th>
<th>U-LAS13 20013 LE60</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Course title</th>
<th>Organic Chemistry of Life-E2</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Affiliated department, Job title, Name</th>
<th>Institute for Chemical Research Senior Lecturer, Amelie Perron</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Group</th>
<th>Natural Sciences</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Field (Classification)</th>
<th>Chemistry (Development)</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Language</th>
<th>Old group</th>
<th>Group B</th>
<th>Number of credits</th>
<th>2</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Number of weekly time blocks</th>
<th>1</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Class style</th>
<th>Lecture</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Course offered year/period</th>
<th>2019 • First semester</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Day/period</th>
<th>Thu.4</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Target year</th>
<th>Mainly 1st & 2nd year student</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Eligible students</th>
<th>For science students</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>[Outline and Purpose of the Course]</th>
</tr>
</thead>
</table>

This course is intended for Japanese and international students registered in science majors who are interested in generating their own ideas through creative thinking. It is particularly suited for students interested in pursuing graduate studies in chemistry, life sciences, medicine, pharmaceutical sciences, or agriculture. Short video lectures are viewed by students at home before the class session, while in-class time is devoted to activities, brainstorming, or projects.

<table>
<thead>
<tr>
<th>Course Goals</th>
</tr>
</thead>
</table>

This course covers revolutionary ideas from scientists that originated from the integration of chemistry and biology with a main focus on strategies for idea generation. By the end of this course, you should be able to come up with your own ideas using various creative thinking strategies.

<table>
<thead>
<tr>
<th>Course Schedule and Contents</th>
</tr>
</thead>
</table>

The following topics will be covered online or in the classroom:

1. What is a Flipped Classroom?
2. Creating Drug Constellations with Chemical Structures
3. Building of a DNA Double Helix Structure
4. Innovative Applications Derived from DNA/RNA
5. Parallel Thinking with the 6 Thinking Hats Technique
6. Creation of a New Product using the Idea Generator Tool
7. Idea Generation based on Amino Acids and Proteins
8. Ideas for Genetically Modified Organisms
9. Fluorescence for Tracking Biology
10. Ideas for Controlling Biology with Light
11. Combinatorial Chemistry and Chemical Genetics
12. SCAMPER Method for Creating Revolutionizing Ideas
13. Ideas for Fooling Sugars and Fats
14. Creative Ways for Fighting Cancer and Viruses

<table>
<thead>
<tr>
<th>Organic Chemistry of Life-E2(2)</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>[Class requirement]</th>
</tr>
</thead>
</table>

None

<table>
<thead>
<tr>
<th>[Method, Point of view, and Attainment levels of Evaluation]</th>
</tr>
</thead>
</table>

Evaluation is based on attendance and active participation (20%), idea generation (50%), and online problems/exercises (30%).

<table>
<thead>
<tr>
<th>[Textbook]</th>
</tr>
</thead>
</table>

Not used

<table>
<thead>
<tr>
<th>[Reference book, etc.]</th>
</tr>
</thead>
</table>

KyotoUx 001x: “The Chemistry of Life” through edX online education platform

[Related URL]

https://www.edx.org/course/kyotoux/kyotoux-001x-chemistry-life-858#.VEoBHk102xA

<table>
<thead>
<tr>
<th>[Regarding studies out of class (preparation and review)]</th>
</tr>
</thead>
</table>

Students have to watch online lectures on the Internet (about 30 minutes per week) before attending the classes. Online lectures can be watched at any time during the week. Classroom activities will be based on the content of the online lectures.

<table>
<thead>
<tr>
<th>[Others (office hour, etc.)]</th>
</tr>
</thead>
</table>

Introduction to Surface Chemistry-E2

[Outline and Purpose of the Course]
In this lecture we will learn about surface processes, which is an important topic in physics, chemistry and engineering. Surfaces are much more important than you would think: Rusting of metals (corrosion), sticking of your shoes, colorful paints (coatings) are all phenomena happening at some surface. In this course, we will learn how the special properties of surfaces makes all this possible and how chemists in science and industry try to control these properties.

[Course Goals]
Students will gain the following form this lecture:
- Interest and fun to learn more about how things work in daily life
- An understanding of basic concepts of surface physics and surface chemistry
- The ability to connect knowledge to observed natural phenomena and industrial applications
- The ability to understand scientific terminologies and express their own ideas of natural sciences in English.

[Course Schedule and Contents]
The course will cover the following topics, each in a 2-3 week time span:
1) A cut through everything: We will learn what surfaces and interfaces are, their properties and their importance for our daily life.
2) Sticking together: We introduce surface energy and see how this leads to sticking and water repelling behavior.
3) How not to slip: We learn about surface structure, and get an understanding of how friction between surfaces works.
4) Gear breakdown: We get to know how friction leads to damage and how friction can be reduced.
5) Fogg up of glasses: We discuss about adsorption of atoms and molecules on surfaces.
6) Exhaust transformation: Chemical reactions on surfaces and catalysis will be discussed.
7) Sticky gas: Finally, we see how adsorption of gas can be measured and how this is used practically.

[Class requirement]
None

[Method, Point of view, and Attainment levels of Evaluation]
Preparing the homework (40%)
Two short test during the lecture (20%)
Final examination (40%)
With the industrial and technological development, the demand of human beings for more energy rising quickly. People have begun to search next generation energy-sources to preserve the nature and to cope with the fossil-fuel depletion. Solar energy is one of important alternative energy source, and solar energy conversion became a big topic of people's interest. As an elementary level, we will learn the current knowledge of solar energy conversion process, current available techniques, and future possibilities in terms of science, technology, and industry.

[Course Goals]
In this course, we aim to learn basic chemical and physical principles, terminology, issues relevant to solar energy conversion. In addition, we expect to understand the current problems and research opportunities in this topic.

[Course Schedule and Contents]
Contents will be discussed in the class. (The number does not mean the number of classes) The course schedule is subject to change, depending on the student's understanding.

1. Global energy problem and overview of solar energy conversion
2. Light, black-body radiation, photon, Solar spectrum
3. Light absorption
4. Electrons and holes in semiconductors
5. Fermi energy, electrochemical potential, work function
6. Charge generation and recombination
7. Radiative and nonradiative electron/hole recombination
8. Electron/hole transport, diffusion and drift
9. Basic solar cell operation mechanisms
10. PN-junction, heterojunction, maximum efficiency of solar cells
11. Organic/inorganic solar cells
12. Solar fuels, tandem cells
13. Thermophotovoltaics
14. Up/down conversion of photons
15. Spectroscopic approach on solar energy conversion

[Class requirement]
None

[Method, Point of view, and Attainment levels of Evaluation]
Final term project (50%), 4 small tasks (40%; quiz, report, homework), attendance and class participation (10%)

[Textbook]
Not used

[Reference book, etc.]

[Regarding studies out of class (preparation and review)]
Students are responsible for reviewing each class and preview.

[Others (office hour, etc.)]
Instructor: Jaehong Park (email: j.park@moleng.kyoto-u.ac.jp)
Course meeting: (Yoshida South campus, TBD), 1 session/week, 90 mins/session
Office hour:
Option 1- At Katsura campus(A4-205), any date could be possible, but appointment by email.
Option 2- At Yoshida campus, on Tuesday appointment by email.
Course Title

Chemical Kinetics and Molecular Reaction Dynamics-E2

Affiliated Department, Job Title, Name

Graduate School of Engineering, Senior Lecturer, PARK, Jaehong

Group

Natural Sciences

Field (Classification)

Chemistry (Development)

Language

English

Old Group

Group B

Number of Credits

2

Number of Weekly Time Blocks

1

Class Style

Lecture

Course offered year/period

2019 • Second semester

Day/period

Thu.4

Target year

Mainly 1st & 2nd year students

Eligible students

For science students

Outline and Purpose of the Course

Chemical kinetics and molecular reaction dynamics is a fundamental and important subject in chemistry as chemical reaction is an event that most chemical species experience and nature utilize at every moment. In this course, we will discuss the basic principles of chemical reaction kinetics in an introductory level. Both experimental and theoretical aspects of chemical reaction kinetics will be covered. Various experimental techniques to study this subject will also be introduced. In this elementary course, we will focus more on the simple gas phase and liquid phase reactions which are relevant industrial applications.

Course Goals

This course aims to develop both a conceptual and a quantitative understanding of the chemical reaction kinetics. We will explore the quantitative description of reaction rates and mechanisms. We will also learn the features of chemical reactions in a liquid phase.

Course Schedule and Contents

Contents will be discussed in the class. (The number does not mean the number of classes) The course schedule is subject to change, depending on the student's understanding.

1. Gas, ideal gas, real gas
2. Kinetic theory of gases
3. Molecular collisions
4. Reaction rates, theoretical aspects of reaction kinetics
5. Experimental aspects of reaction kinetics
6. Experimental techniques
7. Chain reactions, polymerization kinetics, homogeneous catalysis
8. Collision theory, diffusion-controlled reactions, transition-state theory
9. Photochemistry

Class Requirement

None

Method, Point of View, and Attainment Levels of Evaluation

Final exam (50%), small tasks (40%; quiz, report, homework, presentation), attendance and class participation (10%)

Textbook

Not used

Reference Book, etc.

- D. W. Oxtoby and H. P. Gillis 『Principles of Modern Chemistry』 ISBN:978-1305079113 (Optional, other elementary-level chemistry books are OK.)

Regarding studies out of class (preparation and review)

Basic mathematical knowledge such vector, integration, and differentiation is necessary, but most of them will be introduced in the class or in supplementary materials, or office-hours. Students are responsible for reviewing each class and preview.

Others (Office hour, etc.)

Instructor: Jaehong Park (email: j.park@moleng.kyoto-u.ac.jp)

Course meeting: (Yoshida South campus, TBD), 1 session/week, 90 mins/session

Office hour:
Option 1- At Katsura campus(A4-205), any date could be possible, but appointment by email.
Option 2- At Yoshida campus, on Thursday appointment by email.
Fundamentals of Cell and Molecular Biology-E2(2)

[Method, Point of view, and Attainment levels of Evaluation]
Class attendance and active participation (15%), weekly small tests (15%) an oral exam (20%) and a final written exam (50%)

[Textbook]
Alberts Bray et. al. 'Essential Cell Biology' (Garland Science) ISBN: 9780815344554
Summary of the lecture contents will be provided at the class.

[Regarding studies out of class (preparation and review)]
Reading the textbook before the lecture will help the students to understand the lecture.
Students should review the textbook after the lecture and answer the questions provided.

[Others (office hour, etc.)]
Contact: mizuki.takenaka@pmg.btm.kyoto-u.ac.jp
Any questions and requests are welcome by prior arrangements via E-mail.

[Outline and Purpose of the Course]
The purpose of this course is to provide fundamentals of current biology, in particular focused on micro-level biology below the cell level with an "Essential cell biology", which is a university level standard textbook. Students will learn the functions of characteristic molecules of life such as DNA, RNA and proteins in the cell. Furthermore, how structural features of these molecules contribute their respective functions will be discussed. This course will also cover the relevance between the functions of these biological molecules and various life phenomena at the cell or individual organism level.

[Course Goals]
This course will provide a fundamental understanding of molecular and cell biology. Students will be able to explain how the cell is organized and how it functions in English.

[Course Schedule and Contents]
1. Cells: The Fundamental Units of Life
2. Chemical Components of Cells
3. Protein Structure and Function
4. DNA Replication, Repair, and Recombination
5. From DNA to Protein: How Cells Read the Genome
6. How Genes and Genomes Evolve
7. Membrane Structure
8. Transport Across Cell Membranes
9. Energy Generation in Mitochondria and Chloroplasts
10. Intracellular Compartment and Protein Transport
11. Cell Signaling and Cytoskeleton
12. The Cell Division Cycle
14. Cellular Communities: Tissues, Stem Cells, and Cancer

[Class requirement]
This course is open to all students, but a basic knowledge on biology is recommended.
[Outline and Purpose of the Course]
In this lecture series, the basics of the survival strategy of plants will be learned at the cellular and molecular level. Despite that the achievement of plant science are very frequently described in high school textbooks, university students have very few opportunities to study them unless they specifically learn plant physiology. In this class, the contents of plant science, which are mentioned only widely and shallowly at high school level will be provided more deeply with the latest knowledge.

[Course Goals]
To understand the fundamentals of plant physiology
To understand how plants use light-energy.
To understand the signal transduction in plants.
To understand the basics of plant development and reproduction

[Course Schedule and Contents]
1) Plant and cell architecture
2) Genome structure and gene expression
3) Water in plants
4) Mineral Nutrition
5) Photosynthesis
6) Cell wall
7) Signal transduction
8) Embryogenesis
9) Seed dormancy germination and seedling
10) Vegetative growth and organogenesis
11) Flower contolling,
12) Gametophyte pollination , seeds, and fruits
13) Flower senescence and cell death
14) Biotic and Abiotic interaction

[Class requirement]
This course is open to all students, but a basic knowledge on biology is recommended.

[Method, Point of view, and Attainment levels of Evaluation]
Class attendance and active participation (15%), weekly small tests (15%) an oral exam (20%) and a final written exam (50%)

[Textbook]

[Reference book, etc.]
Summary of the lecture contents will be provided at the class.

[Regarding studies out of class (preparation and review)]
Reading the textbook before the lecture will help the students to understand the lecture. Students should review the textbook after the lecture.

[Others (office hour, etc.)]
Contact: mizuki.takenaka@pmg.bot.kyoto-u.ac.jp
Any questions and requests are welcome by prior arrangements via E-mail.
[Outline and Purpose of the Course]

Comparative cognition offers a ride through the mental capacities of animals as simple as the humble bumblebee and as complex as our own closest relative, the chimpanzee. In our quest to understand the origins of the human mind, we cannot forget that like all organisms on earth, we are but a small part of the great evolutionary tree of life. In this course, students learn about animal cognition through the lens of behavior, ecology and evolution. Students learn about how and why animals use cognition to help them navigate their physical and social worlds, and how and why they learn and remember things about their environments. The course has a strong emphasis on evolutionary theory, as well as the cognitive experiments that have allowed scientists to discover what we now know about the animal mind.

[Course Goals]

In this course, students will learn to:
- apply the scientific method to questions about intelligence and cognition to distinguish evidence-based statements about what animals are thinking from mere anthropomorphic descriptions or 'just-so' stories
- appreciate that human cognition - what and how we think and behave - is the product of a long evolutionary process that has acted in parallel on other species
- understand that cognition has both general (connected) and modular components, that there may be no such thing as a general intelligence, and that even the smallest of animals can surprise you with how they store and use information to solve problems that are important to them

[Course Schedule and Contents]

This course will be conducted in 5 parts, as described below. In principle, each topic within each part reflects one class, but the order and spacing of topics may be moved depending on the flow of the course or the occurrence of specific events related to the course material.

*Note that there will be a midterm exam held during the 7th week of class. Details will be announced in advance during class.

Part 1 - the science of comparative cognition
1. introducing cognition, evolution and behavior
2. the evolution of the animal brain
3. evolutionary and ecological pressures driving cognition

Part 2 - basic cognitive processes
4. sensing, perceiving and attending to the world
5-6. connecting the dots through learning & memory

Part 3 - finding our way in the physical world
7. spatial cognition
8. telling time & counting
9. foraging, planning & using tools

Part 4 - finding our way in the social world
10. communication & language
11. social cognition and social competence
12. social learning

Part 5 - putting it all together
13. cognition, ethics & animal rights

[Class requirement]

None

[Method, Point of view, and Attainment levels of Evaluation]

attendance and class participation - 10%
term report - 10%
mid-term exam - 40%
final exam - 40%

[Textbook]

Sara J. Shettleworth, Paul Bloom, and Lynn Nadel Fundamentals in comparative cognition (2012) Oxford University Press ISBN:978-0-19-534310-6 (The textbook may not be available at the university bookstore, but can be purchased from Amazon Japan or other third party online retailers, or directly from the publishers website)

[Regarding studies out of class (preparation and review)]

Students should read the relevant sections of the textbook before classes to enhance participation and understanding. The instructor will inform students which sections of the book to read for the following week. The mid-term and final examinations will be based upon both lecture material and items covered in the textbook.

[Others (office hour, etc.)]

There are no scheduled office hours for this course, but the instructor is happy to receive emails at any time and meet with students before or after class by appointment.

Students are strongly encouraged to participate in class discussion and ask a lot of questions!
With the onrushing of human development at the expense of the Earth's natural resources, we have now entered a new geological epoch: the ‘Anthropocene’. The human footprint on the Earth has never been greater and it is said that the world's biodiversity is now in the midst of the ‘sixth extinction’. This is where the relatively new science of conservation biology comes in. In this course, students learn about threats to biodiversity, loss of ecosystem services, extinction, and the importance of conserving nature, from individual species to entire ecosystems.

[Course Goals]
In this course, students will learn to:
- assess how human activities contribute to biodiversity loss and what can be done to prevent it
- weigh the costs and benefits of exploiting natural resources while considering social, economic, political and ecological factors simultaneously
- appreciate the importance of nature and natural reserves to human health and well-being
- engage in conservation activities and design ‘conservation strategies’ to reduce their own footprints on planet Earth

[Course Schedule and Contents]
This course will be conducted in 4 parts, as described below. In principle, each topic within each part reflects one class, but the order and spacing of topics may be moved depending on the flow of the course or the occurrence of specific events related to the course material.

*Note that there will be a midterm exam held during the 8th week of class. Details will be announced in advance during class.

**Note also that students are expected to find and discuss a conservation-related news story each week to supplement in-class material.

Part 1 - introducing conservation biology
1. a brief overview of the field of conservation biology
2. biodiversity: how it is measured and why it matters
3. the biodiversity crisis and biological extinctions

Part 2 - threats to biodiversity
4. habitat loss, degradation and fragmentation
5. over-harvesting and human use of natural products
6. invasive species

7. climate change
8. infectious disease
9. endangered species protection
10. protected and unprotected conservation areas
11. sustainable development
12. public outreach and education

Part 4 - the conservation biologist in you
13. student presentations of conservation biology term project

***during this course, students will design a project related to any area of conservation biology, which will be submitted and presented during the final class of the year. Some class time each week will be devoted to discussion of project progress.

[Class requirement]
None

[Method, Point of view, and Attainment levels of Evaluation]
attendance and class participation - 10%
student projects - 30%
mid-term - 30%
final exam - 30%

[Textbook]
Richard B. Primack and Anna A. Sher. An Introduction to Conservation Biology. Sinauer Associates, Inc. Publishers, 2016 ISBN:9781605354736 (should be available online at Amazon (or other online book retailer) or directly from publisher's website. Consult with University Co-op for other options)

[Regarding studies out of class (preparation and review)]
Students should read the relevant sections of the textbook before classes to enhance participation and understanding. The instructor will inform students which sections of the book to read for the following week. Also, students must also find at least one conservation-related news item each week during the course to stay up-to-date with current events. Each lecture will include time for student discussion related to these news items. The mid-term and final examinations will be based upon both lecture material and items covered in the textbook. Finally, a term project requires students to develop and complete a project related to any area of conservation biology. Topics and progress will be discussed with the instructor on an ongoing basis throughout the course.

[Others (office hour, etc.)]
This course has no scheduled office hours, but the instructor is happy to receive emails and meet either before or after class by appointment.

Students are strongly encouraged to participate in class discussion, ask a lot of questions, and get involved in conservation activities near you!
Why do animals do as they do? Why do we humans do as we do? This course is aimed at answering these questions from the perspective of Darwinian evolution. Using ‘Tinbergen’s 4 questions’, this course leads students to discover what lies at the root of the diversity of animal behavior that we observe today, how we study the mechanisms and functions of behavior, and why studying animals has a lot to teach us about the evolution of behavior in humans.

[Course Goals]
In this course, students will learn to:
- apply the scientific method to questions about animal behavior and avoid applying humanistic (anthropomorphic) explanations for what they observe
- understand comparative data and use it to better answer specific questions about the natural world
- understand that animal (including human) behavior, like all products of biology, is shaped by evolution

[Course Schedule and Contents]
This course will follow the schedule as follows. In principle, each topic within each part reflects one class, but the order and spacing of topics may be moved depending on the flow of the course or the occurrence of specific events related to the course material.

1. introducing animal behavior
2. understanding animal behavior through 4 questions
3. the ‘who, what, when, where and why’ of behavior
4. nature via nurture - behavioral genetics
5. animal learning
6. animal cognition
7. midterm exam
8. communication and signaling
9. ‘where are we going?’ - movement & navigation
10. ‘eat or be eaten’ - foraging & self-defense
11. sex & mating systems
12. parental investment
13. social behavior & social systems

**Note also that the course includes a practical field course held at Arashiyama’s Iwatayama Monkey Park. Students will be able to apply what they learn in the course and get some practice observing animals and collecting scientific data.

[Class requirement]
None

[Method, Point of view, and Attainment levels of Evaluation]
Attendance and class participation - 10%
Mid-term exam - 40%
Term Report - 10%
Final Exam - 40%

[Textbook]

[Reference book, etc.]
Reference book students are provided with information to access any additional readings related to course material

[Regarding studies out of class (preparation and review)]
Students should keep up with readings in the textbook each week, preferably before class so they can actively participate in class discussion. Details about the exams and term report will be provided well in advance for students to make the appropriate preparations.

[Others (office hour, etc.)]
This course has no scheduled office hours, but the instructor is happy to receive emails and meet either before or after class by appointment.

In addition to the weekly lectures, this course includes a field practicum at Arashiyama (Iwatayama) Monkey Park where students will learn to study and identify animal behavior. Details, including dates and content, will be discussed with students in class. Students should ensure they have the necessary insurance.

Students are strongly encouraged to participate in class discussion and ask a lot of questions!
[Outline and Purpose of the Course]
Zoos and aquariums are a window into nature and the exotic lives of animals. Everyone has been to a zoo and wondered at the animals on display, but what are zoos really about? What goes on behind the scenes? What role does a modern zoo play in our society, and how has this changed throughout history? This course is designed to answer just these questions. Along the way, you’ll learn about the modern missions of zoos, animal behavior and welfare, public outreach and education, and especially the conservation of endangered species.

[Course Goals]
In this course, students will learn to:
- appreciate and understand the role of zoos in modern society
- think critically about issues concerning zoos and aquariums and balance the costs and benefits of keeping animals in captivity, particularly as they relate to conservation of endangered species
- assess the ‘quality of life’ of the animals they encounter at zoos and aquariums, and appreciate the diverse set of animal care and welfare challenges facing these institutions

[Course Schedule and Contents]
This is an intensive lecture tentatively scheduled for November 30 and December 1, 2019, with a one-day practical course held at Kyoto City Zoo on a subsequent weekend in December (exact date to be determined).

The course is organized into the following units:
1. history, philosophy and the modern missions of zoos
2. science at the zoo: basic research, biodiversity conservation, and environmental education
3. zoo ethics: animal behavior, welfare, enrichment and animal rights
4. zoo practical course: students

[Class requirement]
None
Outline and Purpose of the Course

Genetics is the science of heredity that seeks to explain variation between related organisms. All aspects of life are affected by the expression of genes. As our understanding of the genome increases, it is expected that the application of classical and molecular genetic information will become an indispensable tool in the development of microbial, plant, animal and medical studies.

The course will begin by considering the basic concepts of inheritance, i.e. how Mendelian traits are passed to the next generation, will then outline our current understanding of chromosomes, DNA and genes and their regulation, and will finally examine how such genes can affect developmental programmes, cancer and behavior of organisms.

Course Goals

To acquire a basic understanding of the principles of classical and molecular genetics and their relevance and application to modern biological sciences

Course Schedule and Contents

Main Topics:
1. Development of modern genetics
2. Cells and cell division
3. Mendelian inheritance
4. Extensions of Mendelian genetics
5. Chromosomes and chromosome aberrations
6. Genomes, DNA structure and replication
7. Gene expression and regulation
8. DNA mutations and repair
9. Techniques in molecular genetics and genomics
10. Cancer genetics
11. Developmental genetics
12. Behavioral, population and evolutionary genetics
13. Special topics in modern genetics
14. Applications of molecular genetics in microbiology, agriculture and medicine
15. Final Exam
16. Feedback
Introduction to Genetics and Evolution-E2

[Outline and Purpose of the Course]
This class will provide a basic introduction to genetics and molecular genetics, starting with familiar topics. What are chromosomes? How do cats get six toes? We will learn some of the basics about DNA, the genetic material; concepts of dominant and recessive modes of inheritance; various model organisms, and then we will progress to more specific topics, such as human genetics, how genes are regulated, how genetic variation is maintained in populations, and evolution.

[Course Goals]
Students will become familiar with "classical" genetics, where mutations come from, genetic linkage and gene mapping, population genetics, and a brief introduction to current topics such as human genetics, gene therapy, genetically modified organisms and evolution.

[Course Schedule and Contents]
Second Semester, Mondays, 13:00-14:30
1. The Structure of DNA and chromosomes
2. Heritability and Independent Assortment—how do chromosomes segregate
3. The source of genetic variation: Mutations and Rearrangements
4. Genetics of Bacteria and Bacteriophages
5. Eukaryotic Genetics, Model Organisms: plants, flies, worms, mice, etc.
6. Linkage and Recombination
7. Transposable Elements
8. Organelles: mitochondrial genes; chloroplast genes.
9. Human Genetics: human genetic diseases, and other topics
10. Cancer Genetics: familial colon cancer. Loss of heterozygosity, etc.
11. Imprinting
12. Reverse Genetics, Genetic engineering, and GMOs
13. Gene Therapy
14. Population Genetics and Evolution
15. Final Exam
16. Feedback Class

Note: schedule is subject to change

[Class requirement]
This is an introductory course. There are no requirements, but some basic familiarity with biology will be beneficial. The course will be taught entirely in English. For some students, they will already have some knowledge of Genetics but maybe not in English. For other students, perhaps they will have good English skills, but will have to learn the specialized vocabulary of Genetics.

(Method, Point of view, and Attainment levels of Evaluation]
The final grade will be based on mini-quizzes (30 points) to assess comprehension and a final exam (30 points). Attendance and participation (40 points) will also factor into the final grade.

[Textbook]
Hartl "Essential Genetics 6th ed." (Jones and Bartlett Learning) ISBN:978-1-4496-8688-8 (Recommended but not strictly required.)

[Reference book, etc.]

[Regarding studies out of class (preparation and review)]
Students may need 2-3 hours per week to review the lecture material and look up any background information as necessary. Some students may know the subject already, but need to learn the English vocabulary; others may need to learn both Biology and English.

[Others (office hour, etc.)]
I will provide handouts for each lecture. I will try to post these on Kulasis ahead of time so that you can study before the lecture. Office hours are Mondays from 10:00-12:00, but you may stop by my office any time, if I am there.
[Outline and Purpose of the Course]
This class will provide a basic introduction to molecular and cell biology, in English. The class is open to 1st and 2nd year students, and will assume some prior familiarity with elementary chemistry and biology, although students from other majors are welcome to attend. The objective for the class is to nurture an intellectual curiosity about molecular and cell biology, which will lead to more in-depth study later on. We will pay attention to some of the similarities in different organisms, as well as some of the obvious differences, not only between organisms but between cell types, and at the molecular level of protein functions.

[Course Goals]
Students will gain familiarity with the fundamental components of cells, and begin to learn how cellular function depends on complex interactions between proteins, nucleic acids, lipids, and carbohydrates acting alone, in complexes, or in larger structures, such as organelles. Students should begin to appreciate how fundamental processes are conserved over evolutionary time, and also how they vary in different species.

[Course Schedule and Contents]
First Semester, Mondays, 13:00-14:30
1. Big and Small: organisms and molecules
2. Carbohydrates
3. Nucleic Acids-DNA, nucleotides, genes, etc.
4. Nucleic Acids-RNA, ribonucleotides, coding RNAs, non-coding RNAs, etc.
5. Proteins: structural proteins, enzymes, machines
6. Information Flow, the central dogma and beyond.
7. Ribonucleoproteins, including ribosomes and protein translation
8. Lipids and membranes: what makes a cell a cell?
9. Membranes: inside, outside, and channels
10. Energy and Metabolism: what is the power source of the cell?
11. Gene Regulation: how are genes turned on and off?
12. Prokaryotic Cells: basic biology and social interactions
13. Eukaryotic Cells: types of cells; cell differentiation; and more
14. Regulation-homeostasis, communication, and signaling
15. Final Exam
16. Feedback class

[Class requirement]
The class is open to all 1st and 2nd year students, but it assumes some basic (high school) knowledge of chemistry and biology.

[Method, Point of view, and Attainment levels of Evaluation]
Lectures will encourage student participation. There will be a final exam and some mini-quizzes to assess comprehension. Attendance will also factor into the final grade. Attendance and participation, 50 points; quizzes, 20 points; final exam, 30 points.

[Textbook]

[Reference book, etc.]

I will also refer to a general biology textbook:

I will provide lecture handouts for each class, hopefully one week in advance.

[Regarding studies out of class (preparation and review)]
For some students, the subject will already be familiar, but the English vocabulary will be new. For others, the biological concepts will be new. Thus, outside work may involve a balance of reading about biology and acquisition of specialized biological vocabulary. I may provide some optional homework problems to help you focus on the key concepts.

[Others (office hour, etc.)]
Office hours: Mondays, 10:00-12:00. I am often in my office, and you are free to drop in--I can always find 5 or 10 minutes to talk about biology.
Basic Genetic Engineering-E2(2)

[Class requirement]

The course is designed for 1st and 2nd year students, from all backgrounds. Recombineering is conceptually not difficult. The vocabulary will get a bit technical, but with some effort, non-biology students should understand most of the course.

[Method, Point of view, and Attainment levels of Evaluation]

Final grades will be based on quizzes (20 points), a final presentation (20 points), and attendance and participation (60 points).

[Textbook]

Not used

I will teach you how to use many online sources and freeware to work with DNA sequences, vectors, cloning, etc.

[Reference book, etc.]

(Reference book)

[Regarding studies out of class (preparation and review)]

As we get into individual or team cloning projects, some outside reading or planning may be necessary, roughly 1-2 hours per week.

[Others (office hour, etc.)]

I will combine short mini-lectures with in-class work in teams so that you actively learn how to use some of the design tools and strategies for genetic engineering.

Office hours: Mondays, 10:00-12:00. I am often in my office, so you may drop by; if I am there, we can talk. Students may need to spend some time working on their independent projects outside of class, although about half of each class will be spent on the group projects. Students should bring a laptop or pad with internet access so that they can work in class.
Outline and Purpose of the Course

This introductory course focuses on the basic concepts of biochemistry. It begins from the molecular design of life and considers its major players; nucleic acids as the genetic material, and then proteins, enzymes, carbohydrates, lipids and cell membranes. Based on these preliminary concepts, the course then continues to consider the basic processes involved in metabolism and energy generation in living organisms.

Course Goals

To appreciate that by understanding some of the underlying concepts and principles of the molecular and biochemical processes that control life, we can more easily comprehend the complexities of diverse biological and physiological systems.

Course Schedule and Contents

Main Topics:
1. Introduction to biochemistry, an evolving science
2. Genomes, DNA and DNA replication
3. Genes and gene expression
4. Protein composition and structure
5. Exploring DNA and genes
6. Exploring proteins
7. Introduction to enzymes
8. Carbohydrates
9. Lipids and cell membranes
10. Introduction to metabolism
11. Glycolysis
12. Gluconeogenesis
13. Citric acid cycle
14. Oxidative phosphorylation
15. Final examination
16. Feedback discussions

[Method, Point of view, and Attainment levels of Evaluation]

Evaluation will be based on class attendance and active participation (~20%), mid-course tests (~30%) and a final examination (~50%).

[Textbook]

Berg, Tymoczko and Stryer
Biochemistry 7th edition, International 2012
(W. H. Freeman and Co.)
ISBN:978-1-4292-7635-1
(Few copies are available in the Medical School Library)

[Reference book, etc.]

Introduced during class

Regarding studies out of class (preparation and review)

Full lecture handouts will be provided one week before each lecture, and will also be uploaded on KULASIS. It is expected that students will have read through the handouts at least once before each lecture to familiarize themselves with the contents. During the lecture, active listening and participation (e.g. by asking questions) will ensure a greater understanding of the basic concepts. Finally, and most importantly, a private review of the handout immediately after the lecture will ensure a full and solid understanding of the lecture concepts.

The course will be associated with a new series of small-group, weekly seminars that will help students obtain a deeper understanding of the basic concepts.

[Others (office hour, etc.)]

The course is presented as a series of engaging and active lectures with demonstrations and video presentations.

Questions and discussions during class are highly encouraged.

We run an open door policy; questions and discussions will be happily addressed anytime, even outside the official office hour.
This introductory course focuses on the basic concepts of biochemistry. It begins from the molecular design of life and considers its major players; nucleic acids as the genetic material, and then proteins, enzymes, carbohydrates, lipids and cell membranes. Based on these preliminary concepts, the course then continues to consider the basic processes involved in metabolism and energy generation in living organisms.

Course Goals
To appreciate that by understanding some of the underlying concepts and principles of the molecular and biochemical processes that control life, we can more easily comprehend the complexities of diverse biological and physiological systems.

Course Schedule and Contents
Main Topics:
1. Introduction to biochemistry, an evolving science
2. Genomes, DNA and DNA replication
3. Genes and gene expression
4. Protein composition and structure
5. Exploring DNA and genes
6. Exploring proteins
7. Introduction to enzymes
8. Carbohydrates
9. Lipids and cell membranes
10. Introduction to metabolism
11. Glycolysis
12. Gluconeogenesis
13. Citric acid cycle
14. Oxidative phosphorylation
15. Final examination
16. Feedback discussions

Class requirement
None

Method, Point of view, and Attainment levels of Evaluation
Evaluation will be based on class attendance and active participation (~20%), mid-course tests (~30%) and a final examination (~50%).

Textbook
ISBN: 978-1-4292-7635-1 (Few copies are available in the Medical School Library)

Reference book, etc.
Introduced during class

Regarding studies out of class (preparation and review)
Full lecture handouts will be provided one week before each lecture, and will also be uploaded on KULASIS. It is expected that students will have read through the handouts at least once before each lecture to familiarize themselves with the contents. During the lecture, active listening and participation (e.g. by asking questions) will ensure a greater understanding of the basic concepts. Finally, and most importantly, a private review of the handout immediately after the lecture will ensure a full and solid understanding of the lecture concepts.

The course will be associated with a new series of small-group, weekly seminars that will help students obtain a deeper understanding of the basic concepts

Others (office hour, etc.)
The course is presented as a series of engaging and active lectures with demonstrations and video presentations.
Questions and discussions during class are highly encouraged.
We run an open door policy; questions and discussions will be happily addressed anytime, even outside the official office hour.
Lecture code: N490002

<table>
<thead>
<tr>
<th>Course number</th>
<th>U-LAS14 20037 LE68</th>
</tr>
</thead>
<tbody>
<tr>
<td>Course title</td>
<td>Introduction to Biochemistry-E2</td>
</tr>
<tr>
<td>Affiliated department, Job title, Name</td>
<td>Graduate School of Medicine, Senior Lecturer, Marco, Marques Candeias</td>
</tr>
<tr>
<td>Group</td>
<td>Natural Sciences</td>
</tr>
<tr>
<td>Field(Classification)</td>
<td>Biology(Issues)</td>
</tr>
<tr>
<td>Language</td>
<td>English</td>
</tr>
<tr>
<td>Old group</td>
<td>Group B</td>
</tr>
<tr>
<td>Number of weekly time blocks</td>
<td>1</td>
</tr>
<tr>
<td>Class style</td>
<td>Lecture</td>
</tr>
<tr>
<td>Course offered year/period</td>
<td>2019 • Second semester</td>
</tr>
<tr>
<td>Day/period</td>
<td>Tue.2</td>
</tr>
<tr>
<td>Target year</td>
<td>Mainly 1st & 2nd year students</td>
</tr>
<tr>
<td>Eligible students</td>
<td>For science students</td>
</tr>
</tbody>
</table>

Group B

Field(Classification)
Biology(Issues)

Language
English

Number of credits
2

Eligible students
For science students

Field(Classification)
Biology(Issues)

Language
English

Number of credits
2

Description
This introductory course focuses on the basic concepts of biochemistry. It begins from the molecular design of life and considers its major players: nucleic acids as the genetic material, and then proteins, enzymes, carbohydrates, lipids and cell membranes. Based on these preliminary concepts, the course then continues to consider the basic processes involved in metabolism and energy generation in living organisms.

Goals
To appreciate that by understanding some of the underlying concepts and principles of the molecular and biochemical processes that control life, we can more easily comprehend the complexities of diverse biological and physiological systems.

Course Schedule and Contents

Main Topics:
1. Introduction to biochemistry, an evolving science
2. Genomes, DNA and DNA replication
3. Genes and gene expression
4. Protein composition and structure
5. Exploring DNA and genes
6. Exploring proteins
7. Introduction to enzymes
8. Carbohydrates
9. Lipids and cell membranes
10. Introduction to metabolism
11. Glycolysis
12. Gluconeogenesis
13. Citric acid cycle
14. Oxidative phosphorylation
15. Final examination
16. Feedback discussions

Class requirement
None

Introduction to Biochemistry-E2(2)

Method, Point of view, and Attainment levels of Evaluation
Evaluation will be based on class attendance and active participation (~20%), mid-course tests (~30%) and a final examination (~50%).

Textbook

Reference book, etc.
Introduced during class

Regarding studies out of class (preparation and review)
*Full lecture handouts will be provided one week before each lecture, and will also be uploaded on KULASIS. It is expected that students will have read through the handouts at least once before each lecture to familiarize themselves with the contents. During the lecture, active listening and participation (e.g. by asking questions) will ensure a greater understanding of the basic concepts. Finally, and most importantly, a private review of the handout immediately after the lecture will ensure a full and solid understanding of the lecture concepts.

*The course will be associated with a new series of small-group, weekly seminars that will help students obtain a deeper understanding of the basic concepts

Others (office hour, etc.)
*The course is presented as a series of engaging and active lectures with demonstrations and video presentations.
*Questions and discussions during class are highly encouraged.
*We run an open door policy; questions and discussions will be happily addressed anytime, even outside the official office hour.
[Outline and Purpose of the Course]

This introductory course focuses on the basic concepts of biochemistry. It begins from the molecular design of life and considers its major players: nucleic acids as the genetic material, and then proteins, enzymes, carbohydrates, lipids and cell membranes. Based on these preliminary concepts, the course then continues to consider the basic processes involved in metabolism and energy generation in living organisms.

[Course Goals]

To appreciate that by understanding some of the underlying concepts and principles of the molecular and biochemical processes that control life, we can more easily comprehend the complexities of diverse biological and physiological systems.

[Course Schedule and Contents]

Main Topics:
1. Introduction to biochemistry, an evolving science
2. Genomes, DNA and DNA replication
3. Genes and gene expression
4. Protein composition and structure
5. Exploring DNA and genes
6. Exploring proteins
7. Introduction to enzymes
8. Carbohydrates
9. Lipids and cell membranes
10. Introduction to metabolism
11. Glycolysis
12. Gluconeogenesis
13. Citric acid cycle
14. Oxidative phosphorylation
15. Final examination
16. Feedback discussions

[Introduction to Biochemistry-E2(2)]

[Method, Point of view, and Attainment levels of Evaluation]

Evaluation will be based on class attendance and active participation (~20 %), mid-course tests (~30 %) and a final examination (~50 %).

[Textbook]

Berg, Tymoczko and Stryer
(W. H. Freeman and Co.)
ISBN-978-1-4292-7635-1
(Few copies are available in the Medical School Library)

[Reference book, etc.]

Introduced during class

[Regarding studies out of class (preparation and review)]

*Full lecture handouts will be provided one week before each lecture, and will also be uploaded on KULASIS. It is expected that students will have read through the handouts at least once before each lecture to familiarize themselves with the contents. During the lecture, active listening and participation (e.g. by asking questions) will ensure a greater understanding of the basic concepts. Finally, and most importantly, a private review of the handout immediately after the lecture will ensure a full and solid understanding of the lecture concepts. *The course will be associated with a new series of small-group, weekly seminars that will help students obtain a deeper understanding of the basic concepts.

[Others (office hour, etc.)]

*The course is presented as a series of engaging and active lectures with demonstrations and video presentations. *Questions and discussions during class are highly encouraged. *We run an open door policy; questions and discussions will be happily addressed anytime, even outside the official office hour.
Introduction to Molecular Biotechnology-E2(2)

[Class requirement]
None

[Method, Point of view, and Attainment levels of Evaluation]
Evaluation will be based on class attendance and active participation (~20%), mid-course tests (~30%) and a final examination (~50%).

[Textbook]

[Reference book, etc.]
Introduced during class

[Regarding studies out of class (preparation and review)]
Full lecture handouts will be provided one week before each lecture, and will also be uploaded on KULASIS. It is expected that students will have read through the handouts at least once before each lecture to familiarize themselves with the contents. During the lecture, active listening and participation (e.g. by asking questions) will ensure a greater understanding of the basic concepts. Finally, and most importantly, a private review of the handout immediately after the lecture will ensure a full and solid understanding of the lecture concepts

[Others (office hour, etc.)]
The course is presented as a series of engaging and active lectures with demonstrations and video presentations.
Questions and discussions during class are highly encouraged.
I run an open door policy; questions and discussions will be happily addressed anytime, even outside the official office hour.

[Outline and Purpose of the Course]
Molecular Biotechnology is an exciting, evolving and interdisciplinary area of science that is expected to impact not only on the way we live but human life itself. It is being used to produce chemicals, medicines and other products in recombinant bacterial, plant and animal cells; to create transgenic plants that synthesize novel products or are resistant to various stresses, and transgenic animals with increased productivity; and is even being applied to modify humans through gene therapy and regenerative medicine. The course will begin by outlining our current understanding of genomes, DNA and genes and their regulation, will then focus on the concepts behind basic techniques routinely used to isolate and analyse DNA and proteins, will examine how these principles and methodologies are used to generate transgenic organisms, and will finally evaluate the pros and cons of such transgenic applications.

[Course Goals]
To appreciate the tremendous potential of molecular biotechnology through a solid understanding of its basic principles, techniques and current applications, and thereby be able to address, from a fully informed point of view, the moral and bioethical issues that arise from the use of such breakthrough technologies.

[Course Schedule and Contents]

<table>
<thead>
<tr>
<th>Main Topics</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Introduction; overview, concepts, development and future</td>
</tr>
<tr>
<td>2. Genome organization, DNA and genes</td>
</tr>
<tr>
<td>3. Gene expression and regulation</td>
</tr>
<tr>
<td>4. Principles and techniques of recombinant DNA technology</td>
</tr>
<tr>
<td>5. Molecular techniques for gene identification</td>
</tr>
<tr>
<td>6. Molecular techniques of gene analysis</td>
</tr>
<tr>
<td>7. Recombinant proteins; synthesis and analysis</td>
</tr>
<tr>
<td>8. Methods in microbial molecular biotechnology</td>
</tr>
<tr>
<td>9. Applications of microbial molecular biotechnology</td>
</tr>
<tr>
<td>10. Methods in plant molecular biotechnology</td>
</tr>
<tr>
<td>11. Applications of plant molecular biotechnology</td>
</tr>
<tr>
<td>12. Methods in animal, human and medical biotechnology</td>
</tr>
<tr>
<td>13. Applications of animal and human molecular genetics</td>
</tr>
<tr>
<td>14. Social and ethical issues of molecular biotechnology</td>
</tr>
<tr>
<td>15. Final examination</td>
</tr>
<tr>
<td>16. Feedback</td>
</tr>
</tbody>
</table>
Behavioral Neuroscience investigates the neural basis of behavior. Part A of this course will provide an introduction to basic neuroanatomy, neural functioning, neuroscience methods, perception, attention, and movement. The course will employ an integrative approach by discussing both research results obtained with brain imaging in humans and experiments in animal models.

[Course Goals]
- To understand how our brain processes information.
- To understand the methods used to investigate the brain and behavior.
- To be able to critically evaluate research findings in behavioral neuroscience reported in the public and scientific media.

[Course Schedule and Contents]
1) Introduction to Behavioral Neuroscience
2) Course anatomy of the nervous system
3) Cells in the nervous system
4) Neural information processing
5) Neurotransmitters, drugs, and hormones
6) Demonstration of Electroencephalography
7) Methods in Behavioral Neuroscience
8) Vision
9) Audition
10) Touch and pain
11) Integrating the senses
12) Attention
13) Voluntary body movement
14) Movement planning
15) Feedback (Please arrange by email)

[Class requirement]
Basic knowledge of high-school level biology is recommended. The course will continue in the following semester with "Introduction to Behavioral Neuroscience B".

[Method, Point of view, and Attainment levels of Evaluation]
Evaluation will be based on class attendance and active participation (30 points), short student presentation or report (15 points), and 5 random in-class open-note quizzes (55 points), the lowest of which is not counted.
Introduction to Behavioral Neuroscience B-E2

Behavioral Neuroscience investigates the neural basis of behavior. Part B of this course will provide an introduction to higher brain functions, such as motivation, learning, memory, communication and language. The course will employ an integrative approach by discussing both research results obtained with brain imaging in humans and experiments in animal models.

[Course Goals]
- To understand how our brain generates complex behavior.
- To understand how we can apply basic research in behavioral neuroscience to our everyday life.
- To be able to critically evaluate research findings in behavioral neuroscience reported in the public and scientific media.

[Course Schedule and Contents]
1) Introduction to higher brain functions
2) Motivation
3) Learning
4) Memory
5) Spatial memory and navigation
6) Executive functions and planning
7) Emotions
8) Reproductive behavior
9) Communication and language
10) Human language and language disorders
11) Social interaction
12) Evolution and development of behavior
13) Neurological and psychiatric disorders
14) Behavioral treatment strategies
15) Feedback (arrange by email)

[Class requirement]
Introduction to Behavioral Neuroscience A is recommended (but not mandatory), because it provides the fundamental knowledge for this course.

[Method, Point of view, and Attainment levels of Evaluation]
Evaluation will be based on class attendance and active participation (30 points), short student presentation or report (15 points), and 5 in-class short open-note tests (55 points), the lowest of which will be dropped. The short tests and report will test whether students have achieved the course goals. Students who are absent more than five times will not be credited.

[Textbook]
Bear, Connors, Paradiso "Neuroscience: Exploring the brain." (Lippincott) ISBN:1451109547 (textbook not mandatory, lecture notes will be provided)

[Reference book, etc.]

[Regarding studies out of class (preparation and review)]
To achieve the course goals students should review the course materials plus optionally the according chapters in the recommended text books after each class. The time necessary for review should be in the range of 2-3 hours per class.

[Others (office hour, etc.)]
No fixed office hours, but students are welcome to arrange appointments by email.
Fundamentals of Neuroscience-E2(2)

[Outline and Purpose of the Course]
This course covers the basic background required to understand how networks of neurons could generate complex functions of the brain. You will learn topics ranging from the electrical properties of an individual neuron to higher brain functions, such as memory and consciousness. In this class, I will put more emphasis on big picture concepts, which I believe are more meaningful than memorizing a lot of facts and details that you can easily look up. Students with no biology-related backgrounds are welcome.

[Course Goals]
(1) To understand the basic components of the nervous system.
(2) To appreciate the complexity of brain functions and to understand their biological basis.
(3) To review and share neuroscience topics through presentation and discussion.

[Course Schedule and Contents]
(1) Introduction
PART I. Neurons & Neural Networks
(2) Neurons & Glia
(3) The Resting Potential
(4) The Action Potential & Its Propagation
(5) Synaptic Transmission
(6) Computation in Small Circuits
(7) Synaptic Plasticity
PART II. Functions of the Brain
(8) Brain Anatomy
(9) Sensory System- Vision
(10) Sensory System- Audition
(11) Motor System
(12) Learning & Memory
(13) Attention & Consciousness
(14) Self & Society
(15) Final Exam
(16) Feedback

[Course offered year/period] 2019 • First semester
[Number of credits] 2
[Number of weekly time blocks] 1
[Day/period] Mon. 2
[Class style] Lecture
[Old group] Group B
[Target year] All students
[Eligible students] For all majors
[Eligible students] For all majors

[Method, Point of view, and Attainment levels of Evaluation]
Participation (~25%), short presentation (~25%), quizzes (~25%), final exam (~25%).

[Textbook]
Instructed during class
Lecture notes will be provided.

[Reference book, etc.]
UTHealth Neuroscience Online Textbook: https://nba.uth.tmc.edu/neuroscience/

[Regarding studies out of class (preparation and review)]
Students are expected to be active participants in class discussions, and to spend 1~2 hours per week to review the course materials.

[Others (office hour, etc.)]
Lecture code: N918001

Course numbering | U-LAS14 20046 LE68

<table>
<thead>
<tr>
<th>Course title</th>
<th>Introduction to Human Physiology-E2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Affiliated department, Job title, Name</td>
<td>Graduate School of Medicine, Senior Lecturer, ZENAS C. CHAO</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Group</th>
<th>Natural Sciences</th>
</tr>
</thead>
<tbody>
<tr>
<td>Language</td>
<td>English</td>
</tr>
<tr>
<td>Field(Classification)</td>
<td>Biology(Issues)</td>
</tr>
<tr>
<td>Old group</td>
<td>Group B</td>
</tr>
<tr>
<td>Number of credits</td>
<td>2</td>
</tr>
</tbody>
</table>

Number of weekly time blocks	1
Class style	Lecture
Course offered year/period	2019 • Second semester

Day/period	Mon.2
Target year	All students
Eligible students	For all majors

[Outline and Purpose of the Course]

This course covers the basic background required to understand how the major organ systems of the human body perform their normal functions and how they work together to maintain our health. You will connect the knowledge learned in the class to your everyday life. This class aims primarily at students who have minimal to no biology background.

[Course Goals]

1. To understand the function of the major organ systems and how they work together.
2. To develop a vocabulary of anatomy and physiology.
3. To review and share physiology topics through presentation and discussion.

[Course Schedule and Contents]

1. Introduction
2. PART I. Levels of Organization
3. (a) Cells
4. (b) Tissues
5. PART II. Support & Movement
6. (a) Skeletal System
7. (b) Muscular System
8. PART III. Regulation, Integration, & Control
9. (a) Nervous System
10. (b) Senses
11. (c) Autonomic Nervous System
12. (d) Endocrine System
13. PART IV. Fluids & Transport
14. (a) Cardiovascular System
15. (b) Blood
16. PART V. Energy, Maintenance, & Environmental Exchange
17. (a) Respiratory System
18. (b) Digestive System
19. (c) Urinary System

Introduction to Human Physiology-E2(2)

(15) Final Exam
(16) Feedback

[Class requirement]

None

[Method, Point of view, and Attainment levels of Evaluation]

Participation (~25%), short presentation (~25%), quizzes (~25%), final exam (~25%).

[Textbook]

OpenStax: Anatomy & Physiology (download from https://openstax.org/details/books/anatomy-and-physiology). Lecture notes will also be provided.

[Reference book, etc.]

(Reference book)
Introduced during class

[Regarding studies out of class (preparation and review)]

Students are expected to be active participants in class discussions, and to spend 1~2 hours per week to review the course materials.

[Others (office hour, etc.)]
Course numbering

<table>
<thead>
<tr>
<th>Course title</th>
<th>Affiliated department, Job title, Name</th>
<th>Graduate School of Pharmaceutical Sciences Associate Professor, Fustin, Jean Michel</th>
</tr>
</thead>
</table>

Group
- Natural Sciences

Field(Classification)
- Biology(Issues)

Language
- English

Old group
- Group B

Number of weekly time blocks
- 1

Class style
- Lecture

Course offered year/period
- 2019 • First semester

Day/period
- Thu.5

Target year
- Mainly 2nd year students

Eligible students
- For science students

[Outline and Purpose of the Course]

Since the beginning of Humanity, time and its measurement has always occupied a central position in our minds. Sundials and stone circles are the legacy of early civilizations striving to know the time of day and the time of the seasons.

Despite this keen interest in knowing Time, the existence of an internal biological clock keeping track of time in an autonomous manner but synchronized to the environment has only been recognized towards the end of the 20th century. In 2017, the Nobel Prize in Physiology or Medicine was awarded to Jeffrey Hall, Michael Rosbash and Michael Young for their work in understanding how the circadian clock works at the molecular level.

The discovery of clock genes regulating their own expression and that of output genes of metabolic significance, leading to pervasive circadian rhythms in physiology and behavior in virtually every organisms studied thus far, has provided a solid base in understanding how our health intimately depends on such harmonious rhythms.

This course will dive into the fascinating world of Chronobiology, from the history of the discipline to its latest groundbreaking progresses.

[Course Goals]

Students will gain an understanding of how their biological clock works, and why it is important for their performance, behavior and physiology. Students will acquire the knowledge that, in biology, time-of-day can have a dramatic effect on physiology and metabolism, which is important for our daily life, but also when performing experiments with living organisms. Students will learn about state-of-the-art methods employed in circadian biology investigations. As this course is frequently updated, students will acquire up-to-date knowledge in Circadian biology.

[Course Schedule and Contents]

- **WEEK 1:** Introduction to Biological Timing in Health and Disease
- **WEEK 2:** The Suprachiasmatic Nucleus and the Circadian Timing System
- **WEEK 3:** Epigenetic Regulation of the Molecular Clockwork
- **WEEK 4:** Diversity of Human Clock Genotypes and Consequences
- **WEEK 5:** Peripheral Circadian Oscillators: Time and Food
- **WEEK 6:** Circadian Clocks, Food Intake, and Metabolism
- **WEEK 7:** Control of Sleep and Wakefulness in Health and Disease
- **WEEK 8:** Circadian Rhythms, Sleep Deprivation, and Human Performance
- **WEEK 9:** Timing, Sleep, and Respiration in Health and Disease
- **WEEK 10:** The Circadian Clock in Cancer Development and Therapy
- **WEEK 11:** Health Consequences of Circadian Disruption in Humans and Animal Models
- **WEEK 12:** Sleep and Circadian Rhythm Disruption in Social Jetlag and Mental Illness
- **WEEK 13:** Recent Advances in Circadian Biology
- **WEEK 14:** Seasonal Rhythms and Other Biological Oscillations

[Class requirement]

Basic knowledge on biology and physiology needed.

[Method, Point of view, and Attainment levels of Evaluation]

The final exam of 90 minutes is a 50/50 mix of Multiple Choice Questions and Open Question.

[Textbook]

[Reference book, etc.]

- Introductory book

[Regarding studies out of class (preparation and review)]

After the lecture, students should review the materials given during the lecture. It will be necessary to do so in order to understand the next lecture.

[Others (office hour, etc.)]

Any questions and requests are welcome by prior arrangements via E-mail.
Outline and Purpose of the Course

In our world there is no form of matter more astonishing than the living cell: tiny, fragile, marvelously intricate, continually made afresh, yet preserving in its DNA a record of information dating back more than three billion years, to a time when our planet had barely cooled from the hot materials of the nascent solar system. Caelessly re-engineered and diversified by evolution, extraordinarily versatile and adaptable, the cell retains a complex core of self-replicating chemical machinery that is shared and endlessly repeated by every living organism on the face of the Earth in every animal, every leaf, every bacterium in a piece of cheese, every yeast in a vat of wine.

Curiosity, if nothing else, should drive us to study cell biology; we need to understand cell biology to understand ourselves. But there are practical reasons, too, why cell biology should be a part of everyone’s education. We are made of cells, we feed on cells, and our world is made habit-able by cells. The challenge for scientists is to deepen our knowledge of cells and find new ways to apply it. All of us, as citizens, need to know something of the subject to grapple with the modern world, from our own health affairs to the great public issues of environmental change, biomedical technologies, agriculture, and epidemic disease.

This course is designed to provide the fundamentals of cell biology that are required by anyone to understand both the biomedical and the broader biological issues that affect our lives.

This course is not recommended for students who already have selected specialized life science courses such as biochemistry and genetics.

Course Goals

This course will give a basic understanding of cellular physiology. Students will be able to explain, in English, how the cell is organised and how it functions.

Course Schedule and Contents

This lecture will describe cellular physiology in continuity with the course titled "Basic Biology and Metabolism".

| WEEK 1 - WEEK 2. DNA replication, repair and recombination |
| WEEK 3 - WEEK 4. From DNA to protein: How Cells Read the Genome |
| WEEK 5 - WEEK 6. Control of Gene expression |

Class requirement

Students who have chosen Basic Biology and Metabolism are encouraged to also follow this course.

Method, Point of view, and Attainment levels of Evaluation

A mid-term examination, in English, to assess the students understanding of the content so far (50%).

A final examination, in English, to assess the students global understanding of the course (50%).

Textbook

Handouts based various sources specifically tailored for the lecture will be provided.

Regarding studies out of class (preparation and review)

Reading the textbook before the lecture will help the students to understand the lecture.

Students should review the textbook after the lecture and answer the questions provided.

Others (office hour, etc.)

Any questions and requests are welcome by prior arrangements via E-mail.
Course title: Chromosome Biology-E2
Affiliated department: Graduate School of Biostudies
Job title, Name: Associate Professor, CARLTON, Peter

Group: Natural Sciences
Field(Classification): Biology(Issues)

Language: English
Old group: Group B
Number of credits: 2

Number of weekly time blocks: 1
Class style: Lecture
Course offered year/period: 2019・First semester
Target year: Mainly 1st & 2nd year student
Eligible students: For all majors

Day/period: Tue.5

[Introduction and Purpose of the Course]
DNA contains all the information needed to build complex organisms from a single cell. Inside cells, DNA is packaged into discrete bodies called chromosomes. This class will give students a very basic introduction to the fascinating world of chromosomes. Students will learn what chromosomes are, how DNA is packaged inside them, how they replicate and divide, and how problems with chromosomes can lead to disease. This introductory class is also intended to give students a foundation for further studies of genetics and genomics.

[Course Goals]
- To understand the central importance of chromosomes in biology
- To understand how chromosomes are transmitted from one generation to the next, i.e., the fundamentals of genetics and heredity
- To understand how problems with chromosome maintenance can lead to disease
- To understand how researchers can visualize, isolate, and study chromosomes

[Course Schedule and Contents]
1. Overview of the course; human chromosomes and chromosome disorders
2. Small-scale structure of chromosomes: DNA and nucleosomes
3. Large-scale structure of chromosomes, chromosome condensation and cohesion
4. How chromosomes behave during cell division
5. Chromosomes and the cell nucleus
6. Sex chromosomes
7. Meiosis introduction: how sex creates diversity
8. Meiotic chromosome pairing
9. Meiotic recombination
10. Chromosome evolution
11. Chromosomes and genome sequence
12. Chromosome structure from sequence data
13. Chromosome diversity: a survey of unusual and fascinating chromosome variations
14. The current frontier of chromosome biology

[Class requirement]
The course is open to all students, but a background in biology is highly recommended.

[Method, Point of view, and Attainment levels of Evaluation]
Grading will be based on three areas: active participation, quizzes, and a final exam. Each area will contribute 1/3rd of the total grade.

[Textbook]
Not used

[Regarding studies out of class (preparation and review)]
For some students, the material will be familiar, but the English vocabulary will be new. For other students, both the content and the vocabulary will be new; for these students, this class may require extensive out-of-class study.

[Others (office hour, etc.)]
Office hours will be 1 hour once per week on Fridays. Schedule to be announced on the first day of class.
Practical Computing for Biologists-E2(2)

[Outline and Purpose of the Course]

This class will introduce students to basic but powerful computational tools that are increasingly becoming an essential part of biological research. We will explore some useful open source software for DNA and protein analysis, and additional programs for analyzing biological images. Each class will start with a background lecture and proceed to hands-on use. The aim of the class is to provide an introduction that will enable further exploration of computational biology.

[Course Goals]

- To discover current bioinformatics and biological image analysis software
- To be able to design analyze DNA sequences using open online software
- To learn general principles of programming using the Python language
- To develop a foundation for further exploration of the exciting world of bioinformatics

[Course Schedule and Contents]

1. Overview of the course. How are computers used in biology?
2. Getting the computer to do stuff: introduction to the "Shell" (terminal)
3. Introduction to text files and DNA sequence text files
4. The EMBOSS molecular biology suite: Overview of protein and DNA sequence features
5. Searching for sequences within the human genome and proteome
6. Working with DNA sequences: introduction to Benchmark
7. DNA cloning (making a new DNA sequence from existing ones)
8. Molecular scissors: introduction to genome engineering with CRISPR/Cas9
9. Beginning programming with Python, a general computer language that can be adapted for biology
10. Searching DNA sequences with Python
11. Introduction to R, a language for statistical computing
12. Imaging for biologists: Image fundamentals (pixels, intensity, scaling) using Fiji
13. Measuring objects in your images
14. Calculating the speed of moving particles using image analysis

[Class requirement]

A laptop computer with a wireless internet connection is highly recommended. Windows users should install the program "putty" (from http://www.putty.org) to connect to the class server; Mac and UNIX users can use the built-in terminal program. Provisions can be made for students who do not have their own laptop.

Continued...
[Outline and Purpose of the Course]

The purpose of this course is to provide a fundamental understanding of plant biology with potential applications to the fields of agriculture, horticulture, botany, food, ecology and conservation. In this course basic knowledge of flowering plant structure, function, reproduction, physiology, and genetics will be covered.

[Course Goals]

Upon successful completion of this course students will be able to:
* Identify major plant parts and function
* Explain the fundamentals of plant physiology and reproduction
* Collect, analyze and interpret data related to plant growth and development
* Think critically about plant science and research

[Course Schedule and Contents]

Course Schedule
1. Plants & People
2. Cells, Tissues, & Meristems
3. Stems
4. Leaves & Roots
5. Cell Function
6. Resource Acquisition & Transport Systems
7. Respiration
8. Photosynthesis/ Mid Term exam
9. Life Cycles
10. Flowers & Sexual Reproduction
11. Seeds & Fruits
12. Control of Growth & Development
13. Genetics & Evolution
14. Biotechnology
15. End of Term Exam
16. Feedback
Lecture code: N494001

Course numbering: U-LAS14 20052 LE68

Course title: Introductory Plant Ecology-E2

Affiliated department, Job title, Name: Graduate School of Agriculture, Associate Professor, Garry John PILLER

Group: Natural Sciences

Language: English

Field (Classification): Biology (Issues)

Old group: Group B

Number of credits: 2

Number of weekly time blocks: 1

Class style: Lecture

Course offered year/period: 2019 • First semester

Day/period: Wed. 3

Target year: Mainly 1st & 2nd year students

Eligible students: For science students

[Outline and Purpose of the Course]

Plant ecology underpins many scientific disciplines, including ecosystem rehabilitation, conservation and management biology, and research on climate change impacts. This course will introduce students to the principles of plant ecology. The focus will be on the factors that influence plant distribution and abundance: light, water, nutrients, growth patterns, plant and animal interactions, and disturbances. In addition, current ecological issues such as climate change and exotic species invasions will be examined.

[Course Goals]

Upon successful completion of this course students will be able to:

* Explain the fundamental processes that influence species distribution and abundance
* Discuss interactions between plants and the environment, as well as with other organisms
* Apply ecological principles to environmental issues
* Access and critically analyze basic research pertaining to plant ecology

[Course Schedule and Contents]

Course Schedule
1. Introduction to Plant Ecology
2. Light
3. Water Relations
4. Soils & Nutrition
5. Evolutionary Processes
6. Population Structure
7. Growth & Reproduction
8. Community Patterns
9. Competition
10. Herbivory & Plant-Pathogen Interactions
11. Disturbance & Fire
12. Succession
13. Communities in Landscapes
14. Global Change: Humans & Plants
15. End of Term Exam
16. Feedback

Introductory Plant Ecology-E2(2)

[Class requirement]

None

[Method, Point of view, and Attainment levels of Evaluation]

Grading: Class attendance and submission of questions related to listening exercise (20%), weekly quizzes based on assigned pre-class reading materials (30%), in-class group presentation (20%) on a topic in the field of plant ecology, and an end of term exam (30%).

[Textbook]

Not used

[Reference book, etc.]

Handouts will be given out in class, as well as emailed to the students.

[Regarding studies out of class (preparation and review)]

Students should read or listen to the required pre-class materials and submit any required assignment before the class, and come to class ready to participate in class activities. Typically, this will entail listening to a short video or podcast (10 min. or less), as well as reading a 2 or 3 page handout and be prepared to write answers to 1 or 2 questions about the reading material in the following class (15 to 20 minutes provided in class).

[Others (office hour, etc.)]

Open door policy during office hours, and anytime by email.
Principles of Horticulture-E2(2)

[Course title]
Principles of Horticulture-E2

[Affiliated department, Job title, Name]
Graduate School of Agriculture
Associate Professor, Garry John PILLER

[Course numbering]
U-LAS14 20053 LE68

[Group]
Natural Sciences

[Field(Classification)]
Biology(Issues)

[Language]
English

[Old group]
Group B

[Number of credits]
2

[Number of weekly time blocks]
1

[Class style]
Lecture

[Course offered year/period]
2019 • Second semester

[Day/period]
Wed.3

[Target year]
Mainly 1st & 2nd year students

[Eligible students]
For science students

[Outline and Purpose of the Course]
This course is a broad introduction to the science and technology underlying the use and production of horticultural crops (fruits, vegetables, flowers, and landscape plants). It includes the structure; growth, development and manipulation of horticultural plants; environmental influences; the basic principles of propagation, outdoor and greenhouse production; and pest control.

[Course Goals]
Upon successful completion of this course students will:
- Be able to use basic horticultural vocabulary to describe and define horticultural management activities.
- Demonstrate a working knowledge of growth and development patterns of horticultural crops, and responses to environmental variables.
- Be able to access and understand basic research on horticultural crops.

[Course Schedule and Contents]
Course Schedule
1. Introduction/ History
2. Plant Structure & Genotype
3. Flowers & Fruits
4. Propagation
5. Light
6. Temperature
7. Water
8. Soils & Soil Management
9. Mineral Nutrition
10. Plant Hormones
11. Directing Plant Growth
12. Pest & Disease Management
13. Greenhouse Production
14. Post Harvest Handling
15. End Exam
16. Feedback

[Class requirement]
None

[Method, Point of view, and Attainment levels of Evaluation]
Grading: Class attendance, active participation and listening quizzes (20%), weekly quizzes based on assigned pre-class reading materials (30%), in-class group presentation (20%), and final exam (30%).

[Textbook]
Not used

[Reference book, etc.]
Handouts and supplemental readings will be distributed electronically and/or as a hard copy in class.

[Regarding studies out of class (preparation and review)]
Students should read or listen to the required pre-class materials and submit any required assignment before the class, and come to class ready to participate in class activities. Typically, this will entail listening to a short video or podcast (10 min. or less), as well as reading a 2 or 3 page handout and be prepared to write answers to 1 or 2 questions about the reading material in the following class (15 to 20 minutes provided in class).

[Others (office hour, etc.)]
Open door policy during office hours, and anytime by email.
Introduction to Ecology-E2(2)

(Class requirement)
Understanding of high school biology is recommended.

(Method, Point of view, and Attainment levels of Evaluation)
Assessment will comprise of assignments (50%), and a final examination (50%). The final examination will test whether students have achieved the course goals. Students who are absent more than five times will not be credited.

(Textbook)
Not fixed

(Reference book, etc.)

Regarding studies out of class (preparation and review)
To achieve the course goals students should review the course materials plus optionally the according chapters in the recommended text books after each class. The time necessary for review should be in the range of 2-3 hours per class.

(Others (office hour, etc.))
Introduction to Evolution-E2(2)

[Outline and Purpose of the Course]
All living things have evolved from common ancestors. Evolutionary biology studies the relationships within and between groups of organisms and also the process and mechanisms that lead to changes among groups of organisms. These mechanisms include inheritance, development, and natural selection. Organisms inherit traits from their ancestors and they express their traits as they develop into adults. Natural selection causes some of these traits to change over generations. Genetics has shed much light on inheritance while developmental biology has revealed many of the mechanisms by which organisms are built. Evolutionary biology integrates the interactions is genetics and developments in populations of organisms changing over time. In this course, we move from describing the evolutionary processes that contribute to populations and species evolving over time (microevolution) to examining evolution above the species level (macroevolution). We will then integrate the two to give an understanding on the history of life.

[Course Goals]
1) To gain an understanding of the processes that lead to evolutionary change within and between populations and species.
2) To be aware of the contemporary criticisms of evolutionary theory and understand why these criticisms are not valid.
3) To understand the contemporary debates within the field of evolutionary biology.
4) To learn that there are still many areas of vital and interesting research in evolutionary biology and also to critically think about data in order to derive valid conclusions.

[Course Schedule and Contents]
1) Introduction, history of the idea of evolution, and challenges to evolution
2) Microevolutionary concepts: Adaptive and neutral evolution
3) Microevolutionary concepts: The genetic impact of selection on populations
4) Microevolutionary concepts: The importance of development
5) Microevolutionary concepts: The origin, maintenance, and expression of variation
6) Sexual selection
7) The evolution of sex and genomic conflict
8) Macroevolutionary concepts: Speciation
9) Macroevolutionary concepts: Case study of Darwin’s finches
10) Macroevolutionary concepts: Phylogeny, systematics, and the comparative method in evolutionary biology
11) Key events in evolution and the fossil record
12) Coevolution
13) Human evolution
14) Evolutionary medicine
15) Final Exam

[Class requirement]
Understanding of high school biology is recommended.

[Method, Point of view, and Attainment levels of Evaluation]
Assessment will comprise of assignments (50%), and a final examination (50%). The final examination will test whether students have achieved the course goals. Students who are absent more than five times will not be credited.

[Textbook]
Not fixed

[Reference book, etc.]
P. R. Grant and B.R. Grant 『How and Why Species Multiple: The Radiation of Darwin’s Finches』 (Princeton University Press)
D. J. Futuyma 『Evolution. 3rd Edition』 (Sinauer Associates)

[Regarding studies out of class (preparation and review)]
To achieve the course goals students should review the course materials plus optionally the according chapters in the recommended text books after each class. The time necessary for review should be in the range of 2-3 hours per class.
[Outline and Purpose of the Course]

In this seminar course, we will read various biological reviews, articles, and essays in turn in English. Students will be expected to deeply understand their contents. Supporting information like a scientific background, histories or experimental methods will be provided as needed. If necessary, short complementary comments in Japanese will be also available. Lesson materials used for the seminar course will be different from the second term.

[Course Goals]

- Students will learn how to read scientific reviews, essays, and articles.
- To grasp the essence of the article and summarize it efficiently.
- To find interesting points in scientific articles.
- To find complementary articles if necessary.
- To read articles critically and purposefully.

[Course Schedule and Contents]

1) In the first week, I will give an instruction of the seminar course. I will discuss an article to show the style of presentation. Then each week, several biological articles (especially from plant science) to be prepared for a later week will be presented to one of the students, who can make the choice based on his or her preference.

2)-14) Each student prepares a presentation about the article with support of me if necessary and presents it at the seminar in turn. Other students are expected actively to join the discussion. Complementary information for the article will be provided as needed.

15) I will provide a course summary for the feedback session.

[Class requirement]

None

[Method, Point of view, and Attainment levels of Evaluation]

Class attendance and active participation (70%), presentation following questions and answer session (30%).
<table>
<thead>
<tr>
<th>Course title (English)</th>
<th>Biological Sciences through Scientific Articles II-E2</th>
<th>Affiliated department, Job title, Name</th>
<th>Graduate School of Science Associate Professor, TAKENAKA, Mizuki</th>
</tr>
</thead>
<tbody>
<tr>
<td>Group</td>
<td>Natural Sciences</td>
<td>Field (Classification): Biology (Issues)</td>
<td></td>
</tr>
<tr>
<td>Language</td>
<td>English</td>
<td>Old group: Group B</td>
<td>Number of credits: 2</td>
</tr>
<tr>
<td>Number of weekly time blocks</td>
<td>1</td>
<td>Class style: Seminar</td>
<td>Course offered year/period: 2019 • Second semester</td>
</tr>
<tr>
<td>Day/period</td>
<td>Tue. 5</td>
<td>Target year: mainly 1st & 2nd year students</td>
<td>Eligible students: For all majors</td>
</tr>
</tbody>
</table>

[Outline and Purpose of the Course]

In this seminar course, we will read various biological reviews, articles, and essays in turn in English. Students will be expected to deeply understand their contents. Supporting information like a scientific background, histories or experimental methods will be provided as needed. If necessary, short complementary comments in Japanese will be also available. Lesson materials used for the seminar course will be different from the first term.

[Course Goals]

Students will learn how to read scientific reviews, essays, and articles.

- To grasp the essence of the article and summarize it efficiently.
- To find interesting points in scientific articles.
- To find complementary articles if necessary.
- To read articles critically and purposefully.

[Course Schedule and Contents]

1) In the first week, I will give an instruction of the seminar course. I will discuss an article to show the style of presentation. Then each week, several biological articles (especially from plant science) to be prepared for a later week will be presented to one of the students, who can make the choice based on his or her preference.

2) 14) Each student prepares a presentation about the article with support of me if necessary and presents it at the seminar in turn. Other students are expected actively to join the discussion. Complementary information for the article will be provided as needed.

15) I will provide a course summary for the feedback session.

[Class requirement]

None

[Method, Point of view, and Attainment levels of Evaluation]

Class attendance and active participation (70%), presentation following questions and answer session (30%).
Course title
Introduction to Biological Data Analysis-E2

Affiliated department, Job title, Name
Graduate School of Pharmaceutical Sciences
Senior Lecturer, RAKERS, Christin

Group
Natural Sciences

Field(Classification)
Biology(Issues)

Language
English

Number of weekly time blocks
1

Class style
Seminar

Course offered year/period
2019 • First semester

Day/period
Thu.3

Target year
All students

Eligible students
For science students

[Outline and Purpose of the Course]

This course provides an introduction to basic data analysis techniques that are commonly applied in life science research. The first section of this course covers the theoretical basis of statistics and statistical learning. In the second part of the course, scientific research articles will be presented and discussed in class to assess how data analysis techniques can be applied in a biological research context. Prior knowledge about basic molecular biology is advantageous for scientific article review.

[Course Goals]

The goal of this course is to equip students with:
- an understanding of basic statistics and statistical learning methods
- the skills to review and evaluate research articles
- the ability to discuss scientific data analysis in English
- statistical thinking for study design and evaluation

[Course Schedule and Contents]

(The order and depth of covered topics might be subject to change, depending on the number of students, the students’ proficiency levels, and feedback)

[WEEKS 01-08] THEORY

The following topics are covered in this theory section:
- Experimental design
- Descriptive statistics
- Power analysis
- Probability and distributions
- Hypothesis testing
- Linear regression
- Statistical learning methods and assessment
- Clustering, networks

[WEEKS 09-14] DISCUSSIONS

Students will give presentations of research articles from life sciences (e.g. proteomics, gene expression data) that contain data analysis concepts covered in the previous theory section. Presented research articles will be discussed in class with regard to research design and biological data analysis approaches.

Introduction to Biological Data Analysis-E2(2)

[Class requirement]
None

[Method, Point of view, and Attainment levels of Evaluation]
60 % Attendance and active participation
40 % Presentation

[Textbook]
Instructed during class

[Reference book, etc.]
Articles and material will be provided in class.

[Regarding studies out of class (preparation and review)]
Weekly review of course content is advised. Students will need to prepare a presentation of a scientific research article.

[Others (office hour, etc.)]
Announced during class.
Introduction to Computational Molecular Biology-E2(2)

Course title
Introduction to Computational Molecular Biology-E2

Affiliated department, Job title, Name
Graduate School of Pharmaceutical Sciences
Senior Lecturer, RAKERS, Christin

Group
Natural Sciences

Field (Classification)
Biology (Issues)

Language
English

Old group
Group B

Number of credits
2

Number of weekly time blocks
1

Class style
Seminar

Course offered year/period
2019 • Second semester

Day/period
Thu.3

Target year
All students

Eligible students
For science students

[Outline and Purpose of the Course]
Have you ever wondered why aspirin relieves pain or why some pesticides are toxic for insects? This course is designed to teach students how to explore such questions through computational means. Students will investigate molecular structures, functions, and interactions on an atomistic level in a playful way. Prior knowledge about basic molecular biology is advantageous. The lectures provide insights into theoretical biophysics, computer-based approaches, and molecular modelling tools. At the core of this course is a project in which students develop a research hypothesis and apply computational tools to analyze and explore a biological question of their own interest. This project will give students the opportunity to practice scientific writing and presentation skills.

[Course Goals]
Students of this course will:
- gain deeper understanding about the structure and function of (macro)molecules and the theoretical basis of molecular interactions
- learn how to execute and apply computational workflows for molecular analysis and visualization
- become conversant with the theory of molecular modelling
- learn how to write scientific reports or present scientific research results

[Course Schedule and Contents]
1. Introduction to molecular structures and biological data
2. Molecular and protein interactions (molecular dynamics simulations)
3. Molecular interactions I (molecular docking simulations)
4. Molecular interactions II (3D pharmacophores)
5. Chemoinformatics–genomics
6. Project-based counselling and discussion of questions
7. Project presentations or submission of course reports
8. Feedback

[Class requirement]
Access to a computer is essential to conduct the project. The course projects will be executed in groups of 1 to 3 students. Group meetings might have to be scheduled independently and outside of class to design and execute the course projects, and prepare for the final presentation or course report.

[Method, Point of view, and Attainment levels of Evaluation]
- 40% Class attendance/participation
- 40% Quality of research project
- 20% Final presentation/course report

[Textbook]
Not used.
Material and articles will be provided in class.

[Reference book, etc.]
Material and articles will be provided in class.
The following books give deeper insights into presented topics, but are not mandatory prerequisites to successfully complete the course.

[Regarding studies out of class (preparation and review)]
Weekly review of course content is advised. The design and execution of the course project, as well as the preparation of the final presentation or course report, require additional time investment outside of class.

[Others (office hour, etc.)]
Introduction to Plant Physiology-E2(2)

[Outline and Purpose of the Course]
Land plants adapt to the environment and at the same time have developed distinctive structures and functions that have great influence on the environment as well. In this lecture we outline the physiological, morphological and anatomical characteristics that are the basis of the growth and survival of plants. We will discuss how these attributes are integrated and coordinated at the whole plant level to better understand the ecology of species both in their natural range and when used in agriculture and forestry. This course broadly introduces the physiological functions of plants in an ecological perspective.

[Course Goals]
Upon successful completion of this course, students will be able to understand the physiological processes underlying plant growth and development, how environmental factors influence these processes, and how knowledge of plant physiology is useful for crop, grassland and forest management.

[Course Schedule and Contents]
Course schedule:
1. Leaf photosynthesis: adaptation to sun and shade
2. Carbon assimilation and temperature
3. C3 and C4 plants in an evolutionary perspective
4. From leaf to canopy: light interception and optimization
5. Respiration, growth and carbon use efficiency
6. Effects of environmental conditions on plant respiration
7. Long distance transport of carbohydrates
8. Water in soil, cells and plants
9. Water acquisition and water movement
10. Hydraulic efficiency and hydraulic safety, relationship with anatomy
11. Stomatal control and water-use efficiency
12. Nutrient uptake and translocation
13. Growth and allocation
14. Storage in annual and perennial plants
15. End of Term Exam
16. Feedback

Reference books:
R Munns, S Schmidt, C Beveridge 『Plants in Action: a resource for teachers and students of plant science』
(http://plantsinaction.science.uq.edu.au/)
Introduction to Earth Science A(2)

[Class requirement]
None

[Method, Point of view, and Attainment levels of Evaluation]
Submission of a report will be requested after finishing each of the main five topics. Deadlines will be strictly enforced. No exams will be taken. Details will be explained during the first lecture.

[Textbook]
Handouts will be provided for each class.

[Reference book, etc.]
Brian J. Skinner, Barbara Murck 『The Blue Planet : An Introduction to Earth System Science』 ISBN: 9780471236436
All additional reference books are available at the Library of the School of Global Engineering, in Yoshida Campus, and also at other Kyoto University libraries. Previous editions of the same books can also be used.

[Regarding studies out of class (preparation and review)]
Handouts will be provided at the beginning of each session. You are expected to use them to follow the lectures, to take notes, and as a starting point to further your personal self-learning.

At the end of each one of the five topics in which this class is divided, you will be given one week to submit a report answering four to five questions specific to the topic. Answering them will require doing some additional research on the recommended bibliography or other resources. Full references will be expected.

[Others (office hour, etc.)]
Office hours will be provided during the first lecture.

Year after year, the effects of climate change (extreme heat waves, rising sea-levels, changes in patterns of precipitation, floods, droughts, intense hurricanes, etc.) are increasingly affecting--directly and indirectly--the physical, social, and psychological health of humans.

As a student of sciences, you will be responsible--at some point of your future professional career, be it in the public or private sector--to devise strategies, methods, and/or techniques to mitigate its effects, either globally or locally. But, in order to do so, you first need to understand how our planet works, how its diverse parts are interrelated, and how changes in the working of some of its elements could disrupt complete systems.

This lecture will introduce, therefore, the tools needed to study the Earth as a system, and will focus on three of its main subsystems (Atmosphere, Hydrosphere, and Geosphere) and their interactions in different time scales.

[Course Goals]
At the end of the semester, you should be able to understand the concept of systems, the basics of our planet’s energy balance, and also the principles behind the behavior--as systems and subsystems--of the Atmosphere, the Hydrosphere, and the Geosphere.

[Course Schedule and Contents]
The Earth System is broadly divided into four subsystems: Atmosphere, Hydrosphere, Geosphere, and Biosphere. There is exchange of both matter and energy within those subsystems, in different time scales.

The main contents of this lecture are:
1. Introduction to Earth Systems
2. Global Energy Balance
3. Atmosphere
4. Hydrosphere
5. Geosphere

The contents of each topic will be delivered in two or three lectures each. At the end of each topic, you will be requested to submit a corresponding report. At the end of the semester we will have one final feedback session (details will be given in class).
Introduction to Earth Science B-E2(2)

[Class requirement]
None

[Method, Point of view, and Attainment levels of Evaluation]
Students are able to (1) demonstrate understanding of basic geological processes and relationships at global to local scale including how this knowledge can be applied to issues of relevance to Japan; (2) identify and interpret common geological features and processes within the Earth System context and (3) demonstrate an understanding of the complex Earth System and its processes at a regional and global scale now, in the past, and in the future. The evaluation method comprises (1) an in class assignment (40%) and (2) written examination during the official examination term (60%).

[Textbook]
Not fixed

[Reference book, etc.]
Introduced during class

[Regarding studies out of class (preparation and review)]
This course has been designed to allow students to integrate the concepts covered in lectures with own readings. A joint group project is developed by students based on data from a range of sources. Students will be supported throughout the project by discussions with your lecturer and associated students.

[Others (office hour, etc.)]
to be confirmed
How the Earth Works I-E2 : Environmental Change

[Outline and Purpose of the Course]

I will outline the environmental changes that have occurred during the Earth history, with a special focus on climate change. The lectures will address the main factors that control the climate, as well as their interaction. We will discuss in particular the human impact on environment and its consequences. To facilitate understanding and encourage active participation during the class, some materials and vocabulary in Japanese will be also provided.

[Course Goals]

The Earth Climate is the result of complex interactions among the components that make up the Earth: the Atmosphere (layer of gases), the Hydrosphere (water), the Lithosphere (or solid Geosphere), and the Biosphere (all living organisms). By learning about these interactions that take place on a variety of time scales, the students will be able to understand why and how the Earth Climate continuously changes.

[Course Schedule and Contents]

During its history of 46 billion years, the Earth climate changed profoundly. At the scale of hundreds of millions of years, the Earth is now during an "Ice Age" period. However, at a 'closer' look, at the scale of hundreds of thousands of years, we are at present in a period of relative warming known as "interglacial period". From the early part of the 19th century, the human activity started having a pronounced impact on climate, being likely responsible for the current "global warming", due to high emission of greenhouse gases.

Contents (tentative):
- Components of the climate system;
- Current global environment: the Earth's energy balance;
- Origins and evolution of the Atmosphere, Hydrosphere and Continents;
- Climate change factors: the carbon cycle;
- Long-term and short-term climate changes from past to present;
- 20th century warming: fingerprints of human-related global climate change.

There will be 2-3 lectures for each of the topics above.

[Class requirement]

None
How the Earth Works II-E2: Earth’s History

[Outline and Purpose of the Course]
The Earth was born as a “fireball” of mixed molten rock and metal; after subsequent hardening, it was very similar with the other “inner” planets: Mars, Venus and Mercury. However, Life was formed only on planet Earth. Why Earth followed a different destiny from other planets? During this lecture we will follow the history of Earth’s evolution, from its formation until present days. To facilitate understanding and encourage active participation during the class, some materials and vocabulary in Japanese will be also provided.

[Course Goals]
The student will familiarize with the most important events in the Earth history and will be able to understand the formation and structure of planet Earth.

[Course Schedule and Contents]
- Formation of the Solar System and the Earth;
- Structure of the Earth;
- Beginning of Plate Tectonics;
- Birth and evolution of Life;
- Atmosphere evolution: oxygen and carbon dioxide;
- The supercontinent cycle;
- Continent fragmentation and magmatic activity;
- Macro-evolution of Life and extinction episodes.

For each of the topics above, we plan 1-2 classes.

[Class requirement]
None

[Method, Point of view, and Attainment levels of Evaluation]
Evaluation will be based on class attendance and active participation (30%), class-room exercises (30%) and a final examination (40%).
Lecture code: N565001

<table>
<thead>
<tr>
<th>Course title <English></th>
<th>Introduction to General Astronomy-E2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Affiliated department, Job title, Name</td>
<td>Graduate School of Science, Senior Lecturer, LEE, Shiu Hang</td>
</tr>
<tr>
<td>Group</td>
<td>Natural Sciences</td>
</tr>
<tr>
<td>Field (Classification)</td>
<td>Earth Science (Foundations)</td>
</tr>
<tr>
<td>Language</td>
<td>English</td>
</tr>
<tr>
<td>Old group</td>
<td>Group B</td>
</tr>
<tr>
<td>Number of credits</td>
<td>2</td>
</tr>
<tr>
<td>Number of weekly time blocks</td>
<td>1</td>
</tr>
<tr>
<td>Class style</td>
<td>Lecture</td>
</tr>
<tr>
<td>Course offered year/period</td>
<td>2019 · First semester</td>
</tr>
<tr>
<td>Day/period</td>
<td>Wed.4</td>
</tr>
<tr>
<td>Target year</td>
<td>All students</td>
</tr>
<tr>
<td>Eligible students</td>
<td>For all majors</td>
</tr>
</tbody>
</table>

[Outline and Purpose of the Course]

The quest to understand our origins, the origins of the universe is probably one of the oldest of human kind.

In this course the latest advances in our knowledge of the universe are learned in plain language. The spatial and temporal scales of the universe and the key components (planets, stars, and galaxies, and their structures) are described in detail, and the basic techniques and logic employed in astronomical science are discussed.

[Course Goals]

To obtain an overview understanding of the universe currently obtained by humankind, and to learn the basics of astronomical observations and theories employed in discoveries about the cosmos. Through the above, students will cultivate in themselves a scientific attitude which can be applied in their daily life and future career.

[Course Schedule and Contents]

The following topics will be introduced (but not necessarily in this order):
1. Overview of modern astronomy and astrophysics
2. Planets, moons and other objects in the Solar System
3. Formation of planetary systems
4. Observation of exo-planets
5. Our Sun
6. Stars
7. Stellar evolution (low-mass stars and massive stars)
8. Supernova explosions
9. Neutron stars and pulsars
10. Blackholes and general relativity
11. Gamma-ray bursts

Each item above will be covered in 1 to 1.5 lectures, except stellar evolution which will be covered in 2 lectures.

[Class requirement]

None

[Method, Point of view, and Attainment levels of Evaluation]

Evaluation based on:
1) Weekly online homework (due every Tuesday), and
2) Class attendance (taken after registration period)

[Textbook]

Instructed during class

[Reference book, etc.]

[Related URL]

https://sites.google.com/view/kus-astro101e（Lecture notes, homework and announcements can be found here）

[Regarding studies out of class (preparation and review)]

Read the lecture notes, online materials and reference book

[Others (office hour, etc.)]

Students are encouraged to ask questions during the lectures, and are welcome to contact the professor by email outside of class hours.
[Course title in English]
Science on Water, Soil and Ecosystems-E2

[Affiliated department, Job title, Name]
Graduate School of Agriculture, Assistant Professor, VILAYVONG, Khonesavanh

[Course numbering]
U-LAS15 10014 LE58

[Group]
Natural Sciences

[Field(Classification)]
Earth Science(Foundations)

[Language]
English

[Old group]
Group B

[Number of credits]
2

[Number of weekly time blocks]
1

[Class style]
Lecture

[Course offered year/period]
2019 • Second semester

[Day/period]
Thu. 2

[Target year]
Mainly 1st & 2nd year student

[Eligible students]
For all majors

[Outline and Purpose of the Course]

Similar to the acquisition of basic sciences of physics, chemistry, and biology, this course introduces students to basic sciences, concepts, and applications of three primary earth system components: water, soil, and ecosystems. Knowledge of interaction among these components is vital for scientific observation and interpretation of environmental problems, which will eventually lead to science-based solutions. The outcome of this course could serve the interest students as a bridge to pursue more complex issues in advanced fields of environmental science.

[Course Goals]

1. To introduce students basic science, concepts and applications of soil, water, and ecosystems for solving environmental issues.
2. To develop academic, technical and communication skills of the interested students on particular topics of water, soil, and ecosystems.

[Course Schedule and Contents]

1. Introduction
2. Environment and sustainability
3. Water resource and supply
4. Water properties and behavior
5. Water pollution, sources and characteristics
6. Water treatment processes
7. Wastewater and treatment processes
8. Nature and properties of soils (soil physics)
10. Nature and properties of soils (soil biology)
11. Soil contamination and waste disposal
12. Ecosystems and ecosystem services
13. Environmental assessment
14. Self study and revision week
15. Examination
16. Feedback

[Class requirement]
None

[Method, Point of view, and Attainment levels of Evaluation]

Students’ evaluation are conducted on the performance basis on:
1. Applying knowledge through answering mini-quizzes (20%)
2. Developing scientific communication skills through writing summary reports of book chapters, research papers and oral presentation (30%)
3. Writing a short essay of a case study using critical & problem-solving skills (10%)
4. Final examination (40%)

[Textbook]

- Instructed during class
- Students are highly encouraged to develop data collection skills by visiting various sources of study materials such as libraries, online sources, reference books, journals, or articles. The collected materials can enhance students’ performance not only on the knowledge of the introduced topics, but also interdisciplinary topics that uses knowledge from this course.

[Reference book, etc.]

- Daniel D. Chiras — Environmental Science (10th Ed) (Jones and Bartlett Learning) ISBN: 978-1-284-05735-5 (Not all chapters are covered in the course (available in library))

Additional reading materials will occasionally be introduced in some lectures.

[Regarding studies out of class (preparation and review)]

Students are expected to be independent in finding online resources to attain relevant issues and to enhance student knowledge and understanding on the subject.

[Others (office hour, etc.)]

Prior arrangement is highly necessary, preferably email notice is recommended before any consultation on the subject.
Field Earth Science-E2(2)

[Course Goals]
The objective of this course is to develop an understanding of fundamental geological concepts and processes of plate tectonics and its influences on the dynamic Earth. The lectures comprise a general introduction to plate tectonics theory and selected detailed field case studies from Japan and the world.

[Course Schedule and Contents]
This lecture is designed to teach the essence of geological field surveys and studies. The main concept of the developing earth is based on the theory of plate tectonics. This lecture demonstrates how geological information obtained by field studies enables earth scientists to establish the plate tectonics theory.
1. General introduction of the significance of the field survey correlated with the plate tectonics theory. (2 times)
2. Understanding time scale which produce various geological phenomenon. (2 times)
3. Introduction of development the geology around Kyoto, accretional complex. (2 times)
4. Case studies (8 times)
 - Antarctica
 - North polar-region
 - Himalaya
 - Volcanic chains in the circum Pacific region

[Textbook]
Not fixed

[Regarding studies out of class (preparation and review)]
This course has been designed to allow students to integrate the concepts covered in lectures with own readings. A joint group project is developed by students based on data from a range of sources. Students will be supported throughout the project by discussions with your lecturer and associated students.

[Others (office hour, etc.)]
to be confirmed
Introduction to Engineering Geology

[Outline and Purpose of the Course]
Geology comes from the Greek geo, "Earth", and logos, "discourse". This class provides a basic knowledge of our planet's components (matter, minerals, rocks, etc.) and their main processes (mineral formation, plate tectonics, volcanic activity, earthquakes, etc.) from the viewpoint of engineering.

The correct understanding of the Earth and its many interacting parts, in different physical and time scales, using the basic knowledge and principles of geology, will help us confirm that all important geological factors are adequately considered when designing, constructing, and operating engineering works.

[Course Goals]
By the end of the semester, you should be able to not only understand and have a basic knowledge of geology, but also to think about its application when designing, constructing, and operating engineering works, when using natural Earth resources, and when trying to solve geoenvironmental problems.

[Course Schedule and Contents]
The main contents of this lecture are:

1. Introduction to Engineering Geology (Guidance, Introduction to Engineering Geology, Earth Science, Plate Tectonics)
3. Geologic Time (Geologic Time)
4. Plate Tectonics and Mass Wasting (Crustal Deformation and Earthquakes, Earth’s Interior, Divergent Boundaries and Ocean Floor, Convergent Boundaries, Mountains)
5. Water and the Geosphere (Running Water, Groundwater, Glaciers and Glaciation, Deserts)
6. Earth Resources (Energy and Mineral Resources)

The contents of each topic will be delivered in two or three lectures each.

[Class requirement]
None

Grading will be based on weekly quizzes (30%, lowest score is eliminated), a midterm report (30%), and a final exam (40%)
Course title
Advanced Practice of Earth Science-E2

Affiliated department, Job title, Name
Graduate School of Science
Professor ZWINGMANN, Horst Friedrich August

Group
Natural Sciences

Field(Classification)
Earth Science(Development)

Language
English

Number of credits
4

Course offered year/period
2019・Intensive, Second semester

Day/period
Intensive March 8-12

Target year
Mainly 2nd year student

Eligible students
For science students

[Outline and Purpose of the Course]

PLEASE NOTE: Due to ongoing safety issues caused by earthquakes / volcanic eruptions in Kyushu alternative fieldwork areas are explored if required. Depending on the situation, the excursion plan might be changed.

A series of "observations and exercises" will be conducted for individual groups consisting of several attendees. Each attendee is requested to do the observations and exercises during field work and to analyze the obtained data, together with other students. Additional observations and exercises will be planned and conducted where necessary. The course is designed so that each attendee can experience and participate in geological scientific research.

[Course Goals]

PLEASE NOTE: Due to ongoing safety issues caused by earthquakes / volcanic eruptions in Kyushu alternative fieldwork areas are explored if required. Depending on the situation, the excursion plan might be changed.

Collection and interpretation of geological data in the field are fundamental skills for a professional earth scientist. This course develops and extends field skills through a 5-day field trip to Kyushu March 08-12, 2020. The field trip challenges students to collect high quality field data with which to interpret the geological processes over a wide time range in the Beppu and Kuju area, central Kyushu.

At the end of the class, students should be able to understand fundamental geological concepts and processes, within an Earth System context, and how the application of physical, chemical and biological sciences can be applied to solve geological problems.

[Course Schedule and Contents]

PLEASE NOTE: Due to ongoing safety issues caused by earthquakes / volcanic eruptions in Kyushu alternative fieldwork areas are explored if required. Depending on the situation, the excursion plan might be changed.

Preparation day: the in 02/2020: 13:00-16:00: Introduction seminar at Kyoto University Yoshida campus (office 376) prior to the excursion to meet students and provide them with a brief background of the course.

Day 1: Sunday March 08, 2020: ~13:00 meet at Beppu Geothermal Research Laboratory, 3088-176, Noguchibaru, Beppu, Oita, 874-0903, Japan. Excursion start: Beppu Graben: visit active fault scarps, geothermal plant and sources of hot springs.

Day 2: Monday March 09, 2020: Aso: visit caldera and erupting volcano, Harajiri waterfall and outcrops of the youngest pyroclastic flow deposits (Aso-4) (Japan Geoparks).

Day 3: Tuesday March 10, 2020: Travel Beppu to Himeshima Island and return: visit ancient volcano, green obsidian, pyroclastic surge deposits, magmatic soda springs and metamorphic rock xenoliths.

[Method, Point of view, and Attainment levels of Evaluation]

Students are able to (1) collect field data and integrate with regional datasets to interpret a complex geological area; (2) critically appraise existing reports with new field data; (3) interpret regional datasets; and (4) present results in a written report and a presentation. The evaluation method comprises (1) a written report (60%) and (2) presentation (40%).

学生は、1) 地質調査データを収集し、地域データセットとの統合で複雑な地質領域を解釈する能力、2) 別の地域の報告書を批判的に評価する能力、3) 地質領域の解釈能力、および4) 調査結果を書面とプレゼンテーションで報告する能力を持っている。評価方法は、1) 記述報告 (60%) と 2) プレゼンテーション (40%) である。

[Textbook]

Instructed during class

[Reference book, etc.]

Reference book
Introduced during class

[Regarding studies out of class (preparation and review)]

This course has been designed to allow students to integrate the concepts covered in lectures with own readings. A joint group project is developed by students based on data from a range of sources. Students will be supported throughout the project by discussions with your lecturer and associated students.

[Others (office hour, etc.)]

In February 2020 (day the in 01/2020 after student list is confirmed) a half day seminar at Kyoto Uni Yoshida campus (office 376) is scheduled prior to the excursion to meet students and provide an introduction of the field course.
Course title: Introduction to Hydrology-E2

Affiliated department: Disaster Prevention Research Institute
Job title: Associate Professor
Name: Sameh Kantoush

Group: Natural Sciences
Field (Classification): Earth Science (Development)
Language: English
Old group: Group B
Number of credits: 2

Number of weekly time blocks: 1
Class style: Lecture
Course offered year/period: 2019 • First semester

Day/period: Tue. 4
Target year: Mainly 1st & 2nd year students
Eligible students: For science students

[Outline and Purpose of the Course]

The aim of this course is to build basic understandings to study utilization of natural resources and natural disasters in the earth. This lecture explains water availability in the earth, basic hydrological phenomena to create water circulation and water budget. Based on this basic knowledge, all students will study current technical issues to be solved, and create basis for mutual international understandings by comparing Japan and foreign countries case studies.

[Course Goals]

The goals are to develop an understanding of how hydrology and hydrological applications can be used to secure water for people, based on a sound scientific understanding of hydrologic and hydraulic processes. This includes protection from excess water and from water shortage, as well as providing sufficient water for a sustainable environment.

Course Outcomes:
The aim of this course is to introduce the basic elements of hydrologic cycle for surface and groundwater systems. At the end of this course the student will be able to:
- be aware of water resources issues in national and global scale,
- be able to qualitatively and quantitatively describe the main processes in the hydrologic cycle, and surface and ground water hydrology
- be able to provide solutions for typical water resources problems found in practice;

PRACTICAL SKILLS: On completion of this course students should be able to:
- Calculate the water budget of a watershed;
- Calculate average precipitation stream flow and stage discharge relationship;
- Calculate infiltration employing several models;
- Estimate evaporation rates and evapotranspiration;
- Define the relationship between rainfall and hydrograph analysis;
- Measure the flow discharge and velocity in the stream

[Course Schedule and Contents]

Week 1: Introduction: Hydrological Cycle and Processes
Week 2: Precipitations Forms, Types, and Rainfall Measurements
Week 3: Hydrologic Abstractions
Week 4: Areal Precipitation and Data Analysis
Week 5: Infiltration: Process, Measurement, and Estimation
Week 6: Evaporation: Process, Measurement, and Estimation
Week 7: Hydrology of Japan and water resources sustainability
Week 8: Runoff and Hydrographs
Week 9: Groundwater Hydrology
Week 10: Groundwater Hydrology
Week 11: Stream Flow Measurements
Week12-13: Flooding
Week14: Monitoring Techniques
Week15: Final Report
Week16: Feedback

[Textbook]

[Regarding studies out of class (preparation and review)]

Students are requested to read carefully listed textbook and access to case studies on each hydrological process through website and related literatures.

[Class requirement]

None

[Method, Point of view, and Attainment levels of Evaluation]

Student will be assessed in the course based on quiz during regular lectures, reports, in class assessment and active participation (40%) and a final report (60%).

[Others (office hour, etc.)]

Class participation and questions are very welcome during the lectures or at the end of the lecture. The schedule of office hours will be announced later. Moreover, if you have extra question, students may contact me by email.
Introduction to Mineral Resources-E2

[Course title: Introduction to Mineral Resources-E2]

[Course Goals]
From this course, the students will be expected to know how mineral resources are situated geologically, how they are measured, how mining and minerals processing leads to final products that are used in society and what the implications of the extraction of minerals are for the environment.

[Course Schedule and Contents]
This course will cover the following topics:

Week 1 - 4 (Basics of Geology and Earth Sciences with a focus on mineral resources)
1. Introduction to earth sciences and the importance for minerals resources
2. Geology and the lithosphere - geological time and formations
3. Processes of rock and mineral formation
4. Mineralogy

Week 5-14 (Minerals resources and their extraction, transformation into mineral products)
5. Reserves, resources, geological uncertainty and economics
6. Mineral deposits and mining
7. Beneficiation of ore and minerals processing - general considerations
8. Manufacturing mineral products - general considerations
9. Critical minerals methodologies
10. Critical minerals case study 1 - Rare earths / rare metals
11. Critical minerals case study 2 - Base metals
12. Waste, recycling and environmental impacts
13. Social impacts of minerals - Dutch disease and conflict
14. Future mining - what comes next?

[Class requirement]
None
Practice of Basic Informatics(2)

For weekly exercises the answers/code/programs you submit will be evaluated. When compilation is necessary, it will be a condition sine qua non to get a passing grade. Comments and commentaries are expected. Particularly interesting solutions to common problems will receive extra credits.

For the final report, your capability of using all tools learned in class to solve the proposed problem will be assessed. Comments and commentaries (within the code and in the report) are expected. Late reports will receive negative points. Details will be further explained at the time.

In general, as a minimum requirement to obtain a passing grade in this class, you should be able to comfortably manage files using Linux terminals, create and format simple documents using Latex, create and format graphics using Gnuplot, and write simple programs in Fortran.

[Textbook]
The textbook "Practice of Basic Informatics" will be provided during the first week of classes. You are expected to read the corresponding chapters ahead of each class.

[Reference book, etc.]
Brian Harn [Fortran 90 for Scientists & Engineers.] ISBN:0340600349
All additional reference books are available at the Library of the School of Global Engineering, in Yoshida Campus, and also at other Kyoto University libraries.

[Regarding studies out of class (preparation and review)]
You are expected to read the corresponding chapter ahead of each class. A brief explanation of the main topic will be delivered at the beginning of each session, but you are expected to come prepared ahead of time.

You will be given the rest of the class to practice the acquired knowledge by solving a proposed problem under the supervision of the instructor. You will have, however, a full week to submit your answers, so you can keep practicing after the session is over.

[Others (office hour, etc.)]
This class requires the use of virtual computers (VDI) administrated by the Institute for Information Management and Communication (IIMC), for which a valid account for the Educational Computers System of Kyoto University (ECS-ID) is required. You will receive your corresponding username and password as part of the admission procedures. Please, be sure to bring them along from the first session, or you won't be able to participate in class.

Office hours will be provided during the first day of classes.

Students who take this class are strongly recommended to take "Basic Informatics" and "Computer Programming in Global Engineering" the following semester.

Students must complete Information Security e-Learning provided by the Institute for Information Management and Communication (IIMC), Kyoto University including the final test of the course, and confirm its feedback. No class hour is assigned to take this e-learning, and
students have to take this e-learning outside the class hours. All the members of the Kyoto University are asked to take this e-learning every year, and hence students in the second grade and above also should complete this e-learning.
The objectives of this course are as follows:

1. To teach students to acquire the basic ICT skills needed for academic activities. Students will acquire ICT skills so as to be able to fully utilize the information services provided by the university, to search for the information needed during academic activities, to process data, to write papers, and to present their studies.

2. To guide students to be independent ICT users. Students will learn to manage and operate their personal computers and network properly as independent users.

3. To help students acquire the capability to learn ICT skills by themselves on an ongoing basis. That is, students will be guided to learn ICT skills not dealt with in this course on their own, as their studies progress.

Course Goals

At the end of the semester, students should be able to know the basics of operating systems and in-campus information networks, learn the knowledge of academic information seeking, acquire the skills of data processing, academic writing, and presentation, and understand the basics of programming with practice.

Course Schedule and Contents

1. Computer basics [2 weeks]
 a) Introduction to this course
 b) Basics of operating systems

2. Basics of information networks [2 weeks]
 a) In-campus information services and networks
 b) Information security and information ethics

3. Academic information seeking [2 weeks]
 a) Academic information and libraries
 b) Skills of information seeking for academic purposes

4. Academic content creation [4 weeks]
 a) Data processing with a Spreadsheet
 b) Academic report writing
 c) Presentation

5. Basics of programming [4 weeks]
 a) Overview of programs and programming
 b) Basic programming exercises
 c) Advanced programming exercises

6. Review [2 weeks]

Class requirement

None

Method, Point of view, and Attainment levels of Evaluation

Grading will be based on the evaluation of submitted reports.

Textbook

H. Kita, Y. Kitamura, and H. Hioki The Practice of Basic Informatics 2017. (Kyoto University) Slide handouts for additional materials will be delivered

Reference book, etc.

Reference book Introduced during class

Regarding studies out of class (preparation and review)

Students are expected to read the corresponding materials ahead of each class and practice the acquired knowledge by solving proposed problems during the class. After each class, a student will have a full week to write and submit their reports.

Others (office hour, etc.)

Students must complete Information Security e-Learning provided by the Institute for Information Management and Communication (IIMC), Kyoto University including the final test of the course, and confirm its feedback. No class hour is assigned to take this e-learning, and students have to take this e-learning outside the class hours. All the members of the Kyoto University are asked to take this e-learning every year, and hence student in the second grade and above also should complete this e-learning.
Practice of Basic Informatics-E2(2)

[Class requirement]
None

[Method, Point of view, and Attainment levels of Evaluation]
Grading will be based on the evaluation of submitted reports.

[Textbook]
H. Kita, Y. Kitamura, and H. Hioki. *The Practice of Basic Informatics 2017.* (Kyoto University) Slide handouts for additional materials will be delivered.

[Regarding studies out of class (preparation and review)]
Students are expected to read the corresponding materials ahead of each class and practice the acquired knowledge by solving proposed problems during the class. After studying each topic, student will have a full week to write and submit their reports. Students must complete Information Security e-Learning provided by the Institute for Information Management and Communication (IMC), Kyoto University including the final test of the course, and confirm its feedback. No class hour is assigned to take this e-learning, and students have to take this e-learning outside the class hours. All the members of the Kyoto University are asked to take this e-learning every year, and hence student in the second grade and above also should complete this e-learning.

[Others (office hour, etc.)]
No office hours specified. E-mail: lindh@i.kyoto-u.ac.jp

[Outline and Purpose of the Course]
The objectives of this course are as follows:
- To teach students to acquire the basic ICT skills needed for academic activities. Students will acquire ICT skills so as to be able to fully utilize the information services provided by the university, to search for the information needed during academic activities, to process data, to write papers, and to present their studies.
- To guide students to be independent ICT users. Students will learn to manage and operate their personal computers and network properly as independent users.
- To help students acquire the capability to learn ICT skills by themselves on an ongoing basis. That is, students will be guided to learn ICT skills not dealt with in this course on their own, as their studies progress.

[Course Goals]
At the end of the semester, students should be able to know the basics of operating systems and in-campus information networks, learn the knowledge of academic information seeking, acquire the skills of data processing, academic writing and presentation, and understand the basics of programming with practice.

[Course Schedule and Contents]]

<table>
<thead>
<tr>
<th>Computer basics (1 week)</th>
</tr>
</thead>
<tbody>
<tr>
<td>- Introduction of this course</td>
</tr>
<tr>
<td>- Basics of operating systems</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Basics of information networks (2 weeks)</th>
</tr>
</thead>
<tbody>
<tr>
<td>- In-campus information services and networks (1 week)</td>
</tr>
<tr>
<td>- Information security (1 week)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Academic information seeking (1 week)</th>
</tr>
</thead>
<tbody>
<tr>
<td>- Academic information and libraries</td>
</tr>
<tr>
<td>- Skills of information seeking for academic purposes</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Academic content creation (6 weeks)</th>
</tr>
</thead>
<tbody>
<tr>
<td>- Data processing with a Spreadsheet (2 weeks)</td>
</tr>
<tr>
<td>- Academic report writing (2 weeks)</td>
</tr>
<tr>
<td>- Presentation (2 weeks)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Basics of programming (4 weeks)</th>
</tr>
</thead>
<tbody>
<tr>
<td>- Overview of programs and programming (1 week)</td>
</tr>
<tr>
<td>- Basic programming exercises (1 week)</td>
</tr>
<tr>
<td>- Advanced programming exercises (2 weeks)</td>
</tr>
</tbody>
</table>
Course title <English>
Practice of Basic Informatics-E2

Group
Informatics

Field(Classification)
(Foundations)

Language
English

Number of weekly time blocks
1

Day/period
Fri.5

Seminar
Course offered year/period
2019 • First semester

Target year
All students

Eligible students
For all majors

[Outline and Purpose of the Course]
Information Communication Technology (ICT) skill are a necessity for efficient academic studies.

This course aims at:
- Teaching students the essentials ICT skills needed for academic activities. Students will acquire ICT skills that will let them fully utilize the information services provided by the university: searching for information needed during academic activities, processing data, programming, writing papers and presenting their studies.
- Allowing students to be independent ICT users. Students will learn to manage and operate their personal computers and network properly as independent users.
- Helping students acquire the capability to learn ICT skills by themselves on an ongoing basis: students will be guided to learn ICT skills not dealt with in this course on their own, as their studies need it.

[Course Goals]
At the end of the semester, students should have a sufficient understanding of the principles of computers, Operating Systems, Networks (esp. the ones available at the university) and academic information seeking. They should also have acquired practical skills in using softwares such as Spreadsheets, Word Processors, presentation softwares for their academic life. Finally, they will understand and practice the basics of programming.

[Course Schedule and Contents]
Computer basics (1 week)
- Introduction of this course
- Basics of operating systems
Basics of information networks (1 weeks)
- In-campus information services and networks
- Information security and information ethics
Academic information seeking (1 week)
- Academic information and libraries
- Skills of information seeking for academic purposes Academic content creation (6 weeks)
- Data processing with a Spreadsheet (2 weeks)
- Academic report writing (2 weeks)
- Presentation (2 weeks)
Basics of programming (5 weeks)
- Overview of programs and programming (2 week)
- Basic programming exercises (1 week)
- Advanced programming exercises (2 weeks)
Basic Informatics

<table>
<thead>
<tr>
<th>Affiliated department, Job title, Name</th>
<th>Graduate School of Engineering Senior Lecturer, Chang, Kai-Chun</th>
</tr>
</thead>
<tbody>
<tr>
<td>Group</td>
<td>Informatics</td>
</tr>
<tr>
<td>Language</td>
<td>English</td>
</tr>
<tr>
<td>Number of weekly time blocks</td>
<td>1</td>
</tr>
<tr>
<td>Course offered year/period</td>
<td>2019 • Second semester</td>
</tr>
<tr>
<td>Day/period</td>
<td>Tue.4</td>
</tr>
<tr>
<td>Target year</td>
<td>Mainly 1st year students</td>
</tr>
<tr>
<td>Eligible students</td>
<td>For science students</td>
</tr>
<tr>
<td>Number of credits</td>
<td>2</td>
</tr>
</tbody>
</table>

Course title

- Basic Informatics
- Basic Informatics

Field (Classification)

- (Foundations)

Group

- Informatics

Language

- English

Old group

- Yes

Number of credits

- 2

Course offered year/period

- 2019 • Second semester

Day/period

- Tue.4

Target year

- Mainly 1st year students

Eligible students

- For science students

Course Schedule and Contents

[Outline and Purpose of the Course]

This course discusses basic knowledge of information representation, computer hardware and software, Internet technical background, Internet services, algorithm in information processing, and related issues.

[Course Goals]

To understand basic knowledge of information representation, computer hardware and software, Internet technical background, Internet services, algorithm in information processing, and related issues.

[Course Schedule and Contents]

1. Introduction [1 week]

 1-1. The binary system
 1-2. Representing integers
 1-3. Representing fractions
 1-4. Representing text and other information

2. Computers and their peripherals [3 weeks]

 2-1. Computer architecture
 2-2. CPU and main memory
 2-3. Storage devices
 2-4. Input and output devices

3. Operating system and application software [2 weeks]

 3-1. Operating system architecture
 3-2. Coordinating computer's activities
 3-3. Application software

4. Networking and the Internet [3 weeks]

 4-1. Network fundamentals
 4-2. The Internet
 4-3. Broadband connections
 4-4. Mobile connections

5. Optional topics: HTML and web pages, algorithm and programmings, etc. [2 weeks]

Basic Informatics (2)

[Class requirement]

None

[Method, Point of view, and Attainment levels of Evaluation]

Quizzes and exercises (40%), final examination (60%)

[Textbook]

Instructed during class

Handouts distributed in class or uploaded to PandA

[Reference book, etc.]

Introduced during class

[Regarding studies out of class (preparation and review)]

Students are expected to spend about 1 hour on review. More than half of that time is spent preparing for class and doing assignments.

[Others (office hour, etc.)]

Any inquiry to the instructor: chang.kaichun.4z{at}kyoto-u.ac.jp (replace {at} with @)
[Outline and Purpose of the Course]

Nowadays, in order to conduct state-of-the-art research or development in various fields including also liberal arts and sciences, one needs to know not only fundamental computer skills but also how to process, utilise and analyse large scale and heterogenous information.

This lecture covers fundamentals of “information literacy” and “information utilization” including topics related to collecting, organizing, searching, managing and analyzing information as well as topics related to presenting and visualising information.

The course will provide overview of basic technologies for extracting useful knowledge to perform sophisticated analysis, and will also introduce how to use these technologies in different research fields.

[Course Goals]

Students will know fundamentals of information retrieval, processing, analysing and presenting and be able to understand when and how computational techniques should be used for solving diverse problems.

[Course Schedule and Contents]

Representation of information (about 2 times)
Topics related to acquisition of information by computers (e.g., analog and digital data, multi-media, sampling theorem), and topics related to representation of information (coding, information amount, entropy, Huffman code, mutual information).

Processing and management of information (about 7 times)
This part covers topics related to automatic analysis and processing of information, information retrieval (search engines) and storage (relational databases).

Analysis of information (about 4 times)
This part covers methods used for analyzing the data, such as effective information and data mining techniques (association rules, clustering techniques, decision trees, etc.) and machine learning approaches.

Information Design (about 1 time)
This part will cover data visualization techniques.

[Class requirement]
None

[Method, Point of view, and Attainment levels of Evaluation]
Evaluation will be based on final exam.

[Textbook]
Not used
Slide handouts will be delivered

[Reference book, etc.]
Introduced during class

[Regarding studies out of class (preparation and review)]
Students will review materials after classes based on the handouts.

[Others (office hour, etc.)]
No office hours specified. E-mail: lindh@i.kyoto-u.ac.jp
Course title
Information and Society-E2

Group
Informatics

Field(Classification)
(Foundations)

Language
English

Number of weekly time blocks
1

Class style
Lecture

Course offered year/period
2019 • First semester

Day/period
Mon.5

Target year
All students

Eligible students
For all majors

[Outline and Purpose of the Course]

In the current society we use variety of information technologies, which have enormous influence on our daily lives, economical activities, industry, public policies, education and so on. In order to get higher perspective and wider view to understand information-based society, we need knowledge of the history of informatics science and technology and their impact on our society. In this lecture students will get fundamental knowledge of information technology and the interrelation between information, technology and society. This lecture course covers topics related to social impacts of ICT and treatment/management of information in our society including information economics, intellectual property, media literacy, social media and so on.

[Course Goals]

Students will be able to explain social impacts of ICT and treatment/management of information in our society as well as basic issues related to information economy and information society. They will also be able to formulate their own opinions about information technologies, information ethics and their interplay with society.

[Course Schedule and Contents]

1. Introduction to information society: information, information society, Internet, relation of information, society and technology (about 2 weeks)
2. Intellectual rights and law: freedom of expression, right to know, right to be forgotten, information privacy as well as intellectual and industrial property rights such as patents and copyrights (about 2 weeks)
3. Information and economy: economic transactions, search/recommendation models for products, information asymmetry, network externality, lock-in phenomenon, path dependence, electronic payments, e-commerce, advertising on the Internet, impact of Internet on economy (about 3 weeks)
4. Information and education: information education, computer literacy, media literacy, information literacy, e-learning, MOOC, blended learning, digital divide, e-books (about 2 weeks)
5. Information archiving: digital content archiving, digital libraries, usage of archived contents, information validity over time (about 1 week)
6. Information design: information systems, search systems for information, information credibility, trust mechanisms (about 1 week)

Information and Society-E2(2)

1. Digital governance: digital democracy, digital community, social media, cloud computing, information policy (about 1 week)
2. Social computing: human computation, crowdsourcing, collective intelligence (about 2 weeks)

[Class requirement]

None

[Method, Point of view, and Attainment levels of Evaluation]

Students are evaluated by the final exam.

[Textbook]

Not used

Lecture slides will be printed and distributed during the lectures.

[Reference book, etc.]

Introduced during class

[Regarding studies out of class (preparation and review)]

Students will review materials after classes based on the slide handouts.

[Others (office hour, etc.)]

No office hours specified. E-mail: adam@dl.kuis.kyoto-u.ac.jp
[Outline and Purpose of the Course]
In the current society we use variety of information technologies, which have enormous influence on our daily lives, economical activities, industry, public policies, education and so on. In order to get higher perspective and wider view to understand information-based society, we need knowledge of the history of informatics science and technology and their impact on our society. In this lecture students will get fundamental knowledge of information technology and the interrelation between information, technology and society. This lecture course covers topics related to social impacts of ICT and treatment/management of information in our society including information economics, intellectual property, media literacy, social media and so on.

[Course Goals]
Students will be able to explain social impacts of ICT and treatment/management of information in our society as well as basic issues related to information economy and information society. They will also be able to formulate their own opinions about information technologies, information ethics and their interplay with society.

[Course Schedule and Contents]
1. Introduction to information society: information, information society, Internet, relation of information, society and technology (about 2 times)
2. Intellectual rights and law: freedom of expression, right to know, right to be forgotten, information privacy as well as intellectual and industrial property rights such as patents and copyrights (about 2 times)
3. Information and economy: economic transactions, search/recommendation models for products, information asymmetry, network externality, lock-in phenomenon, path dependence, electronic payments, e-commerce, advertising on the Internet, impact of Internet on economy (about 3 times)
4. Information and education: information education, computer literacy, media literacy, information literacy, e-learning, MOOC, blended learning, digital divide, e-books (about 2 times)
5. Information archiving: digital content archiving, digital libraries, usage of archived contents, information validity over time (about 1 time)
6. Information design: information systems, search systems for information, information credibility, trust mechanisms (about 1 time)
Matlab is a programming language widely used by academic and research institutions throughout the world. It has many libraries available and built-in tools for analyzing and visualizing multi-dimensional data. This course will introduce the students to computer programming using Matlab, with an emphasis on data analysis methods. The first half of the course will focus on familiarizing the students with the Matlab environment. In the second half of the course, the students will use Matlab to learn about basic data analysis techniques for multi-dimensional data.

[Course Goals]
The students will become proficient in the Matlab programming language, become familiar with basic statistical analysis, and be able to plot and visualize analysis results.

[Course Schedule and Contents]
Below is a list of topics we will cover during the course. There may be minor changes depending on the interests and abilities of the students. Each class is three hours long. Lessons will be given during the first half of class, and the second half of class will be for practice tutorials.

1) Introduction
2) Arrays and vectors
3) Plotting graphs
4) Control statements and built-in functions
5) Script files and functions
6) Debugging
7) Data structures
8) File I/O
9) Graphical user interfaces (GUI)
10) Matrices and 3D plots
11) Data fitting / regression
12) Basic statistics (computing correlations, t-test)
13) Binary classification (linear discriminant analysis)
14) Principal Component Analysis

[Class requirement]
None

[Method, Point of view, and Attainment levels of Evaluation]
Class participation (10%), exercises (30%), final programming project and presentation (details given during class) (60%)

[Textbook]
No textbook. Relevant materials will be distributed in class.

[Reference book, etc.]
Matlab tutorials are available online: http://www.mathworks.com/

There are also several textbooks available for self study, although they will not be required:

1) "Mastering MATLAB 7" by Duane Hanselman and Bruce Littlefield. Publisher: Prentice Hall (2004), ISBN: 978-0131430181
2) "MATLAB: An Introduction with Applications" by Amos Gilat. Publisher: Wiley (2008), ISBN: 978-0470108772

Students who wish to use Octave outside of class should see: http://www.octave.org/

[Regarding studies out of class (preparation and review)]
Students should review the course material after each class. All students will be given access to Matlab during class hours, but outside of class we recommend the freely available programming language Octave (http://www.octave.org/) for practice outside of class.
[Outline and Purpose of the Course]

R is a programming language whose purpose is to be able to process and organize data sets, and to represent these data graphically. Since the two last decades, R is widely used by scientists worldwide for data management and statistical analyses. This course aims to get students to start using R for analysing data and interpreting the output of basic statistical tests. Classes are taught in the form of practical exercises on computers.

[Course Goals]

Upon successful completion of this course students will be able (i) to design and statistically analyse a simple experimental plan using R, (ii) to find and perform by themselves an accurate test for solving their scientific question, even if it has not been specifically addressed during the course and (iii) to produce smart graphics for the presentation of analysed data.

[Course Schedule and Contents]

The course will simultaneously address how to use the R language to manage data, to implement relevant statistical tests and to generate graphical output

Course schedule:
1. Introduction
2. object in R: vectors, matrix, functions
3. data frame -importing data
4. Visualizing data
5. Probability distributions
6. Descriptive statistics
7. Inferential statistics
8. Basic parametric statistical tests
9. Linear model: analysis of variance
10. Linear model: linear regression
11. Testing robustness of the linear model
12. Non-parametric test
13. Improving the quality of graphics for a presentation or report
14. Going further with dedicated packages
15. Analyzing a dataset: building the script and writing a report
16. Feedback

[Class requirement]

All students are welcome
Students will have to bring their own laptops to use in class that they will also use for homework. Students have to download and install R software and R-studio software before starting the course.

[Method, Point of view, and Attainment levels of Evaluation]

Grading: Class attendance and participation (10%), quizzes or questions based on assigned pre-class reading materials or on previous class content (two to three in-class 30 min. tests, 40%), report based on the final exercise (50%).

In no case will English language proficiency be a criterion for evaluating students. Tests and exams are designed to allow short answers.

Class attendance is expected: students who are absent more than three times without sound reasons (documented unavoidable absence) will not be credited.

[Textbook]

Lecture notes and R script will be provided after each class (uploaded on KULASIS).

[Reference book, etc.]

(Reference book)
An Introduction to R (https://cran.r-project.org/manuals.html)

[Regarding studies out of class (preparation and review)]

Work not finished in class time should be finished at home. Self-training is recommended: exercises will be provided.

[Others (office hour, etc.)]

Students are encouraged to ask questions and to make comments during the class. Students are welcome to arrange appointments by email, even outside the official office hour, for questions and discussion.
Lecture code: T052001

Course title Introduction to Algorithms-E2
Affiliated department, Job title, Name Graduate School of Informatics, Program-Specific Associate Professor, LE GALL, Francois
Group Informatics
Field(Classification) (Issues)
Language English
Old group Group B
Number of credits 2
Number of weekly time blocks 1
Class style Lecture
Course offered year/period 2019 • First semester
Day/period Thu.2
Target year All students
Eligible students For all majors

[Outline and Purpose of the Course]
This is an introductory non-technical course on algorithms designed for all undergraduate students, including liberal arts students. The goal of this course is to show how computers can solve practical problems, and especially to give the students a basic understanding of the notion of algorithms, their importance and how they work. All the notions will be motivated by real-life applications.

[Course Goals]
At the end of the course, students should understand the importance of algorithms and how they work.

[Course Schedule and Contents]
1. What are algorithms, and why should you care? (1 week)
2. How to describe and evaluate algorithms (1 week)
3. Sort and search algorithms: how do search engines work? (3 weeks)
4. Constructing algorithms: some simple but powerful techniques (3 weeks)
5. Graphs algorithms: how to represent practical problems on a computer, and solve them (4 weeks)
6. Easy vs. hard problems: what cannot be computed? (2 weeks)

[Class requirement]
This is a general non-technical course for all undergraduate students. No specific background from mathematics or computer science is required.

[Method, Point of view, and Attainment levels of Evaluation]
Evaluation on submitted reports (three reports during the semester) and class attendance and participation.

[Textbook]
Not used

[Regarding studies out of class (preparation and review)]
The instructor expects students to spend enough time after each class for review. Additionally, mandatory reading material and assignments (3 reports) will be given during the course.

[Others (office hour, etc.)]
Outline and Purpose of the Course

This is an introductory non-technical course on algorithms designed for all undergraduate students, including liberal arts students. The goal of this course is to show how computers can solve practical problems, and especially to give the students a basic understanding of the notion of algorithms, their importance and how they work. All the notions will be motivated by real-life applications.

Course Goals

At the end of the course, students should understand the importance of algorithms and how they work.

Course Schedule and Contents

1. What are algorithms, and why should you care? (1 week)
2. How to describe and evaluate algorithms (1 week)
3. Sort and search algorithms: how do search engines work? (3 weeks)
4. Constructing algorithms: some simple but powerful techniques (3 weeks)
5. Graphs algorithms: how to represent practical problems on a computer, and solve them (4 weeks)
6. Easy vs. hard problems: what cannot be computed? (2 weeks)

Class requirement

This is a general non-technical course for all undergraduate students. No specific background from mathematics or computer science is required.

Method, Point of view, and Attainment levels of Evaluation

Evaluation on submitted reports (three reports during the semester) and class attendance and participation.

Textbook

Not used

Regarding studies out of class (preparation and review)

The instructor expects students to spend enough time after each class for review. Additionally, mandatory reading material and assignments (3 reports) will be given during the course.

Others (office hour, etc.)

Lecture code: T048001

Course title: Fundamentals of Discrete Optimization E2

Affiliated department: Graduate School of Informatics
Job title: Program-Specific Associate Professor
Name: LE GALL, Francois

Field (Classification): Informatics
Language: English

Number of weekly time blocks: 1
Class style: Lecture
Course offered year/period: 2019 • Second semester

Day/period: Wed.2
Target year: All students
Eligible students: For all majors

[Outline and Purpose of the Course]
The goal of this course is to introduce students to the field of discrete optimization. This is a non-technical course open to all undergraduate students, which does not require any specific background on mathematics or computer science. What is the shortest path between two places on a roadmap? What is the optimal strategy for delivering packages from a seller to clients? Discrete optimization is a methodology to solve such practical problems, in addition to a wide range of problems arising in science, economy or business. This course will show how to model such tasks as optimization problems and how to solve them in practice.

[Course Goals]
At the end of the course, students should know how to solve in practice concrete problems using discrete optimization.

[Course Schedule and Contents]
1. What is optimization, and why is it important? (1 week)
2. Discrete optimization: how to organize your schedule or pack your bag efficiently? (4 weeks)
3. Heuristics and approximation: practical methods for hard problems (3 weeks)
4. Big data: solving large-scale problems (2 weeks)
5. Pattern recognition: learning from experience (2 weeks)
6. Artificial intelligence: can computers “think”? (2 weeks)

[Class requirement]
This is a general non-technical course for all undergraduate students. No specific background from mathematics or computer science is required.

[Method, Point of view, and Attainment levels of Evaluation]
Evaluation on submitted reports (three reports during the semester) and class attendance and participation.

[Textbook]
Not used

[Regarding studies out of class (preparation and review)]
The instructor expects students to spend enough time after each class for review. Additionally, mandatory reading material and assignments (3 reports) will be given during the course.

[Others (office hour, etc.)]
Lecture code: T049001

Course title: Introduction to Coding Theory and Cryptography-E2

Affiliated department, Job title, Name: Graduate School of Informatics Program-Specific Associate Professor, LE GALL, Francois

Group: Informatics

Field (Classification): Language English

Issues:

Number of weekly time blocks: 1

Class style: Lecture

Course offered year/period: 2019 • First semester

Day/period: Fri.2

Target year: All students

Eligible students: For all majors

Number of credits: 2

Course offered year/period: 2019 • First semester

Outline and Purpose of the Course:

Cryptography is the science studying, among other things, how to encode messages such that only the sender and the receiver can understand them. Such techniques have become indispensable, enabling for instance secure wireless networks, ATM or internet banking. Besides their cryptographic applications, codes are also widely used for the purpose of designing efficient and reliable data transmission. This includes data compression codes to efficiently transmit and store information as well as error-correcting codes that permit automatic detection and correction of errors in the transmitted data.

This course is a non-technical introduction to the field of coding theory and cryptography that will cover the history and importance of codes, the basics of modern cryptography and the design of codes for data compression and error correction.

Course Goals:

At the end of the course, students should understand the basic concepts of coding theory and cryptography, and know how to use simple codes and cryptosystems.

Course Schedule and Contents:

1. What are codes? Encryption, data compression and error correction (1 week)
2. History, importance and social impact of cryptography (2 weeks)
3. Modern encryption schemes: private-key and public-key cryptography (3 weeks)
4. Other applications of cryptography: digital signatures, secret sharing (1 week)
5. Information and coding: how to compress data (3 weeks)
6. Error correcting codes: mistakes that fix themselves (4 weeks)

Class requirement:

This is a general non-technical course for all undergraduate students. No specific background from mathematics or computer science is required.

Method, Point of view, and Attainment levels of Evaluation:

Evaluation on submitted reports (three reports during the semester) and class attendance and participation.

Textbook:

Not used

Regarding studies out of class (preparation and review):

The instructor expects students to spend enough time after each class for review. Additionally, mandatory reading material and assignments (3 reports) will be given during the course.

Others (office hour, etc.):
Course title: Information Network-E2

[Outline and Purpose of the Course]
Using the Internet for gathering information, sending e-mails, and online shopping has become a part of everyday life. In this course, students will learn the basic workings of the Internet and how computers communicate across networks. Students will also learn about information security issues and how to avoid potential problems while using the Internet.

[Course Goals]
The students will learn the basics of the Internet and the various protocols used when devices communicate across the network, understand problems involving information security and how to deal with them, and learn the basic rules governing proper use of information networks.

[Course Schedule and Contents]
We will cover the following topics during the course, and spend one or two weeks on each topic:
1) Overview of the Internet
2) Application Layer (World Wide Web, e-mail, etc.)
3) Transport Layer (sockets, TCP and UDP)
4) Network Layer (IP addresses and routing)
5) Link Layer (LANs and Ethernet)
6) Wireless and mobile networks
7) Security
8) Rules of Internet usage

[Class requirement]
No prerequisites are required, but it is recommended that the students take an introductory course such as "Basic Informatics" before this course.

[Method, Point of view, and Attainment levels of Evaluation]
Students will be expected to understand the basic workings of the Internet, information security and proper use of information networks. The student's understanding of these topics will mainly be evaluated by a final report at the end of the course. Evaluation will also be influenced by performance on practice exercises given during the course. Approximately: class participation (10%), exercises (30%), final report (60%).

[Textbook]
Relevant materials will be distributed in class, so no textbook is required. However, students who wish to study the topics in more detail are recommended to read the book "Computer Networking" by J. Kurose and K. Ross (see below).

[Reference book, etc.]
ISBN:978-0133594140

[Regarding studies out of class (preparation and review)]
Students should study material related to each topic before class, and review the course material after each class. It is also recommended that students gain first-hand experience of the topics discussed by using computers outside of class.

[Others (office hour, etc.)]
Course numbering

<table>
<thead>
<tr>
<th>Course title</th>
<th>Affiliated department, Job title, Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fundamentals of Artificial Intelligence-E2</td>
<td>Graduate School of Informatics Program-Specific Associate Professor, CRONIERES, Fabien</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Group</th>
<th>Field(Classification)</th>
<th>(Issues)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Informatics</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Language</th>
<th>Old group</th>
<th>Number of weekly time blocks</th>
<th>Course offered year/period</th>
<th>Day/period</th>
<th>Target year</th>
<th>Eligible students</th>
<th>Number of credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>English</td>
<td></td>
<td>1</td>
<td>2019 • First semester</td>
<td>Tue.5</td>
<td>All students</td>
<td>Eligible students</td>
<td>2</td>
</tr>
</tbody>
</table>

Field(Classification) (Issues)

Language

Old group

Number of weekly time blocks

Course offered year/period

Day/period

Target year

Eligible students

Number of credits

Class requirement

None

Method, Point of view, and Attainment levels of Evaluation

Evaluation is based on class participation (15%), mini reports and exercises (50%) and the implementation of an assigned project (35%).

Textbook

Not used

Instructed during class

Lecture handouts will be provided in the class.

Reference book, etc.

Regarding studies out of class (preparation and review)

The instructor expects students to spend over 60 minutes after each class to review the content. Some practical exercises will also be given at the end of some lectures so as to let the students see how much of the content they do understand practically.

Others (office hour, etc.)

No office hours specified. But, questions and requests are welcome by email.

Fundamentals of Artificial Intelligence-E2(2)

- This course is designed to provide an in-depth understanding of the advancements in Artificial Intelligence and its applications, focusing on fundamental concepts and practical implementations.

[Outline and Purpose of the Course]

Recent improvements in Artificial Intelligence techniques, in particular the set of techniques commonly referred to as "Deep Learning", have largely increased the number of tasks that computers can solve easily. This lead to a current explosion in the use of AI: chatbots helping users on commercial websites, self-driving vehicles, automatic translation, automatic photos tagging, etc. It is of course not possible to introduce all aspects of AI in one semester, but this course will attempt to give a sufficiently detailed explanation of at least a few of the most AI common techniques. We will focus on supervised Machine Learning in general and Deep Learning in particular. One goal will be to give practical and working knowledge to students, so that they can apply what they learned to at least some simple tasks.

[Course Goals]

Students will have a good understanding of simple supervised machine learning techniques, and be able to implement and use some for automatic classification tasks.

[Course Schedule and Contents]

1- Overview of Artificial Intelligence and its applications (1 week)

This will give a "Big Picture" description of the field of AI. We would first discuss some common applications of AI: Image Recognition, Speech Recognition, Text understanding, Chatbots, Machine Translation, Video Games, Automation (self-driving vehicles, robotics), Financial Predictions, Medical Diagnostic. Then we would discuss the general approaches to AI: Logic reasoning, Machine Learning (supervised and unsupervised), ...

2- Review of Mathematics Concepts (3 weeks)

We will review here some of the Mathematics tools that are the most necessary for the understanding of AI methods. In particular, we will review essential notions of probability and statistics (expectation, variance, random variables, estimators) as well as calculus and optimization (derivative, numerical methods for finding a minimum,...)

3- Basic Principles of Supervised Machine Learning (4 weeks)

Focusing on simple tasks such as binary classification or linear regressions, we introduce the terminology and basics of Machine learning: defining a parameterized model, defining a loss, choosing an optimization method. We will also introduce some classic models for binary classification: logistic regression, naive Bayes, perceptron, deep neural networks. Finally, we discuss the theoretical aspects of bias, variance and capacity.

4- Practical use of Machine Learning (2 weeks)

We will learn to use a simple programming language (Python) and some of its libraries (scipy, scikit, chainerrl) to do practical machine learning. We will see how to load some data in a standard format (such as CSV) and then analyze it. We will consider both using directly library functions or implementing...
Recent improvements in Artificial Intelligence techniques, in particular the set of techniques commonly referred to as "Deep Learning," have largely increased the number of tasks that computers can solve easily. This led to a current explosion in the use of AI: chatbots helping users on commercial websites, self-driving vehicles, automatic translation, automatic photos tagging, etc. It is of course not possible to introduce all aspects of AI in one semester, but this course will attempt to give a sufficiently detailed explanation of at least a few of the most common techniques. We will focus on supervised Machine Learning in general and Deep Learning in particular. One goal will be to give practical and working knowledge to students, so that they can apply what they learned to at least some simple tasks.

[Course Goals]
Students will have a good understanding of simple supervised machine learning techniques, and be able to implement and use some for automatic classification tasks.

[Course Schedule and Contents]
1- Overview of Artificial Intelligence and its applications (1 week)
This will give a "Big Picture" description of the field of AI. We would first discuss some common applications of AI: Image Recognition, Speech Recognition, Text understanding, Chatbots, Machine Translation, Video Games, Automation (self-driving vehicles, robotic), Financial Predictions, Medical Diagnostic. Then we would discuss the general approaches to AI: Logic reasoning, Machine Learning (supervised and unsupervised), ...

2- Review of Mathematics Concepts (3 weeks)
We will review here some of the Mathematics tools that are the most necessary for the understanding of AI methods. In particular, we will review essential notions of probability and statistics (expectation, variance, random variables, estimators) as well as calculus and optimization (derivative, numerical methods for finding a minimum, \(\theta \)).

3- Basic Principles of Supervised Machine Learning (3 weeks)
Focusing on simple tasks such as binary classification or linear regressions, we introduce the terminology and basics of Machine learning: defining a parameterized model, defining a loss, choosing an optimization method. We will also introduce some classic models for binary classification: naive Bayes, perceptron, deep neural networks. Finally, we discuss the theoretical aspects of bias, variance and capacity.

4- Practical use of Machine Learning (3 weeks)
We will learn to use a simple programming language (Python) and some of its libraries (scipy, scikit, chainer) to do practical machine learning. We will see how to load some data in a standard format (such as CSV) and then analyze it. We will consider both using directly library functions or implementing simple methods (so as to apply the theoretical knowledge of the previous part).

5- Artificial Intelligence and Natural Language Processing (4 weeks)
We will discuss several Natural Language Processing tasks. In particular, Parsing, Summarization, Language Models and Machine Translation. We will especially focus on how Deep Learning models can be applied to these tasks. This will be an opportunity to further explain some of the most common Neural Network components used in deep learning, such as word embeddings, Recurrent Neural Networks, Softmax, ...

6- Practical Project (1 week)
As a final application, students will be asked to implement and train an end-to-end binary classifier for a specific task (e.g., automatically classifying which documents in a set are newspaper articles).

[Class requirements]
None

[Method, Point of view, and Attainment levels of Evaluation]
Evaluation is based on class participation (15%), mini reports and exercises (50%) and the implementation of an assigned project (35%).

[Textbook]
Instructed during class
Lecture handouts will be provided in the class.

[Reference book, etc.]

[Regarding studies out of class (preparation and review)]
The instructor expects students to spend over 60 minutes after each class to review the content. Some practical exercises will also be given at the end of some lectures so as to let the students see how much of the content they do understand practically.

[Others (office hour, etc.)]
No office hours specified. But, questions and requests are welcome by email.
Information Literacy for Academic Study-E2

Outline and Purpose of the Course

Effective and efficient utilization of information is one key point for studying at university. This course introduces various resources and methods that help students find valuable information for study. The practical topics include formulating a study strategy, developing search skills, evaluating sources, and referring sources.

Course Goals

Students will be able to conduct effective decision making and problem solving in their academic studies by learning the methodologies of identifying, searching, evaluating, using, and presenting information.

Course Schedule and Contents

1. Introduction of information literacy (about 1 week)
 This section introduces the fundamental concepts of information literacy, the standards of information literacy for higher education, and the relation between university studies and information literacy.

2. Study strategies (about 2 weeks)
 This section discusses how a student sets up an appropriate procedure to complete an assigned study/research task, such as determining the information needed, identifying the topic, developing a search strategy, collecting related information and accomplishing the task.

3. Searching in Library (about 1 weeks)
 This section first introduces the general organization of a library, and then provides methods of locating the information needed at library, which include browsing shelves, checking card catalog, and using online catalog.

4. Searching Databases (about 1 weeks)
 This section introduces the basic architecture of a database first, then the key items and methodologies for indexing. Afterwards, finding an article from magazines, newspapers, journals, and reference books in full text or reference databases is discussed.

5. Searching internet (about 2 weeks)
 This section first introduces the architecture of World Wide Web, then explains the search engines including their foundation, principles, elements, and working flow (crawling, indexing, and query). Through explaining how search engines rank results and how PageRank measures individual web page, we discuss the method of precisely locating information from internet.

6. Evaluating sources (about 3 week)
 This section explains the differences of various information materials and their formats, and introduces the evaluation criteria that one need to apply to sources.

7. Referring sources and academic integrity (about 2 weeks)
 This section introduces the reasons, rules and types of citing sources. The issues of copyright and plagiarism, and their relation are discussed as well.

8. Presenting information (1 week)
 This section provide tips as to how efficiently present the information gathered in a research work

9. Practice: future study design using problem solving models (1 week)

Class requirement

None

Method, Point of view, and Attainment levels of Evaluation

Evaluation is based on class participation (20 %) and assignments (80 %).

Textbook

Instructed during class
Lecture handouts will be provided in the class.

Reference book, etc.

Introduced during class

Regarding studies out of class [preparation and review]

The instructor expects students to spend over 60 minutes after each class to review the content and build up their own logic.

Others (office hour, etc.)

No office hours specified. But, questions and requests are welcome by email.
With data in engineering, medicine, law, economics, and other fields all becoming increasingly digitized, it is key to be able to process this data. This course is designed for students of all disciplines to learn the basics for systematic processing of data that they encounter in their studies.

Lectures will focus on learning the basic command line tools for automatic processing of data, including sorting, filtering, summarizing, searching, and other related processing. Students will be encouraged to immediately apply each week's lessons to their own data.

Course Goals
At the end of the course, students will be able to operate a computer to automatically:
1. search for specific entries in large datafiles
2. search for pattern-like entries in large datafiles
3. filter datafiles to desired content
4. perform basic summary and counting statistics on data
5. assemble small processing pipelines from the various tools they will study

Course Schedule and Contents
1. (1) Overview, problems and limitations of spreadsheets
2. (2–3)
 - Filesystem tree organization: understanding directory structure
 - Listing/copying/moving/deleting data
 - Introduction to the pipe mechanism
 - Standard input/output/error streams, delimiters
3. (4–5)
 - Sorting data
 - Trimming data by columns, front, or back
 - Counting data
 - Filename patterns/wildcards
 - Filtering data to unique entries or by patterns

4. (6–7)
 - More filtering of data by patterns
 - Stream editing
 - Basic loops for processing collections of data

5. (8–9)
 - Finding files in collections
 - Conditional filtering and mathematical calculations "on-the-fly"
 - Interactive visualization: gnuplot
 - Shell variables, shell script storage and execution, file editors

6. (10)
 - Statistics on data: good and bad statistical thinking

7. (11–14)
 - Student questions and answers
 - Student report development time

8. (15)
 - Exam

9. (16)
 - Feedback (exam answers, student questions and answers)

Class requirement
No prior knowledge of computer programming or data processing is necessary.

Method, Point of view, and Attainment levels of Evaluation
Class attendance and participation (5%), Quizzes (40%), Report (25%), Final exam/project (30%)

Textbook
Not used
Lecture notes and material will be provided in class.
Documentation about processing commands will be explained in class. Students will have a chance to practice data processing during class.

Reference book, etc.
Introduced during class

Regarding studies out of class (preparation and review)
Students are strongly recommended to practice class material outside of class and deepen their understanding.

Others (office hour, etc.)
Each student is recommended, but not required, to own a personal computer (laptop, desktop). Windows / MacOS / Linux environments are acceptable.
Basics of the Human Body-E2(2)

will be eliminated. Students who miss a quiz, will get a grade of zero for that quiz. There are NO makeup quizzes.

(b) Homework (10%). Lectures will be followed by short homework assignments to assist students learn the class material more effectively.

c) In-class presentation (20%)

d) Final exam (40%)

More details will be provided in class.

Textbook

Not fixed

Reference book, etc.

Edith Applegate『The anatomy and physiology learning system』 (Saunders) ISBN:978-1-4377-0393-1

Lecture handouts will be available for each class.

Regarding studies out of class (preparation and review)

This course involves a large amount of information presented in a short amount of time. It would be useful for students to preview the class topic and review the material after the lecture to solidify the information. This may take between 1-2 hours per week. It is advisable to attend all lectures.

Others (office hour, etc.)

Please visit KULASIS to find out about office hours.
Introduction to Lifestyle Related Diseases-E2(2)

[Outline and Purpose of the Course]
The course provides a global overview of major chronic diseases and their risk factors, providing students with an understanding of the individual and societal disease burden. It also covers concepts of socio-epidemiology, social marketing, and behavioral theories, and their application for health promotion and prevention strategies. The course sessions are a mixture of lectures, guest speakers, small-group discussions, readings, written assignments, and student presentations.

[Course Goals]
* To understand the global burden of the most common chronic diseases
* To understand the common risk factors
* To understand the socioeconomic impact of the most common chronic diseases
* To describe approaches for prevention of the most common chronic diseases

[Course Schedule and Contents]
In principle, the course will cover the following topics:

1. Global overview of chronic diseases
2. Determinants of health
3. Cardiovascular diseases. Hypertension
4. Chronic respiratory diseases
5. Cancer
6. Obesity and diabetes
7. Unhealthy diets
8. Physical inactivity
9. Alcohol and tobacco
10. Socio-epidemiology. Behavioral theories
11. Social marketing for health promotion
12. Media and technology
13. Prevention and control
14. Prevention and control (cont.)

[Class requirement]
It is NOT a prerequisite, but students are encouraged to take "Sociology of Chronic Diseases" to enhance the understanding of chronic diseases.

[Method, Point of view, and Attainment levels of Evaluation]
The course is presented in lecture/group discussion format; include videos and guest speakers.

Grading will be based on the following factors:
Class participation/Group discussions (20%)
Presentation (20%)
Written assignments (60%)

* Further details will be provided in the first class.

[Textbook]
Not used

[Reference book, etc.]
(Reference book)
Introduced during class
The course may use chapters from textbooks and readings from academic literature. Students will be provided with a list of recommended readings. Lecture handouts will be available.

[Regarding studies out of class (preparation and review)]
* Students are expected to come to class having completed the assigned reading and writing, and ready to contribute to group discussions.

[Others (office hour, etc.)]
* Students are expected to actively participate in class.

* Please visit KULASIS to find out about office hours.
<table>
<thead>
<tr>
<th>Lecture code: U144001</th>
</tr>
</thead>
<tbody>
<tr>
<td>Course numbering</td>
</tr>
<tr>
<td>Course title</td>
</tr>
<tr>
<td>Affiliated</td>
</tr>
<tr>
<td>Job title, Name</td>
</tr>
<tr>
<td>Group</td>
</tr>
<tr>
<td>Field(Classification)</td>
</tr>
<tr>
<td>Language</td>
</tr>
<tr>
<td>Number of weekly time blocks</td>
</tr>
<tr>
<td>Class style</td>
</tr>
<tr>
<td>Course offered year/period</td>
</tr>
<tr>
<td>Day/period</td>
</tr>
<tr>
<td>Target year</td>
</tr>
<tr>
<td>Eligible students</td>
</tr>
</tbody>
</table>

[Outline and Purpose of the Course]
This course provides an overview of fundamental knowledge of food and nutrition. We will cover core nutritional concepts and explore special topics in nutrition using locally and internationally relevant examples. We will learn about major nutrients and their role in health and disease. Through this course, we will learn and develop the skills required to understand our diets for healthy living. Students will be required to keep a simple food journal and will apply knowledge gained during the course to estimate energy requirements and assess their diet quality.

[Course Goals]
1. To provide an overview of the major nutrients relevant to human health.
2. Present current evidence for the role of key nutrients in the prevention of chronic diseases.
3. To develop a good understanding of the concept of dietary recommendations.
4. Discuss special topics in nutrition.
5. To be able to estimate energy requirements, qualitatively assess the dietary quality of an individual and plan a healthy diet.

[Course Schedule and Contents]
In principle, the course will be offered along the following plan. However, order or the number of times for each theme may change depending on the progression of the course or handling on current topics.

1. Nutrient and non-nutrient components of food
2. Role of nutrients in health and disease
3. Tools for healthy eating: Dietary intake recommendations and food labels
4. Tools for healthy eating: Nutritional assessment
5. Tools for healthy eating: Food Journals
6. Designing a healthful diet-Macronutrients
7. Designing a healthful diet-Micronutrients
8. Nutrients involved in body fluid balance (including alcohol)
9. Nutrition-related disorders: Metabolic Syndrome
10. Eating disorders: Anorexia nervosa and bulimia nervosa
11. Special Topics in Nutrition-Pregnancy, lactation and infant formula
12. Special Topics in Nutrition- Geriatric nutrition
13. Special Topics in Nutrition- Sports nutrition
14. Special Topics in Nutrition- Supplementary and functional foods

Nutrition and Health-E2(2)

[Class requirement]
None

[Method, Point of view, and Attainment levels of Evaluation]
Active class performance 30%
Food journal 40%
Food journal analysis 30%

[Textbook]
Not used

[Reference book, etc.]
Reference materials will be provided during the class.

[Regarding studies out of class (preparation and review)]
Students are expected to come to class having completed their food journal.

[Others (office hour, etc.)]
Please contact the instructor by email if you have any questions. The instructor will also be available for course-related consultation out of lecture hours is requested by the students. Please make an appointment by email (medsocio.kyodai@gmail.com).
In this course, we will explore the social and environmental factors that affect chronic diseases. In each lecture, we will discuss some social factors using specific chronic diseases as examples (in brackets below). Additionally, national policies of various countries, including Japan, for management of chronic diseases will be discussed. The class format includes lectures, short videos and group discussions of case examples.

Course Goals

1. To understand social and environmental determinants of disease and illness.
2. To understand the impact of health policies and how they affect human health.
3. To critically examine how changing public perception may impact chronic diseases.

Course Schedule and Contents

In principle, the course will be offered along the following plan. However, order or the number of times for each theme may change depending on the progression of the course or handling on current topics.

1. Course introduction
2. Social class, race/ethnicity and gender as social determinants of health (eg. diabetes and obesity)
3. Ageing as a social determinant of health (eg. Alzheimer’s and Parkinson’s disease)
4. Role of social stress in health (eg. post-traumatic stress disorder)
5. Food as a determinant of health (eg. cardiovascular diseases, cancer and respiratory diseases)
6. Environmental determinants of health (eg. chronic obstructive pulmonary disease)
7. Social factors influencing the decision to seek professional healthcare (eg. Cancer)
8. Impact of medical innovations on health (eg. stroke and age-related diseases)
9. & 10. Impact of government health policy and medical innovation on chronic diseases (eg. cardiovascular diseases)
11. A health policy success story (eg. tobacco and cancer)
12. A health policy failure story (eg. diabetes and obesity)
13. Role of media in social health perception (eg. “health miracles”)
14. Role of legal system in social health perception (eg. alcohol, tobacco and marijuana)
Introduction to Basic Concepts of Health Psychology-E2: Communication Issues and Decision-making in Patient Care

[Class requirement]
None

[Method, Point of view, and Attainment levels of Evaluation]
Evaluation via presentations

[Textbook]
Instructed during class
References will be introduced during the course

[Reference book, etc.]
Introduced during class

[Regarding studies out of class (preparation and review)]
Preparation is required for the presentations

[Others (office hour, etc.)]
Key lectures will be given by the lecturer.
Some group work will be introduced to discuss key issues in comparing Japan with the Europe.
Students will give presentations during the last sessions of the course. Instructions for the presentations will be given in class.
It is advisable to participate actively and share comments and ask questions during the class.
Students should make an appointment through e-mail, in the case they need any advice.

[Outline and Purpose of the Course]
This module will introduce the principle concepts of health psychology and its research basis. Students will develop an understanding of the integration of biomedical and psychosocial models of health care. They will develop knowledge about how health psychology can be incorporated into promotion and maintenance of health. In addition, this module will explore the impact of health psychology on the treatment of chronic illness, pain management and its role in palliative care. Students will develop knowledge about the impact of health psychology onto the evolution of complex interventions research and its implications for clinical practice.

[Course Goals]
To develop understanding of the concept of health psychology
To understand key theories of illness and its management within health psychology
To explore illness management interventions, communication approaches and decision-making styles in health care
To evaluate of complex interventions
To understand key theories on pain and pain management in relation to chronic illness

[Course Schedule and Contents]
Session 1: Introduction to Health Psychology module
Session 2: Defining health psychology
Session 3: Models of health and illness; the biopsychosocial model and health psychology
Session 4: The concept of wellness- implications for health
Session 5: Psychological models of health-behavior change
Session 6: Pain management and health psychology
Session 7-8: Health psychology of chronic illness
Session 9: Response shift as a psychological response to chronic illness
Session 10: Challenges in communicating terminal disease: breaking bad news
Session 11: The psychological burden of informal/family caregiving
Session 12: Health psychology and complex interventions
Session 13: Health promotion and health psychology
Session 14-15: Presentations- feedback
This course will apply basic mechanical principles to the study of human movement. Students will learn about the mechanisms that drive human motion, and how our bodies interact with the environment. Analysis of real experimental data and simple physics simulations will be used in assignments to emphasize fundamental and applied biomechanics concepts.

Course Goals

Students will learn the basics of human movement science, with focus on the concepts needed to describe and analyze human movement. Through assignments they will learn to connect these concepts to real-world problems in human movement.

Course Schedule and Contents

Over this 15-week lecture the following topics will be covered in each class:

1. Kinematics I: Linear
2. Kinematics II: Angular
3. Kinematics III: Projectile Motion
4. Dynamics I: Newton's Laws
5. Dynamics II: Impulse & Momentum
6. Dynamics III: Torque & Mass Center
7. Dynamics IV: Angular
8. Dynamics V: Angular Momentum
9. Dynamics VI: Work, Power & Energy
10. Collisions I: Ideal Collisions
11. Collisions II: Coefficient of Restitution
12. Collisions III: Friction
13. Kinematic Chains I: Basics
14. Kinematic Chains II: Dynamics

Method, Point of view, and Attainment levels of Evaluation

Students are expected to complete weekly assignments. Evaluation will be based on the following criteria: attendance and participation (10%), assignments (90%).

Textbook

Regarding studies out of class (preparation and review)

Every week there will be assignments based on lecture content. Some content will be directly related to the textbook, and other content will be explained in class; students who do not attend class or miss the assignment explanation may not be able to complete the assignment.
Course numbering

<table>
<thead>
<tr>
<th>Course title</th>
<th>Affiliated department, Job title, Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>Psychopathology I-E2</td>
<td>Graduate School of Human and Environmental Studies Associate Professor, TAJAN, Nicolas Pierre</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Group</th>
<th>Field(Classification)</th>
<th>Language</th>
<th>Number of weekly time blocks</th>
<th>Class style</th>
<th>Course offered year/period</th>
</tr>
</thead>
<tbody>
<tr>
<td>Health and Sports</td>
<td>Health and Sports Sciences(Development)</td>
<td>English</td>
<td>1</td>
<td>Lecture</td>
<td>2019 • First semester</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Day/period</th>
<th>Target year</th>
<th>Eligible students</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mon.4</td>
<td>All students</td>
<td>For all majors</td>
</tr>
</tbody>
</table>

Outline and Purpose of the Course

This course introduces most common mental disorders (schizophrenia, depression, etc.) and their symptoms using videos and case studies. The approach is integrative: it combines most recent psychiatric definitions (DSM-5), psychopathological and psychoanalytical understanding of human distress. By the end of this course, students will know how to diagnose mental disorders such as schizophrenia and depression.

Course Goals

- To provide you with a general introduction to and understanding of mental disorders.
- To increase your emotional intelligence through psychopathological knowledge.
- To help you develop your analytical and critical thinking regarding the diagnosis of mental disorders.

Course Schedule and Contents

1. Introduction
2. Developmental disorders: Autism spectrum disorder (ASD)
3. Schizophrenia I
4. Schizophrenia II
5. Paranoia: Paranoid personality disorder I
6. Paranoia: Paranoid personality disorder II
7. Hysteria: Histrionic personality disorder, conversion disorder, somatic symptom disorder
8. Obsessional neurosis: Obsessive Compulsive Disorder (OCD)
9. Depression I
10. Depression II
11. Trauma & psychopathology: Post Traumatic Stress Disorder (PTSD)
12. Culture & psychopathology: hikikomori I
13. Culture & psychopathology: hikikomori II
14. Conclusion
15. Final test
16. feedback

Class requirement

None

Method, Point of view, and Attainment levels of Evaluation

Students are expected to actively participate to discussion and read material during class. Evaluation is based on the following: Attendance and participation (30%), 2 written responses at beginning of class 5 and 10 (30%), final test (40%).

Textbook

Relevant material is distributed in class.

Reference book, etc.

Regarding studies out of class (preparation and review)

Students do not have homework assignments. However, they are advised to take notes during class and to review the course material before written responses and final test.

Others (office hour, etc.)

250
Introduction to Medical Psychology-E2

[Outline and Purpose of the Course]
Mind and body cannot be separated from each other: psychological factors have a huge impact on our physical health. Our physical health also has a huge impact on our psychological health. This course aims at introducing students to basic psychological concepts that are most relevant for our health. It will discuss how sleep, emotions, personality, and stress influence our well-being and it will demonstrate how psychological factors affect physiological parameters.

[Course Goals]
- To understand the connection between psychological well-being and our physical health.
- To get a basic understanding of how we can treat psychological and psychosomatic illness.

[Course Schedule and Contents]
1) Introduction to Medical Psychology
2) Measuring the human mind: psychological tests and psychophysiology
3) Intelligence and learning
4) Personality
5) Sleep
6) Emotions
7) Psychological stress and its role in health and disease
8) Experience of extreme conditions, post-traumatic stress disorders, anxiety and phobia
9) Chronic pain
10) Depression and suicide
11) Substance abuse and dependence
12) Placebo and nocebo
13) Behavioral intervention strategies for improving health
14) Neurofeedback and brain-machine-interfaces
15) Feedback (Arrange by email)
16) Feedback (Arrange by email)

[Class requirement]
None

Evaluation will be based on class attendance and active participation (30 points), short student presentation or report (15 points), and a 5 short in-class open-note tests (55 points), the lowest of which will be dropped. The in-class tests and report will test whether students have achieved the course goals. Students who are absent more than five times will not be credited.

Not used
Lecture notes will be provided during the course.

To achieve the course goals students should review the course materials after each class. The time necessary for review should be in the range of 2 hours per class.

No fixed office hours, but students are welcome to arrange appointments by email.
Cultural Aspects of Health Care-E2(2)

[Outline and Purpose of the Course]
This module will enable students to develop understanding of how cultures have different systems of health beliefs to explain what causes illness, how it can be cured or treated, and who should be involved in the process. This module will explore the influence of different religions, cultures, beliefs, and ethnic customs on how patients understand health concepts, how they take care of their health, and how they make decisions related to their health. Concepts of medical authority, treatment compliance, decision-making, communication of disease diagnosis and prognosis, communication between health care professionals, and patients will be examined within different cultural contexts. This module will enable students to enhance their knowledge about the interplay between culture and health care and of their consequences in clinical practice.

[Course Goals]
To understand the concept of culture
To understand the interplay of culture with health care
To explore different cultural contexts and their impact on health care
To understand the importance of culture in organizing and delivering end of life care

[Course Schedule and Contents]
Session 1: Introduction to the module
Session 2: Definition and different approaches to culture
Session 3: Cultural beliefs in health care
Session 4: The body: cultural definitions and approaches in health
Session 5: Migration, globalization and health
Session 6: Health care communication in different cultural contexts
Session 7: Medical authority and treatment compliance
Session 8: Families and social networks in health care
Session 9: Pain and culture
Session 10: Cultural aspects of stress and suffering
Session 11: Chronic illness
Session 12: Death and dying in different cultural contexts
Session 13: The ethical debates of Euthanasia in different cultural contexts
Session 14-15: Presentations- feedback

[Class requirement]
None

[Method, Point of view, and Attainment levels of Evaluation]
Students will be evaluated via presentations

[Textbook]
Instructed during class

[Reference book, etc.]
Introduced during class

[Regarding studies out of class (preparation and review)]
Preparation is required for the presentations

[Others (office hour, etc.)]
Key lectures will be given by the teacher. Some group work will be introduced to discuss key issues in comparing Japan with the Europe. Students will give presentations during the last sessions of the course. Instructions for the presentations will be given in class. It is advisable to participate actively and share views during the class. Students should make an appointment through e-mail, in the case they need any advice.
Course title: Basic Biology and Metabolism-E2
Affiliated department: Graduate School of Pharmaceutical Sciences
Job title: Associate Professor, Fustin, Jean Michel
Group: Health and Sports
Field (Classification): Health and Sports Sciences (Development)
Language: English
Old group: Group B
Number of weekly time blocks: 1
Class style: Lecture
Course offered year/period: 2019 • First semester
Day/period: Thu.4
Target year: Mainly 1st year students
Eligible students: For science students
Number of credits: 2

[Outline and Purpose of the Course]

In our world there is no form of matter more astonishing than the living cell: tiny, fragile, marvelously intricate, continually made afresh, yet preserving in its DNA a record of information dating back more than three billion years, to a time when our planet had barely cooled from the hot materials of the nascent solar system. Ceaselessly re-engineered and diversified by evolution, extraordinarily versatile and adaptable, the cell retains a complex core of self-replicating chemical machinery that is shared and endlessly repeated by every living organism on the face of the Earth in every animal, every leaf, every bacterium in a piece of cheese, every yeast in a vat of wine.

Curiosity, if nothing else, should drive us to study cell biology; we need to understand cell biology to understand ourselves. But there are practical reasons, too, why cell biology should be a part of everyone’s education. We are made of cells, we feed on cells, and our world is made habit-able by cells. The challenge for scientists is to deepen our knowledge of cells and find new ways to apply it. All of us, as citizens, need to know something of the subject to grapple with the modern world, from our own health affairs to the great public issues of environmental change, biomedical technologies, agriculture, and epidemic disease.

This course is designed to provide the fundamentals of cell biology that are required by anyone to understand both the biomedical and the broader biological issues that affect our lives.

This course is not recommended for students who already have selected specialized life science courses such as biochemistry and genetics. (Essential Cell Biology)

[Course Goals]

Students will receive a basic understanding of the organisation and components of the cell.

Knowing how a cell works will make the students aware of how our body works.

By learning cellular biology and metabolism in English, students will acquire the ability to think and explain scientific concepts in English.

[Course Schedule and Contents]

WEEK 1- WEEK 2, Cells: The Fundamental Units of Life
WEEK 3- WEEK 4, Chemical Components of Cells
WEEK 5- WEEK 6, Energy, Catalysis, Enzymes and Biosynthesis
WEEK 7- WEEK 9, Protein Structure and Function
WEEK 10- WEEK 12, DNA and chromosomes
WEEK 12- WEEK 14, DNA replication, repair and recombination

[Class requirement]

There are no requirements, since the lecture will start from the basics!

[Method, Point of view, and Attainment levels of Evaluation]

Frequent problems presented orally to the students, in English, to assess their ability to formulate ideas and concepts (20%).

One written mid-term examination, in English, will take place to assess the student’s comprehension of the lecture (40%).

A written final examination, in English, to assess the student’s global understanding of the course (40%).

[Textbook]

[Regarding studies out of class (preparation and review)]

Students should review the textbook after the lecture by answering the questions provided.

Reading the textbook in advance may facilitate the comprehension during the lecture.

[Others (office hour, etc.)]

Any questions and requests are welcome by prior arrangements via E-mail.
Scientific English II-E3 (Presentation & Discussion)

<table>
<thead>
<tr>
<th>Course number: U-LAS51 10016 SE48</th>
</tr>
</thead>
<tbody>
<tr>
<td>Affiliated department, Job title, Name</td>
</tr>
<tr>
<td>Group</td>
</tr>
<tr>
<td>Field (Classification)</td>
</tr>
<tr>
<td>Number of weekly time blocks</td>
</tr>
<tr>
<td>Course offered year/period</td>
</tr>
<tr>
<td>Day/period</td>
</tr>
<tr>
<td>Target year</td>
</tr>
<tr>
<td>Eligible students</td>
</tr>
</tbody>
</table>

[Outline and Purpose of the Course]

Forbes magazine reports that "seventy percent of employed Americans who give presentations agree that presentation skills are critical to their success at work (...) The other 30% don’t know it yet."

In this new global and interconnected world, being able to clearly and succinctly communicate ideas is becoming more and more a basic requirement for success at work. Presentation skills are to the XXI century what English skills were to the XX century: a necessity, rather than a luxury.

The aim of this class is to help you improve your communication proficiency, focusing on presentation and discussion skills in English.

[Course Goals]

At the end of the year, you should be able to present ideas in a concise and orderly manner, in both small and large settings, either individually or as part of a group. The principles behind the use of slideware, sliddocs, color and presentation theory, graphic creation, data delivery, etc., will be introduced during this two-semester-long practical class.

[Course Schedule and Contents]

This practical class will divide the learning of presentation skills in the following building blocks:

FIRST SEMESTER
1. Guidance
2. Individual Presentations
3. Presentations
4. Preparation
5. Design
6. Delivery
7. Group Preparations
8. Individual Presentations

SECOND SEMESTER
1. Exercise
2. Technical Graphics
3. Using slideware
4. Sliddocs/Other Media
5. Technical Presentations
6. Final Presentations

These topics will take between one to four weeks each one, will be delivered throughout the two semesters assigned to this class, and will be built in conjunction with regular practice and discussion. You will have to prepare and present several individual and group presentations during the whole year.

[Class requirement]

None

[Method, Point of view, and Attainment levels of Evaluation]

Evaluation will be based on class participation (20%), feedback from other students (10%), and feedback and scores from the instructor (70%). Details will be explained in class.

To pass this class, you need to be able to proficiently prepare, design, and deliver general and technical presentations in English.

[Textbook]

Handouts will be provided at the beginning of each section.

[Reference book, etc.]

- Dan Roam Show and Tell: How Everybody Can Make Extraordinary Presentations. ISBN: 9781591846857
- Stephen Few Show Me the Numbers: Designing Tables and Graphs to Enlighten. ISBN: 9780970601971
- Edward Tufte The Visual Display of Quantitative Information. ISBN: 9780961392147

[Regarding studies out of class (preparation and review)]

As an eminently practical class, you will be expected to work on your own time, preparing and honing the ideas and presentations that you will deliver during class.

Additional time to watch notable presentations online (TED, PechaKucha, Toastmasters, etc., as recommended by the instructor during classes) will be required.

[Others (office hour, etc.)]

Office hours will be provided during the first class.
[Outline and Purpose of the Course]

This course aims at improving students' expressiveness and their ability to negotiate with others. Debating and negotiating are skills needed in most professions students will enter after graduation. The course aims to improve critical thinking and general abilities to discuss scientific issues.

[Course Goals]

1) To improve students ability to discuss scientific issues in a set format. Students will learn to defend their opinions and to react to counter-arguments. 2) Students will be introduced to a number of current issues in Civil Engineering through the debate topics.

[Course Schedule and Contents]

The first lectures will give an introduction to the course and to debating: What makes a good debate, introduction to how to prepare for a debate, some helpful tools for organizing the debate, etc. The following 28 lectures over the duration of the academic year are then grouped into seven units of 4 lectures, each unit is taught by a different faculty member and discusses different debate topics, often related to the teacher's research interest. Each unit has following outline. In Lecture 1 of a unit the topic will be introduced and students choose a role (pro or contra the debate motion). Then in Lecture 2 students collect some information and arguments on the topic by reading articles or collecting information from the internet. In the third class of each unit students are given presentation time to prepare their debate talk and to prepare for potential counter-arguments. In the final classes of each unit students are then performing the actual debate. Debate topics are chosen by teachers from engineering issues as well as current issues. Following topics are included in the course (the order might change).

- **Weeks 1-4**: Introduction, debate exercises
- **Weeks 5-8**: Debating on topics related to transport planning.
- **Weeks 9-12**: Debating on topics related to sustainable vs efficient technology.
- **Weeks 13-14 and 16-17**: Debating on topics related to current affairs.

Note: Weeks 15 and 30 are reserved for feedback classes.
Course title: Business English-E3

Affiliated department, Job title, Name: Graduate School of Management, Associate Professor, WILLIAM BABER

Group: Career Development

Field(Classification): International Communication

Language: English

Number of weekly time blocks: 1

Class style: Seminar

Course offered year/period: 2019 • First semester

Day/period: Tue. 2

Target year: 2nd year students or above

Eligible students: For all majors

Outline and Purpose of the Course

This course is for students with Intermediate to Low-Advanced English skills. Students with higher English skills may not take the course. The course practices English skills that are necessary for business.

Course Goals

Students will learn about:
- Formal business email
- Informal business email
- Summarizing (verbal and written)
- Short written reports
- Short verbal representations to small groups
- Understanding and communicating precise rules

Course Schedule and Contents

- Week 1: Informal work email, speaking skills
- Week 2: Formal and "bad news" email
- Week 3: Summarizing
- Week 4: Summarizing
- Week 5-14: Above skills, presenting, writing, and more.

Class requirement

Students with English skills below "Intermediate" or above "Low Advanced" will not be accepted. The course is targeted for students with middle level skills.

Method, Point of view, and Attainment levels of Evaluation

Students are graded based on the number and level of tasks completed. Tasks increase with difficulty as each level is cleared. The grading is explained further in class and in handouts.

Textbook

Students will receive materials from the professor.

Reference book, etc.

Students will receive materials from the professor.
Course Information

Course title: Business English-E3

Affiliated department, Job title, Name: Graduate School of Management, Program-Specific Associate Professor, HAN, Hyun Jeong

<table>
<thead>
<tr>
<th>Group</th>
<th>Career Development</th>
</tr>
</thead>
<tbody>
<tr>
<td>Language</td>
<td>English</td>
</tr>
<tr>
<td>Field(Classification)</td>
<td>International Communication</td>
</tr>
<tr>
<td>Number of weekly time blocks</td>
<td>1</td>
</tr>
<tr>
<td>Class style</td>
<td>Seminar</td>
</tr>
<tr>
<td>Course offered year/period</td>
<td>2019 • Second semester</td>
</tr>
<tr>
<td>Day/period</td>
<td>Tue.3</td>
</tr>
<tr>
<td>Target year</td>
<td>2nd year students or above</td>
</tr>
<tr>
<td>Eligible students</td>
<td>For all majors</td>
</tr>
</tbody>
</table>

Outline and Purpose of the Course

This course is for students with Intermediate to Low-Advanced English skills. Students with higher English skills may not take the course. The course practices English skills that are necessary for business.

Course Goals

- Formal business email
- Informal business email
- Summarizing (verbal and written)
- Short written reports
- Short verbal presentations to small groups
- Understanding and communicating precise rules

Course Schedule and Contents

<table>
<thead>
<tr>
<th>Course Schedule and Contents</th>
</tr>
</thead>
<tbody>
<tr>
<td>Week 1: Informal work email, speaking skills</td>
</tr>
<tr>
<td>Week 2: Formal and "bad news" email</td>
</tr>
<tr>
<td>Week 3: Summarizing</td>
</tr>
<tr>
<td>Week 4: Summarizing</td>
</tr>
<tr>
<td>Week 5-14: Above skills, presenting, writing, and more.</td>
</tr>
</tbody>
</table>

Class requirement

Students with English skills below "Intermediate" or above "Low Advanced" will not be accepted. The course is targeted for students with middle level skills.

Method, Point of view, and Attainment levels of Evaluation

Students are graded based on the number and level of tasks completed.

Textbook

Students will receive materials from the professor.

Reference book, etc.

Students will receive materials from the professor.

Regarding studies out of class [preparation and review]

Students are expected to complete tasks outside of class and in class. Class time is mainly for support, question asking, and skills review with the professor.

Others (office hour, etc.)

In class meetings.

Size limit: 20 students

Size is limited in order to allow time for frequent interaction with the professor.

Office hours: Monday and Friday afternoons by appointment.
Outline and Purpose of the Course

This course teaches some core approaches to thinking about business: understanding quality; understanding user reactions to products; understanding business models; and so on.

Course Goals

Students will learn about these basic concepts - they will be discussed and handled at a level appropriate to the knowledge and language skills of the class.
- defining and communicating quality
- understanding business processes
- understanding business models with Business Model Canvas

Course Schedule and Contents

- Week 1-3: Criteria for evaluating and communicating about quality
- Week 4-6: Business Process Mapping
- Week 7-10: Business Model Canvas
- Week 11-13: Business structures
- Week 14: In class presentations and course summary

Class requirement

None

Method, Point of view, and Attainment levels of Evaluation

Strong English speaking skills will be necessary. Students are expected to work in small groups in English weekly, and to make presentations to the class at least three times in the semester.

Textbook

Materials will be provided by the professor.

Reference book, etc.

- **Reference book**

 Materials will be provided by the professor.

Regarding studies out of class (preparation and review)

Some projects will require work at home or outside of the classroom to collect information about businesses and products in Kyoto.

Others (office hour, etc.)

Office hours: Monday and Friday afternoons by appointment.
Course Overview

Course title: Negotiation-E3

Affiliated department, Job title, Name: Graduate School of Management Associate Professor, WILLIAM BABER

Group: Career Development

Field (Classification): International Communication

Language: English

Number of weekly time blocks: 1

Class style: Seminar

Course offered year/period: 2019 • First semester

Day/period: Tue.4

Target year: 2nd year students or above

Eligible students: For all majors

[Outline and Purpose of the Course]

Tools and practical experience for conducting negotiations from pre-planning to agreement, so-called Harvard Method or Mutual Gains Negotiation. The course is conducted entirely in English and requires strong speaking and listening skills. The focus is generally on business, however the skills are applicable to other kinds of negotiation, such as politics. Practices may include remote negotiations with students in overseas universities.

[Course Goals]

Students will understand basic concepts such as alternative, zone of agreement, reserve points, planning, creating new value, problem solving, satisfaction, relationship building, and the overall process of negotiation.

[Course Schedule and Contents]

- **Lecture 1**: Basic negotiation skills 1
- **Lecture 2**: Basic negotiation skills 2
- **Lecture 3**: Basic negotiation skills 3
- **Lecture 4-13**: Case practices and skills
- **Lecture 14**: Overview

[Class requirement]

None

[Method, Point of view, and Attainment levels of Evaluation]

Ongoing evaluation of skills in class including verbal and written assignments.

[Textbook]

[Regarding studies out of class (preparation and review)]

Readings from the textbook may be assigned for preparation before class. Additional materials (cases) will be given to students for preparation before a practice negotiation.

[Others (office hour, etc.)]

Office hours: Monday and Friday afternoons by appointment
Students will be tutored in how to improve their English reading skills, using a variety of texts and exercises. Passages or terms identified as difficult will be analyzed and explained in simpler language, and possible alternatives presented. The structure and content of scientific reports will be examined. Short texts on a range of scientific topics followed by multiple-choice questions will be used to build confidence and understanding. The overall aim is to foster students’ abilities to extract the most important content from scientific texts, find specific information, and draw appropriate conclusions.

Course Goals

Students will gain experience in reading scientific texts and extracting the most important information from them. They will also learn to identify good and poor scientific writing.

Course Schedule and Contents

1. Introduction: Basic grammar and punctuation games
2. Issues in spelling, including American vs. British style
3. Identifying grammatically correct and incorrect statements
4. How to ask, and how not to ask questions in writing
5. Comprehension: extracting important information from texts
6. Comprehension: further exercises in extracting information from texts
7. Comprehension: identifying and retaining facts and concepts
8. Resolving ambiguities in texts
9. Informal in-class exercises
10. Common errors in scientific writing
11. Detecting errors in texts
12. Comparing texts: poor writing and good writing
13. Getting the message across: English on signs and packaging
14. Overview of issues

Note: The contents of specific classes may change.

Class requirement

None
Scientific Writing and Presenting in English-E3(2)

Course Title: Scientific Writing and Presenting in English-E3

Affiliated Department: Graduate School of Letters

Professor: Anderson, James Russell

Group: Career Development

Field (Classification): International Communication

Language: English

Number of Weekly Time Blocks: 1

Old Group: Yes

Number of Credits: 2

Course Offered Year/Period: 2019 · Second semester

Day/Period: Thu. 1

Target Year: 2nd year students or above

Eligible Students: For all majors

[Outline and Purpose of the Course]

Students will be introduced to issues surrounding scientific writing and presenting. Topics will include how to avoid some of the most common errors of expression (both written and oral), through the use of examples and opportunities to practice. Focus will be on how to structure a scientific report and to write concisely in English, again with help from real-life examples. Teaching will include open discussions and opportunities for students to participate in "mini-symposia" as both presenters and discussants.

[Course Goals]

Students completing the course will have improved knowledge of the structure of scientific papers and presentations, as well as clearer ideas of what to do and what not to do to write or present successfully in English.

[Course Schedule and Contents]

1. Introduction. Aims of scientific writing
2. Common errors to avoid when writing
3. Basic structure of psychology research papers
4. Writing in concise English
5. In-class construction of a report
6. Critical analysis of sample manuscripts
7. In-class exercises
8. Introduction to presenting in English
9. Some presentation hints
10. Visual aids: good and not so good
11. Asking questions, and responding orally in English
12. Student mini-symposium 1 (presentations, questions in English)
13. Student mini-symposium 2 (presentations, questions in English)
14. Overview of course

Note: The contents of specific lectures may change.

[Class Requirement]

None

Method, Point of View, and Attainment Levels of Evaluation

Evaluation will be based on class participation (20%), a short oral presentation (10%) and a final written exam (70%).

Textbook

Not used

Class notes/slides will be distributed.

Regarding Studies Out of Class (Preparation and Review)

Students are expected to review the class hand-outs after each class.

Others (Office Hour, etc.)

There are no specific office hours. My e-mail address is:

j.r.anderson@psy.bun.kyoto-u.ac.jp
Introduction to Food Sustainability-E2(2)

[Class requirement]
None

[Method, Point of view, and Attainment levels of Evaluation]
Grading: Class attendance, active participation and listening quizzes (20%), weekly quizzes based on assigned pre-class reading materials (30%), mid-term essay (30%), and an in-class group presentation (20%).

[Textbook]
Not used

[Reference book, etc.]
Handouts and supplemental readings will be distributed electronically and/or as a hard copy in class

[Regarding studies out of class (preparation and review)]
Students should read or listen to the required pre-class materials and submit any required assignment before the class, and come to class ready to participate in class activities. Typically, this will entail listening to a short video or podcast (10 min. or less), as well as reading a 2 or 3 page handout and be prepared to write answers to 1 or 2 questions about the reading material in the following class (15 to 20 minutes provided in class).

[Others (office hour, etc.)]
Open door policy during office hours, and anytime by email.

[Outline and Purpose of the Course]
In this course an interdisciplinary, systems approach is taken to gain a working knowledge of the historical, social and ecological foundations of sustainability. In addition, we will explore emerging challenges presented by climate change, resource depletion, and the constraints imposed on modern food systems from an Asian perspective.

[Course Goals]
The expectations and goals for the students taking this course are as follows:
1. Be able to define and explain key issues in sustainable food systems from multiple perspectives.
2. Develop their critical and reflective thinking skills related to food, environmental, economical and social interactions.
3. Develop effective communication skills and be able to engage in thoughtful discussion of current food security issues.

[Course Schedule and Contents]
Class Schedule
1. Introduction
2. Origins of Sustainability
3. Tragedy of the Commons
4. Population Growth & Urbanization
5. Economic Development – Changes in Dietary Patterns
6. Food Security/ Sovereignty
7. Climate Change & its Impacts
8. Food: Biodiversity
9. Food: Water
10. Food: Energy
11. Food: Fertilizers
12. Food: Land & Soils
13. Food: Environmental Impacts/ Waste
14. Emerging Issues: Biotechnology, Biofuels
Feedback
Sustainable Forest Environment-E2(2)

Class requirement
None

Method, Point of view, and Attainment levels of Evaluation
Students’ evaluation are conducted on the performance basis on
(1) applying knowledge through answering mini-quizzes (20%); (2) developing scientific communication skills through writing summary reports of book chapters, research papers and oral presentation (30%); (3) writing a short academic styled essay of a case study using critical & problem-solving skills (10%); (4) final examination (40%)

Textbook
There is no official textbook for this course. The content of the course is an assembly of selected topics from various textbooks, references, online sources and libraries. It is students' duty to acquire the skill of collecting the topics as an supplementary class reading.

Reference book, etc.
[Reference book]
IPCC "Climate Change 2013: The Physical Science Basis" (IPCC) (Available online and in library)

Regarding studies out of class (preparation and review)
Students are encouraged to read and review reading materials before classes. Outcome of the reading will be assigned as a class performance, which accounts for the final grade.

Others (office hour, etc.)
After class, student consultation will be arranged with prior notice.

Outline and Purpose of the Course
This course introduces the basic forest environmental issues and concepts concerning the forest sustainability. The course is focused on (1) the basic physical science of climate change, climate models, and the impacts of climate change; (2) basic science on forest environment and ecosystems; (3) roles of forests and forest environmental issues; and (4) Sustainable approach of managing forests by the concept of *"Reducing emissions from deforestation and forest degradation and the role of conservation, sustainable management of forests, and enhancement of carbon stocks in developing countries (REDD+)."*

Course Goals
1. To introduce students with knowledge and background on environmental issues related to climate change
2. To introduce students with underlying scientific theories, principles, practices, and measures for sustainable forest management
3. To help students acquire and apply technical knowledge and development practices on management practices for mitigation and adaptation to climate change in forest environment

Course Schedule and Contents
1. Global warming
2. Modelling the climate
3. Climate change and its impacts
4. Forests and forest ecosystems
5. Forest environment and its environmental values
6. Forest ecosystem functions
 - Basic forest hydrology
 - Forest ecosystem functions
 - Forest soils and nutrient cycles
7. Forest biodiversity
8. Forest hazard and disaster
9. Forest degradation and deforestation
10. Forests and sustainable development
11. Forest products and social values
12. Sustainable forest management
13. Revision and self-learning week
14. Examination
15. Feedback

Continue to Sustainable Forest Environment-E2(2)
Introduction to Biogeochemistry-E2(2)

[Outline and Purpose of the Course]
Biogeochemistry studies the physical, chemical and biological processes that govern the exchanges of energy and matter between the biosphere, the atmosphere and the lithosphere. The course presents the main terrestrial biogeochemical cycles and discusses how natural processes influence them and how they are altered by anthropogenic disturbances. Particular attention will be paid to the global carbon cycle and the importance of soil organic matter in this cycle. This subject is on the border of physics, chemistry, biology, and earth science. It brings important concepts that form the basis of environmental science.

[Course Goals]
Upon successful completion of this course, students will be able (i) to understand the role of biological, chemical and physical processes in determining the fate of the major elements in ecosystems and in the terrestrial biosphere, and (ii) to anticipate the effects of management practices on soil organic matter and inherent site fertility.

[Course Schedule and Contents]
Course schedule:
1. Introduction to biogeochemistry: element reservoirs and fluxes
2. Biomass, primary production and net ecosystem production
3. Decomposition and mineralisation of organic matter under oxic condition.
4. Decomposition and mineralisation of organic matter under anoxic conditions.
5. Land use, land use change and soil organic matter
6. Methane oxidation by upland soils
7. Anthropogenic disturbances of major biogeochemical cycles: the global carbon cycle
8. Nutrient cycles and budget in terrestrial ecosystems
9. The biological cycle of nitrogen
10. Weathering and mineral alteration
11. Nutrient limitations and ecosystem fertility
12. Nutrients in aquatic ecosystems: oligotrophy and eutrophication
13. Anthropogenic disturbances of major biogeochemical cycles: the global N and P cycles
14. The hydrological cycle
15. End of Term Exam
16. Feedback

[Class requirement]
Beneficial but not mandatory: basic knowledge in biology and chemistry (high school)

[Method, Point of view, and Attainment levels of Evaluation]
Grading: Class attendance and participation (10%), quizzes or questions based on assigned pre-class reading materials or on previous class content (two to three in-class 30 min. tests, 30%), end of term exam (60%). In no case will English language proficiency be a criterion for evaluating students. Tests and exams are designed to allow short answers.
Class attendance is expected: students who are absent more than three times without sound reasons (documented unavoidable absence) will not be credited.

[Textbook]
Lecture notes will be provided after each class (uploaded on KULASIS).

[Reference book, etc.]

[Regarding studies out of class (preparation and review)]
Students are expected to review the course materials distributed during previous classes and to read the pre-class materials when applicable (about two hours between two classes).

[Others (office hour, etc.)]
Students are encouraged to ask questions and to make comments during the class. Students are welcome to arrange appointments by email, even outside the official office hour, for questions and discussion.
Course Overview

Course title: Chemistry, Society and Environment - E2

Group: Interdisciplinary Sciences

Field (Classification): Environmental Sciences

Affiliated department: Graduate School of Energy Science

Affiliated job title, name: Associate Professor, MCLELLAN, Benjamin

Language: English

Old group: Group B

Number of weekly time blocks: 1

Class style: Lecture

Course offered year/period: 2019 • First semester

Target year: Mainly 1st & 2nd year students

Eligible students: For science students

Course Goals

Students will understand the importance of chemistry and its role in the modern world. Students will understand the importance of chemistry in relation to societal goals and environmental issues.

Course Schedule and Contents

The following topics will be covered (each numbered item is expected to be one week of class unless otherwise highlighted).

1. Chemistry introduction
 - The history of chemistry and its influence on society
 - The scale of chemical industries and the comparison with global flows

2. Introduction to the basics of important chemical processes:
 - Energy chemistry (2 weeks)
 - Water chemistry (2 weeks)
 - Petrochemistry
 - Pharmaceuticals / health chemistry
 - Mineral chemistry

3. Environmental issues and chemistry
 - Global warming impacts
 - Local chemical pollution

4. Chemical solutions to environmental problems (2 weeks)

Class Requirement

No specific chemical background is needed. Some basic chemical processes will be introduced, but chemistry knowledge will only be assessed in the context of the issues discussed.

Method, Point of View, and Attainment Levels of Evaluation

- Participation and small exercises (50%)
- Final exam or assignment (50%)

Textbook

Not fixed

Reference book, etc.

Introduced during class

Regarding Studies Out of Class (Preparation and Review)

Small exercises out of class may be expected. Class slides will be provided for pre-reading.

Others (Office Hour, etc.)

Typically lectures will be given in class on campus. Consultation is available by prior arrangement.
Course Title
Introduction to Sustainable Development-E2

Group
Interdisciplinary Sciences

Field (Classification)
Environmental Sciences

Language
English

Number of weekly time blocks
1

Class style
Lecture

Course offered year/period
2019 • First semester

Day/period
Thu.4

Number of credits
2

Target year
Mainly 1st & 2nd year students

Eligible students
For all majors

Outline and Purpose of the Course
Sustainable development tries to satisfy people's present needs while maintaining the ability of future generations to meet their own needs. In this course we will explore how nations can try to balance growth with environmental health.

Course Goals
Students will gain an understanding of the core principles of sustainable development and their application through global and local case studies. At the conclusion of the course students will present their own development project proposals to the class.

Course Schedule and Contents
This course will cover the following topics:
1. Introduction: Definition and principles of sustainable development (Singer)
2. Identifying developed/developing countries and the goals of development (Singer)
3. History of development and ODA, why some countries succeed (Singer)
4. Population, migration and urbanization (Singer)
5. Food, agriculture and rural issues (Singer)
6. Natural capital (water and other resources, ecosystem services) (McLellan)
7. Social capital (stakeholders, cultural sustainability) (McLellan)
8. Energy issues (McLellan)
9. Business, trade and globalization (McLellan)
10. Global treaties, climate change and fair trade (McLellan)
11. Case studies from Japan and the world (McLellan)
12. Proposal preparation (Singer)
13. Student development proposals (Singer/McLellan)
14. Student development proposals and conclusion (Singer/McLellan)

Class requirement
Enthusiasm about the topic and willingness to share ideas in class.

Method, Point of view, and Attainment levels of Evaluation
1. Attendance and participation: 30%
2. In-class exercises and short assignments: 25%
3. Project outline: 5%
4. Final presentations and report: 40%

Textbook
Not used

Reference book, etc.

- **Reference book**

Regarding studies out of class (preparation and review)
Final presentation requires students to spend time out of class hours in preparation.

Regarding studies out of class (preparation and review)
Final presentation requires students to spend time out of class hours in preparation.
This lecture-discussion course will introduce students to environmental studies with a focus on human-environmental interactions. We will apply an ecosystem framework to understand the drivers of environmental change, their natural and human impacts, and some possible approaches to ensure long-term sustainability.

Course Goals
Students will be encouraged to look critically at the environmental impacts of their own behavior as well as practices on the local, regional, national and international scale. They will consider such concepts as environmental ethics and environmental justice in relation to our obligations to each other and the natural world. Students will be expected to contribute their ideas and express themselves in small group discussions and classroom exercises.

Course Schedule and Contents
Each ecosystem will be the focus of study for approximately two weeks:

Week 1: Course introduction. Environmental ethics
Week 2: The state of ecosystems today: Defining ecosystem tradeoffs, products and services
Week 3-4: Agroecosystems: Food supplies and food security, food production and livelihoods
Week 5: Freshwater and coastal ecosystems: Impacts of pollution, dams
Week 6: Natural disasters and environmental justice
Week 7-8: Midterm exam. Forest ecosystems: Impacts of deforestation and forest neglect
Week 9: Grasslands and arid lands: Overuse of natural resources
Week 10: ESD: Transforming environmental knowledge, awareness and behavior
Week 11: The global ecosystem: Climate change issues
Week 12: Presentation preparation
Week 13: Presentation preparation
Week 14: Group or individual presentations

Note: The schedule may change slightly depending on class requirements.

Evaluation will be based on class attendance and active participation (30%), short assignments and classroom exercises (35%), mid-term test (10%) and group presentations (25%).

Textbook
No text; required readings and lecture notes will be distributed in class.

Reference book
E.F. Moran "Environmental Social Science: Human-Environment Interactions and Sustainability" (Wiley-Blackwell) ISBN: 1405105747

Regarding studies out of class (preparation and review)
Students should download the Powerpoint file for the next class from the KULASIS site before class. All students will be expected to participate in classroom discussions and complete assignments. Please ask for clarification if necessary. If you miss a class, contact the instructor concerning assignments.

Others (office hour, etc.)
Please email the instructor to set up an office appointment. You will be informed of the instructor's email address in class.
Course Information

Course title
Introduction to Sustainable Development-E2

Affiliated department, Job title, Name
Graduate School of Global Environmental Studies, Associate Professor, SINGER JANE
Graduate School of Energy Science, Associate Professor, MCLELLAN, Benjamin

Group
Interdisciplinary Sciences

Field(Classification)
Environmental Sciences

Language
English

Number of weekly time blocks
1

Class style
Lecture

Course offered year/period
2019 • Second semester

Day/period
Thu. 4

Target year
Mainly 1st & 2nd year students

Eligible students
For all majors

Outline and Purpose of the Course

Sustainable development tries to satisfy people's present needs while maintaining the ability of future generations to meet their own needs. In this course we will explore how nations can try to balance growth with environmental health.

Course Goals

Students will gain an understanding of the core principles of sustainable development and their application through global and local case studies. At the conclusion of the course students will present their own sustainable development project proposals to the class, applying a Sustainable Development Goals (SDG) approach to determine the best approach for addressing specific societal and environmental problems.

Course Schedule and Contents

This course will cover the following topics:
1. Introduction: Definition and principles of sustainable development (Singer)
2. Identifying developed/developing countries and the goals of development (Singer)
3. History of development and ODA, why some countries succeed (Singer)
4. Population, migration and urbanization (Singer)
5. Food, agriculture and rural issues (Singer)
6. Natural capital (water and other resources, ecosystem services) (McLellan)
7. Social capital (stakeholders, cultural sustainability) (McLellan)
8. Energy issues, business, trade and globalization (McLellan)
9. Guest presentations on sustainable development issues (McLellan)
10. Global treaties, climate change and fair trade (McLellan)
11. Guest presentations on sustainable development issues (Singer)
12. Proposal preparation (Singer and McLellan)
13. Student development proposals (Singer/McLellan)
14. Student development proposals and conclusion (Singer/McLellan)

Class requirement

Enthusiasm about the topic and willingness to share ideas in class.
Introduction to Biological Invasion-E2(2)

Week 08: Movie for invasive disease/discussion
- Watch a movie themed with invasive pathogen and discussion

Week 09: World worst invasive mammals
- Introduce world's worst invasive mammals

Week 10: How invasive species related to global change/Discussion
- How are invasive species benefited by global change

Week 11: How invasive species threaten our Humanosphere/Case study
- Class discussion on various threats of invasive species on our society

Week 12: How to control invasive species
- Class activity to understand how to control invasive species in general

Week 13: Student Oral presentation 01
- Group presentation

Week 14: Student Oral presentation 02
- Group presentation

Week 15: Term papers

Week 16: Feedback

[Class requirement]

None

[Method, Point of view, and Attainment levels of Evaluation]

50% in-class discussion; 30% term paper; 20% presentation

[Textbook]

MA Davis 『Invasion biology』（Oxford University Press, 2009）

[Reference book, etc.]

MN Clout, PA Williams 『Invasive species management: a handbook of principles and techniques』（Oxford University Press, 2009）

[Regarding studies out of class (preparation and review)]

Students are encouraged to preview lecture materials and participate in class discussion, as lecture materials and most of the supplementary readings will be posted on KULASIS and PandA at least 1 day in advance.

[Others (office hour, etc.)]

Lecturer: Chin Cheng Yang (ecyang@rish.kyoto-u.ac.jp)
Office: HW 412, Research Building No. 1, Uji Campus
Office hours: to be announced
Note: There is a possibility that the instructor may organize a field trip that normally is a one-day event on the...
weekend, instead of the regular slot of this lecture. The lecturer will discuss date and time with students for the field trip at the beginning of the semester. Students are advised to pay the travel expense. Also, be advised to obtain the insurance for study and research: “Personal Accident Insurance for Students Pursuing Ed. & Rsch.” if you decide to take the class.
Course title

Insect-human Interactions-E2

Affiliated department, Job title, Name

Research Institute for Sustainable Humanosphere
Senior Lecturer, YANG, Chin-Cheng

<table>
<thead>
<tr>
<th>Group</th>
<th>Field (Classification)</th>
<th>Language</th>
<th>Number of weekly time blocks</th>
<th>Course offered year/period</th>
</tr>
</thead>
<tbody>
<tr>
<td>Interdisciplinary Sciences</td>
<td>Environmental Sciences</td>
<td>English</td>
<td>1</td>
<td>2019 - First semester</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Day/period</th>
<th>Target year</th>
<th>Eligible students</th>
</tr>
</thead>
<tbody>
<tr>
<td>Thu.4</td>
<td>Mostly 1st & 2nd year students</td>
<td>For all majors</td>
</tr>
</tbody>
</table>

Number of credits

2

Old group

2

Course offered year/period

2019 - First semester

Course Schedule and Contents

In principal, the course will be offered as the following plan. However, the order or time for each theme may change depending on the progressive of the course or handling on current topics. Note that students may have to pay their own transportation fee for the proposed field trips.

[Outline and Purpose of the Course]

The purpose of this course is to promote students' understanding of insects in our surroundings. The lecture will start with fundamentals of insects, followed by an introduction to "bad" or "good" insects from the human perspectives. The course will focus student's attention on:

1. how important insects are in our daily life;
2. how insects threaten our life quality;
3. how human manipulate insect populations to restore the balance between the two parties.

Examples from classic case studies will be utilized to bridge non-biology background students with the course content. Hands-on sections and possibly a field trip will be conducted to facilitate students' awareness and knowledge of the common insects in the daily life.

[Course Goals]

The expectations and goals for the students taking this course are:

1. students can get to understand "benefits" and "threats" of insects to mankind;
2. to understand how insects are related to human and our society;
3. eventually pay more attention/respect on this group of creatures.

[Class requirement]

None

[Method, Point of view, and Attainment levels of Evaluation]

50% in class discussion, 30% term paper, 20% presentation

[Textbook]

[Reference book, etc.]

- Introduced during class to be announced according to the content of a given class each week
Insect-human Interactions-E2(3)

[Regarding studies out of class (preparation and review)]
Students are encouraged to preview lecture materials and participate in class discussion, as lecture materials and most of the supplementary readings will be posted on KULASIS and PandA at least 1 day in advance.

[Others (office hour, etc.)]
Lecturer: Chin Cheng Yang (ccyang@rish.kyoto-u.ac.jp)
Office: HW 412, Research Building No. 1, Uji Campus
Office hours: to be announced
Note: There is a possibility that the instructor may organize a field trip that normally is a one-day event on the weekend, instead of the regular slot of this lecture. The lecturer will discuss date and time with students for the field trip at the beginning of the semester. Students are advised to pay the travel expense. Also, be advised to obtain the insurance for study and research “Personal Accident Insurance for Students Pursuing Ed. & Rsch.” if you decide to take the class.
Lecture code: Y214001

Course numbering: U-LAS61 10015 LE14

Course title: Natural Disaster Science-E2
Affiliated department, Job title, Name: Disaster Prevention Research Institute Associate Professor, Sameh Kantoush

Group: Interdisciplinary Sciences
Field(Classification): Environmental Sciences
Language: English
Affiliated department: Disaster Prevention Research Institute
Affiliated job title: Associate Professor
Affiliated name: Sameh Kantoush

Old group: Group B
Number of credits: 2
Number of weekly time blocks: 1
Course offered year/period: 2019 • Second semester

Day/period: Tue. 4
Target year: All students
Eligible students: For all majors

Number of credits: 2
Course offered year/period: 2019 • Second semester

[Outline and Purpose of the Course]
This course will give students an introduction to the utilization of natural resources and natural disasters in the earth that impact humanity and life in general. The aim of this course will emphasize the fundamental scientific principles to explain current technical issues and impacts of climate change on water related disasters in the world such as flood, high tide, tsunami, landslides, severe weather, and sediment related disasters. Historic catastrophes will be explained. Based on these understandings, all students will study causes, effects, and options available to predict, control, and mitigate natural disasters and social scientific approaches. Examples from recent and ancient history will be used and, whenever possible, Japanese examples will be identified. Knowledge gained in this course will allow for a better understand the world around us and a greater appreciation of the potential issues moving forward for humans.

[Course Goals]
By the end of this course student will:
- Understanding of the world around us and a greater appreciation of the potential issues moving forward for humans.
- Be able to distinguish and analyze various types of natural disasters
- Be able to identify causes and assess significance of natural disasters for human
- Be able to gain analytical skills for how to develop strategies for prediction, mitigation of flooding, climate change impacts and sedimentation disasters

[Course Schedule and Contents]
Week 1: Introduction to Natural Disasters and Hazards
Week 2: Disaster Risk Reduction, Management and Risk Assessment
Week 3-4: Geological Hazards: Earthquakes Causes, Measurements, Mitigation and Risks
Week 5: Climate Change and Global Warming
Week 6: Understanding Natural Disasters: Focus on Tropical Cyclones
Week 7: Report and Group Presentations
Week 8-9: Flooding as a Hazard: Monitoring, Prediction, and Mitigation Measures
Week 10: Tsunamis: Physics, Modelling, and Engineering Solutions for Hazard Mitigation
Week 11: Coastal Hazards
Week 12-13: Landslides and Debris Flow Disaster: Monitoring, Prediction, and Mitigation
Week 14: Warning and Evacuation
Week 15: Revision and Summary (group presentation)

[Class requirement]
None

[Method, Point of view, and Attainment levels of Evaluation]
Grades will be based on participation and collaboration in group work discussions and cooperative activities, writing reports associated with each topic of natural disasters that have occurred during the course. Evaluation will be based on class attendance, active participation (30%) and reports and group presentations on major natural disasters occur during the time period of the course (70%).

[Textbook]

[Regarding studies out of class (preparation and review)]
Students are requested to read carefully listed textbook and access to historical case studies on each natural disaster through website and related literatures.

[Others (office hour, etc.)]
Class participation and questions are very welcome during the lectures or at the end of the lecture. The schedule of office hours will be announced later. Moreover, if you have extra question, students may contact me by email.
Several environmental problems preoccupy peoples around the world. They result from conflicts between natural and human systems, affect our daily life and compromise our future. This seminar will explore how several environmental issues are addressed at the regional, national or international level, and how ecology and environmental science are used as a basis for addressing and tackling these issues.

Course Goals

Upon successful completion of this seminar, students will (i) have a basic scientific understanding of the major environmental issues, and will be able (ii) to critically assess these issues and (iii) to develop decision-making skills for proposing sustainable options for the future.

Course Schedule and Contents

The course will be based on in-depth analyses of several case studies that will be related to either:
- Climate change: vulnerability, adaptation and mitigation
- Heat waves and urban heat islands
- Air pollution: ozone in the troposphere
- Water pollution: eutrophication of aquatic ecosystems and scarcity of fresh water resources
- Nitrogen deposition: vegetation shifts
- Land degradation and restoration
- Pesticides and endocrine disruptor
- Resource depletion: overfishing and fishing allowance
- Habitat fragmentation and endangered species

The first class will be an introduction and overview of course content. We will review the major environmental issues through reading a scientific paper. Students will work as small teams (optimally five teams) on one of these subjects they will select. Each team will have to read in depth relevant scientific papers, first provided by the instructor and then find by the student that that will present to the group during the next class as a starting point of a discussion. For all subjects that will be analyzed simultaneously, the guideline of the course will be (i) problem definition, (ii) quantification of impacts, (iii) vulnerability assessment and (iv) identification of appropriate solutions to solve it.

(1) Introduction and selection of case studies [1 week]
(2) Problem definition [2-3 weeks]
(3) Quantification of impacts [3-4 weeks]
ILAS Seminar-E2: Introduction to Computation and Logic

Course title
ILAS Seminar-E2: Introduction to Computation and Logic

Group
Seminars in Liberal Arts and Sciences

Number of credits
2

Number of weekly time blocks
1

Class style
Seminar

Course offered year/period
2019 • First semester

Target year
Mainly 1st year students

Eligible students
For all majors

Day/period
Mon. 5

Classroom
1306, Faculty of Integrated Human Studies

Language
English

Course offered year/period
2019 • First semester

Target year
Mainly 1st year students

Eligible students
For all majors

Day/period
Mon. 5

Classroom
1306, Faculty of Integrated Human Studies

Language
English

Outline and Purpose of the Course
Computers are a relatively recent invention, but they have drastically changed how modern humans live and think. However, few people really know what it means to "compute" something, or how we discovered the basic principles of computation. It turns out that the discovery of computation has its roots in the development of formal logic and a determination to find a rigorous foundations for mathematics about a century ago. In this course, we will introduce the students to formal logic and its relationship with computation. We will also introduce some of the main people involved with the various discoveries, and emphasize the historical background and motivations. The aim of the course is for students to not only gain a deeper understanding of computation, but also understand how it was discovered.

Course Goals
The students will become familiar with logical reasoning, formal proofs, and the theory of computability. This will help the student develop skills that are important in any field of research, such as critical thinking and the ability to construct rigorous arguments. Students will also become familiar with the historical background and motivations that led to the development of formal logic and computation.

Course Schedule and Contents
Below are some possible topics that we will cover during the course. The topics we cover will depend on the interests and abilities of the students.

1. Propositional logic
2. First-order Predicate logic (Frege)
3. First-order Arithmetic (Peano)
4. Set theory (Cantor)
5. Paradoxes, foundations & Hilbert's program (Russell, Hilbert)
6. Intuitionism & constructive mathematics (Brouwer)
7. Incompleteness theorem (Godel)
8. Lambda calculus, Church numerals, and arithmetic (Church)
9. Turing machines and Turing completeness (Turing)
10. Further topics (Curry-Howard correspondence)

Class requirement
None

Method, Point of view, and Attainment levels of Evaluation
Students are expected to actively participate in discussion, read material, and solve exercises in class. Evaluation will approximately be based on the following: class participation (30%), written and oral assignments (30%), final (40%).

Textbook
No textbook. Relevant materials will be distributed in class.

Reference book, etc.
The following books might be useful as references and background reading, but are not required. We will also look at some original papers, which will be handed out in class.
1) "Logic in Computer Science" by Michael Huth and Mark Ryan
2) "A profile of mathematical logic" by Howard Delong.
4) "Introduction to Mathematical Logic" by Elliott Mendelson.
5) "Godel, Escher, Bach" by Douglas Hofstadter.
 Publisher: Basic Books (1999), ISBN: 978-0465026562

Regarding studies out of class (preparation and review)
Students should review the course material after each class, and will have homework assignments.

Others (office hour, etc.)

ILAS Seminar - E2 : Introduction to Engineering in Biology and Medicine

Affiliated department, Job title, Name
Institute for Frontier Life and Medical Sciences
Senior Lecturer, OKEYO, Kennedy Omondi

Group
Seminars in Liberal Arts and Sciences

Number of credits
2

Number of weekly time blocks
1

Class style
Seminar

Course offered year/period
2019 - First semester

Quota (Freshman)
10 (10)

Target year
Mainly 1st year students

Eligible students
For all majors

Day/period
Mon. 5

Classroom
21, Yoshida-South Campus Bldg. No. 1

Language
English

Keyword
Biomedical engineering / Medicine / Biological systems / Biomnipulation

[Outline and Purpose of the Course]
With increasing integration of science and engineering, more and more focus is being placed on multidisciplinary research. Against this background, this seminar will aim to introduce students, in particular first year students, to on-going engineering approaches aimed at understanding and/or solving biological and/or clinical problems. Discussions will be centered on (biological/clinical) problem identification, hypothesis setting around the problem, discussions on potential engineering solutions and, as may be necessary, experimental verification of the discussed solution(s).

[Course Goals]
This seminar is intended to help students develop interest in knowledge integration across different scientific disciplines, and to be able to formulate and apply concepts learnt to problem-solving in biology, medicine and health sciences.

[Course Schedule and Contents]
This seminar will tackle selected topics related to application of engineering principles and knowledge to solving clinical problems, and/or elucidating known and unknown biological phenomena. Although the topics listed below are wide and varied, discussions will center on problem setting and solving with focus on understanding current multidisciplinary research areas expected to revolutionize the future of medicine.

1. **Engineering in biology at the micro and nano scale and their clinical applications (3 weeks)**
 - We will discuss the convergence of biology with micro/nano technology that have enabled the manipulation, analysis and detailed study of living systems including single cells, DNA molecules and other biological materials. Engineering principles behind micro/nano technology will be highlighted and potential clinical applications discussed.

2. **Introduction to point-of-care diagnostics (3 weeks)**
 - Provision of medical care at the bedside of a patient or at home (at the comfort of a patient) is increasingly becoming important in the face of a rapidly aging society. Here we will identify and discuss emerging technologies such as microfluidics/wearable clinical devices that are enabling the realization of point-of-care or personalized medicine.

3. **Introduction to emerging trends in engineering artificial organs/tissues (3 weeks)**
 - Fusion of engineering and biology has made it possible to realize constructs of organs or tissues which mimic the functions of native organs/tissues. One such technology is "organ-on-a-chip" which borrows from the semiconductor technology to fabricate organ or tissue models on a chip for disease modeling and drug development. Here, we will discuss emerging trends in fabricating on-chip body organs/tissues, and highlight the potential applications of this technology in disease modeling, drug development and basic biology.

4. **Advances in biomedical engineering and applications (2 weeks)**
 - Rapid progress in micro/nano engineering have yielded small devices which are increasingly finding application in cell, DNA and protein analyses for disease diagnosis and drug screening. In this seminar, we will look at specific examples of new trends in biomedical engineering and specific application in areas such as cancer immunotherapy, detection of circulating tumor cells, DNA analysis, among others.

5. **Discussions on the future role of engineering in biology and medicine (3 weeks)**
 - We will discuss the importance of multidisciplinary research and highlight emerging technologies such as brainchips, wearable diagnostic devices that are promising to revolutionize traditional medicine, drug discovery, cancer research and personal disease management. On a rotational basis, students will each pick a topic of interest for discussion and presentation. Grading will be based on how well a topic is researched, presented and discussed.

6. **Lecture review and student presentations (2 week)**

[Class requirement]
None in particular. The seminar will be discussion-based, so prior preparation by way of reading about the above topics will be helpful in making the discussions lively.

[Method, Point of view, and Attainment levels of Evaluation]
Attendance and active class participation 60%, Discussions and Presentations: 40%

[Textbook]
Handouts

[Reference book, etc.]

[Regarding studies out of class (preparation and review)]
Prior reading of scientific papers on topics to be discussed is recommended to enhance understanding.

[Others (office hour, etc.)]
To be announced during class. However, questions, suggestions and comments can be posted by email anytime.
Course title
- ILAS Seminar-E2: Methods in Ecology and Natural History

Affiliated department, Job title, Name
- Graduate School of Science
 - Associate Professor, BARNETT, Craig Antony

Group
- Seminars in Liberal Arts and Sciences

Number of credits
- 2

Number of weekly time blocks
- 1

Class year
- Mainly 1st year students

Course offered year/period
- 2019 • First semester

Quota (Freshman)
- 10 (10)

Day/period
- Mon.5

Classroom
- 22, Yoshida-South Campus Bldg. No. 1

Language
- English

Outline and Purpose of the Course
Field research is an essential component of ecology because without it, we could not compile models and test hypotheses. In this course, we will use field techniques such as point counts to obtain a data set from different parts of the urban environment in Kyoto. We make comparisons among them in order to understand what species live in these different areas and how the environment can be related to their natural history. Students will work in teams and collect data, and then data will be pooled and analyzed in class. Students will work as teams for their presentations, but will submit their own written report.

Course Goals
1) Learn to identify birds in Kyoto and surrounding areas
2) Learn how to conduct a scientific experiment
3) Learn some facets of avian natural history
4) Data analysis and presentation
5) How to write a scientific report in English using the data we collected

Course Schedule and Contents
1) Course introduction, designing an experiment
2) How to design a field experiment.
3) Identifying birds
4) Identifying birds
5) Collecting data
6) Collecting data
7) Collecting data
8) Collecting data
9) Collation and data exploration
10) Data analysis
11) Writing an abstract and introduction
12) Methods and results
13) Discussion and conclusions
14) Peer review
15) Group presentations
16) Feedback

Class requirement
Understanding of high school biology is recommended.

Method, Point of view, and Attainment levels of Evaluation
Assessment will comprise of participation in data collection and in-class activities (50%), and a final presentation and report (50%).

Textbook
Reading materials distributed during classes.

Reference book, etc.
M. Brazil 『Birds of East Asia』 (Princeton University Press)

Regarding studies out of class (preparation and review)
To achieve the course goals, students should review the course materials plus optionally the recommended readings after each class. The time necessary for review should be in the range of 2-3 hours per class.

Others (office hour, etc.)
Take out accident insurance. (Partial Refund of Premium Paid for Personal Accident Insurance for Students Pursuing Education and Research (Gakkensai))

Two Japanese Great Tit nestlings from the same nest show the differences in size that can occur through individuals hatching at different times.

A free-living South Island Robin being used in research
We will start with an introduction to crucial experiments 100 years ago, which have changed the beliefs of the physicists about small particles and atoms. From there, we will understand the differences between macroscopic and microscopic world and the basic concepts of modern quantum theory. In the second part of the course, we will look at quantum phenomena and applications of them such as quantum teleportation, quantum computing, entanglement, magnetism, and superconductivity.

[Course Goals]
- Catching a glimpse of the bizarre behavior of the quantum world.
- Seeing the differences between macroscopic and microscopic world
- Becoming familiar with the basic concepts of quantum physics
- Revealing the mysteries behind quantum phenomena such as magnetism, superconductivity, and entanglement.

[Course Schedule and Contents]
The course will be adapted to the level of the students. Therefore, the number of weeks may change.
- Introduction to experiments on atoms and quantum-particles which have changed the beliefs of physicists 100 years ago (4-6 weeks)
 - light as wave and particle
 - electrons as waves
 - double slit experiment for electrons
 - the development of modern quantum mechanics
 - Heisenberg uncertainty-principle
 - why quantum mechanics is weird
- Applications of quantum phenomena (3-4 weeks)
 - quantum tunneling
 - quantum teleportation
 - quantum computing
- Quantum phenomena in atoms, molecules, larger bodies (5-7 weeks)
Course title
ILAS Seminar-E2: Topics in Frontier Physics (現代物理学の最先端)

Affiliated department, Job title, Name
Graduate School of Science, Associate Professor, WENDELL, Roger

<table>
<thead>
<tr>
<th>Group</th>
<th>Seminars in Liberal Arts and Sciences</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of credits</td>
<td>2</td>
</tr>
<tr>
<td>Number of weekly time blocks</td>
<td>1</td>
</tr>
<tr>
<td>Class style</td>
<td>Seminar</td>
</tr>
<tr>
<td>Course offered year/period</td>
<td>2019 • First semester</td>
</tr>
<tr>
<td>Quota (Freshman)</td>
<td>12 (12)</td>
</tr>
<tr>
<td>Target year</td>
<td>Mainly 1st year students</td>
</tr>
<tr>
<td>Eligible students</td>
<td>For all majors</td>
</tr>
<tr>
<td>Day/period</td>
<td>Mon.5</td>
</tr>
<tr>
<td>Classroom</td>
<td>36, Yoshida-South Campus Academic Center Bldg. North Wing</td>
</tr>
<tr>
<td>Language</td>
<td>English</td>
</tr>
</tbody>
</table>

Keyword
Modern Physics / Nobel Prize / Physics Discoveries

[Outline and Purpose of the Course]
This class will introduce students to new and exciting topics in modern physics. Recent discoveries and Nobel prize-winning research will be discussed in straightforward terms so everyone can understand and enjoy modern science. Lectures and discussions will be held in English and will cover a wide variety of topics in recent research. Even students with no previous physics experience are encouraged to join this class and learn about how we understand the world today.

[Course Goals]
Students in this course will learn about the fundamental physics behind recent topics in modern research as well as how they are applied in the real world. In addition, students will be introduced to and practice speaking in scientific English.

[Course Schedule and Contents]
Each week a different topic in modern physics and cosmology will be presented. The following week will provide a review of material with discussion. Topics will include some of the following:

- Discovery of the Higgs boson
- Observation of gravitational waves
- Neutrinos and their oscillations
- Radiation in the modern world
- The history and accelerating expansion of the universe
- Quarks and CP symmetry
- Lasers for trapping atoms
- From the birth of stars to supernovae

In addition to the above, students may request lectures on a few topics of their choice.

[Class requirement]
None

ILAS Seminar-E2: Topics in Frontier Physics (現代物理学の最先端)

[Method, Point of view, and Attainment levels of Evaluation]
This is a seminar course and the grade will be based on in-class participation only. Coming to each class with questions and an open mind is all that is needed.

[Textbook]
Not used

[Reference book, etc.]
- **Reference book**
 - Introduced during class

[Regarding studies out of class (preparation and review)]
Instructions on material to review ahead of lectures and supplementary reading will be presented in class.

[Others (office hour, etc.)]
Students curious about recent discoveries in physics are encouraged to attend this course.
Lecture code: Z002071

Course numbering
U-LAS70 10002 SE50

<table>
<thead>
<tr>
<th>Course title</th>
<th>Affiliated department, Job title, Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>ILAS Seminar-E2 : Clinical and ethical issues within palliative care- the European Context</td>
<td>Graduate School of Medicine Associate Professor, ANAGNOSTOU, Despoina</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Group</th>
<th>Seminars in Liberal Arts and Sciences</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Class style</th>
<th>Seminar</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Target year</th>
<th>Mainly 1st year student</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Eligible students</th>
<th>For all majors</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Day/period</th>
<th>Tue.5</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Classroom</th>
<th>21, Yoshida-South Campus Bldg. No. 1</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Number of credits</th>
<th>2</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Number of weekly time blocks</th>
<th>1</th>
</tr>
</thead>
</table>

Keywords
- Palliative care
- End of life
- Ethics
- Clinical issues
- Europe

[Outline and Purpose of the Course]

The overall aim of the seminar is to develop understanding of the key current clinical and ethical issues in palliative care within the European context.

We will use a combination of short lectures, interactive group work problem based activities and personal reflection throughout the course to address aspects of shared decision-making in palliative care, communication challenges in end of life care, ethical issues as viewed within EUROPE, holistic needs assessment and management of complex family interactions.

[Course Goals]

- To understand the concepts of palliative and end of life care
- To understand the different models of palliative care within Europe
- To develop awareness of the different disease groups relevant to palliative care
- To develop awareness of the current ethical debates within palliative care in Europe

[Course Schedule and Contents]

<table>
<thead>
<tr>
<th>Session</th>
<th>Topic</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Introduction of the seminar and of those participating</td>
</tr>
<tr>
<td>2</td>
<td>Definition and different approaches to palliative care/ end of life care- historical development</td>
</tr>
<tr>
<td>3</td>
<td>Decision-making in palliative care</td>
</tr>
<tr>
<td>4</td>
<td>Family involvement in palliative care</td>
</tr>
<tr>
<td>5</td>
<td>Financial burden for the family in end-of-life care</td>
</tr>
<tr>
<td>6</td>
<td>Management of chronic pain in palliative care</td>
</tr>
<tr>
<td>7</td>
<td>Communication issues in advanced cancer</td>
</tr>
<tr>
<td>8</td>
<td>Quality of life in palliative care</td>
</tr>
<tr>
<td>9</td>
<td>The concept of resilience in palliative care</td>
</tr>
<tr>
<td>10</td>
<td>Coping with terminal illness</td>
</tr>
<tr>
<td>11</td>
<td>Informal care-giving: the untold reality palliative care</td>
</tr>
<tr>
<td>12</td>
<td>The importance of Spirituality and spiritual care in palliative care</td>
</tr>
<tr>
<td>13</td>
<td>Advanced care planning- current trends</td>
</tr>
<tr>
<td>14</td>
<td>Ethical issues in palliative care</td>
</tr>
</tbody>
</table>

[Class requirement]

None

[Method, Point of view, and Attainment levels of Evaluation]

Evaluation will be based on students' presentations.

[Textbook]

Instructed during class

[Reference book, etc.]

- (Reference book)
 - Introduced during class
 - References to relevant literature will be given at each seminar

[Regarding studies out of class (preparation and review)]

Students are required to prepare for their presentations.

[Others (office hour, etc.)]

- Teacher short lectures, discussion groups, student presentations, small group works during seminar session based on an issue specified by the teacher.

Students are advised to actively participate; make comments and ask questions to generate discussions.

Students should make an appointment via e-mail, in the case they need any advice.
ILAS Seminar-E2: Dams and Reservoirs

Outline and Purpose of the Course

In Japan, there are more than 3000 dams with one or multiple functions, which become essential for such modern society. Storage reservoirs provide important functions such as disaster prevention, flood mitigation, energy production, and water supply, all of which are vital for humankind. Dam related issues have become more daring, with raising concerns about environment and increase of sedimentation issues in reservoirs. Removing stored sediments is often recommended as a more effective approach to recover reservoir storage capacities than building new dams.

This seminar course introduces students to dam technologies involving river engineering, ecosystem, flood and sediment issues. We will discuss about dam impacts and modern techniques that lead to increase dam service life. During seminar series videos of real dams and reservoirs and actual examples will be discussed. The students get the opportunity to visit dam site and understand the real situation of river ecosystem. Finally, a presentation will be required after the dam visit to demonstrate the learned principles applied in the student’s majors.

Course Goals

At the end of this course, the student will be able to understand:
- the different types and classifications of dams;
- the comprehensive sediment management techniques;
- the sediment management techniques;
- The importance of dams and how to upgrade.

Course Schedule and Contents

Week 1: Introduction- Main functions and types of dams & reservoirs
Week 2: Basic and principles of dams and reservoirs
Week 3: Water supply and climate change
Week 4: Modern technologies for large dams
Week 5: Dam impacts
Week 6: Dam field trip
Weeks 7-9: Sediment management techniques
Week 10: Reports and Presentations
Weeks 11-13: Upgrading and retrofitting of aging dams
Week 14: Sustainable management of reservoir
Week 15: Feedback and summary of the course

Class requirement
None

Method, Point of view, and Attainment levels of Evaluation

Reports and presentations (100%)
Lecture code: Z002058

Course title
ILAS Seminar-E2 : Food Systems in Asia

Affiliated department, Job title, Name
Graduate School of Agriculture
Program-Specific Senior Lecturer, Hart Nadav FEUER

Group
Seminars in Liberal Arts and Sciences

Number of credits
2

Number of weekly time blocks
1

Class style
Seminar

Course offered year/period
2019 • First semester

Quota (Freshman)
12 (8)

Target year
Mainly 1st year students

Eligible students
For all majors

Day/period
Tue. 5

Classroom
W302, Faculty of Agriculture Main Bldg. (North Campus)

Language
English

Keyword
Food / Cuisine / Nutrition

Outline and Purpose of the Course
This seminar surveys the contemporary transformation of food, nutrition, and agriculture in East and Southeast Asia. The content of the course will be both familiar and challenging as we will cover the development of national cuisines, the role of farmers, and the evolution of diet in modern society. The perspective will be both practical (How does society gather and eat?) and theoretical (Why food systems developed the way they did).

Course Goals
Students will gain a foundation in ‘Food Studies’: how scientists understand and analyze global food trends from multiple perspectives. Students will also test their skills in an applied way by analyzing specific cuisines in East Asia and providing their own insight and analysis.

Course Schedule and Contents

1. **Introduction**
 - The new worldwide passion for food

 Module 1: Cuisines and agri-food systems in different regions
 1. Rice food systems of Southeast Asia
 2. Wheat food systems of East Asia
 3. Rice-based vs. Wheat-based civilizations

 Module 2: Food systems and cuisine
 4. Rural food, urban cuisine
 5. Development of national cuisine
 6. Changing tastes and preferences of regional cuisine

 Module 3: Food skills and food knowledge
 7. Food education and childhood
 8. Food and lifestyle
 9. Taste, smell, chew: sensory skills of eating

 Module 4: Student Presentations (order selected later)
 10. Cuisine of Korea
 11. Cuisine of Vietnam
 12. Cuisine of Malaysia
 13. The Future of Cuisine
 14. Final assessment (to be selected in class)
 15. Feedback (details in class)

Class requirement
English proficiency suitable for understanding lectures, reading basic texts, and participating in class discussion.

Method, Point of view, and Attainment levels of Evaluation
10% Attendance (* More than 4 absences without official excuse loses this grade)
10% Mini-essay assignments
20% In-class discussion and participation in activities
30% Final exam OR essay (student vote)
30% Final group presentation

Textbook
Not used
No textbook, but consultation of in-class materials and eBooks available at Kyoto University Library (see Reference book).

Reference book, etc.
Van Esterik, Penny 《Food Culture in Southeast Asia》 (Greenwood) ISBN:9780313344190 (eBook available from instructor)

Regarding studies out of class (preparation and review)
Students will be expected to do readings in preparation for class and discuss them the following week. Alternatively, students will conduct take home practical exercises which must be submitted the following week. Students should be prepared to discuss the topic of the week in an active manner during class.

Others (office hour, etc.)
Short meetings can be spontaneous or scheduled. Longer meetings scheduled only by email.
Course title <English> ILAS Seminar-E2: Food Systems in Asia
Affiliated department, Job title, Name Graduate School of Agriculture Program Specific Senior Lecturer, Hart Nadav FEUER

Group Seminars in Liberal Arts and Sciences
Number of credits 2
Number of weekly time blocks 1

Class style Seminar
Course offered year/period 2019 • Second semester
Quota (Freshman) 12 (8)

Target year Mainly 1st year students
Eligible students For all majors
Day/period Tue.5

Classroom W302, Faculty of Agriculture Main Bldg. (North Campus)
Language English

Keyword Food / Cuisine / Nutrition

[Outline and Purpose of the Course]
This seminar surveys the contemporary transformation of food, nutrition, and agriculture in East and Southeast Asia. The content of the course will be both familiar and challenging as we will cover the development of national cuisines, the role of farmers, and the evolution of diet in modern society. The perspective will be both practical (How does society gather and eat?) and theoretical (Why food systems developed the way they did).

[Course Goals]
Students will gain a foundation in ‘Food Studies’: how scientists understand and analyze global food trends from multiple perspectives. Students will also test their skills in an applied way by analyzing specific cuisines in East Asia and providing their own insight and analysis.

[Course Schedule and Contents]
Introduction
1. The new worldwide passion for food
Module 1: Cuisines and agri-food systems in different regions
2. Rice food systems of Southeast Asia
3. Wheat food systems of East Asia
4. Rice-based vs. Wheat-based civilizations
Module 2: Food systems and cuisine
5. Rural food, urban cuisine
6. Development of national cuisine
7. Changing tastes and preferences of regional cuisine
Module 3: Food skills and food knowledge
8. Food education and childhood
9. Food and lifestyle
10. Taste, smell, chew: sensory skills of eating
Module 4: Student Presentations (order selected later)
11. Cuisine of Korea
12. Cuisine of Vietnam
13. Cuisine of Malaysia
14. The Future of Cuisine
15. Final assessment (selected in class)
16. Feedback (details in class)

[Class requirement]
English proficiency suitable for understanding lectures, reading basic texts, and participating in class discussion.

[Method, Point of view, and Attainment levels of Evaluation]
10% Attendance and active participation (* More than 4 absences without official excuse loses this grade)
10% Mini-essay assignments
20% In-class discussion and participation in activities
30% Final exam OR essay (student vote)
30% Final group presentation

[Textbook]
Not used
No textbook, but consultation of in-class materials and eBooks available at Kyoto University Library (see Reference book).

[Reference book, etc.]
Van Esterik, Penny Food Culture in Southeast Asia ISBN:9780313344190 (eBook available from instructor)

[Regarding studies out of class (preparation and review)]
Students will be expected to do readings in preparation for class and discuss them the following week. Alternatively, students will conduct home practical exercises which must be submitted by the following week. Students should be prepared to discuss the topic of the week in an active manner during class.

[Others (office hour, etc.)]
Short meetings can be spontaneous or scheduled. Longer meetings scheduled only by email.
ILAS Seminar-E2 : Frontiers in psychopathology

Affiliated department, Job title, Name: Graduate School of Human and Environmental Studies, Associate Professor, TAJAN, Nicolas Pierre

Group: Seminars in Liberal Arts and Sciences

Number of credits: 2
Number of weekly time blocks: 1

Class style: Seminar
Course offered year/period: 2019 • First semester
Quota (Freshman): 13 (10)

Target year: Mainly 1st year students
Eligible students: For all majors
Day/period: Tue. 5

Classroom: 22, Yoshida-South Campus Academic Center Bldg. West Wing
Language: English

[Outline and Purpose of the Course]
This seminar introduces the challenges of disciplines contributing to psychopathology (psychiatry, psychotherapy, psychoanalysis, etc.) in order to better understand the recent development of the mental health field.

[Course Goals]
To provide you with a general introduction to and understanding of key questions and challenges in psychopathology.
To help you develop your analytical and critical thinking regarding the mental health field.

[Course Schedule and Contents]
1) Introduction
2) Psychiatry I
3) Psychiatry II
4) Antipsychiatry
5) Institutional psychiatry
6) Psychotherapy I
7) Psychotherapy II
8) Psychoanalysis I
9) Psychoanalysis II
10) Cultural psychiatry I
11) Cultural psychiatry II
12) From psychiatry to mental health
13) Psychiatric power
14) Conclusion
15) Final test
16) feedback

[Class requirement]
None

[Method, Point of view, and Attainment levels of Evaluation]
Students are expected to actively participate in discussion and read materials during class. Evaluation is based on the following: Attendance and participation (30%), 2 written responses at the beginning of class 6 and 10 (30%), final test (40%).

[Textbook]
Relevant material is distributed in class.

[Regarding studies out of class (preparation and review)]
Students do not have homework assignments. However, they are advised to take notes during class and to review the course material before written responses and final test.

[Others (office hour, etc.)]
[Outline and Purpose of the Course]

Nanostructured materials refer to the materials having microstructures of which the characteristic length scale is in the order of 1 to 1000 nanometers (10^{-9} meter). Because of the extremely fine microstructures, the nanostructured materials often exhibit unique physical properties which cannot be obtained from the conventional materials. The purpose of this course is to introduce the frontier research of the nanostructured materials with focusing on the microstructures and mechanical properties nanostructured metallic materials.

[Course Goals]

By taking this course, students will learn why the materials researches are going into the length scale of nanometer in recent decades. In addition, they will have a brief understanding on the frontier researches of processing, properties and microstructures of the nanostructured metals and alloys.

[Course Schedule and Contents]

1. Introduction to materials and materials science
2. Atomic structure and interatomic bonding
3. Structure of crystalline solids
4. Imperfections in solids
5. Microstructures of materials
6. Concept of nanomaterials
7. Metallic materials having nanostructures
8-11. Microstructures and mechanical properties of nanostructured metallic materials
12. Laboratory tour
13-14. Advanced characterization techniques

[Textbook]

Not used

[Regarding studies out of class (preparation and review)]

Students are required to read assigned materials (distributed by the teacher) before and after the class for preparation and review. The necessary time for those would be around 2 hours for each class.

[Others (office hour, etc.)]

Graduate School of Engineering

Senior Lecturer, GAO, Si

Class style

Seminar

Number of credits

2

Number of weekly time blocks

1

Target year

2019 • First semester

Quota (Freshman)

15 (15)

Classroom

822, 8F, Engineering Science Depts Bldg. (Main Campus)

Language

English

Group

Seminars in Liberal Arts and Sciences

Course offered year/period

Mainly 1st year students

Eligible students

For all majors

Day/period

Tue.5
Lecture code: Z002073

Course title
ILAS Seminar-E2 :Robots in Japanese Popular Culture

Affiliated department, Job title, Name
Graduate School of Engineering Professor, DANIELL, Thomas Charles

Group
Seminars in Liberal Arts and Sciences

Number of credits
2

Number of weekly time blocks
1

Class style
Seminar

Course offered year/period
2019 • First semester

Target year
Mainly 1st year student

Eligible students
For all majors

Day/period
Tue. 5

Classroom
3D, Yoshida-South Campus Academic Center Bldg. North Wing

Language
English

[Outline and Purpose of the Course]
This seminar will look at the image of robots in Japanese popular culture, primarily focusing on the period from Osaka Expo in 1970 until the present day. As well as manga, anime, cinema, and literature, we will look at the origins of Japan's robot culture in karakuri ningyou and contemporary manifestations such as Aibo. We will discuss cultural issues ranging from animism to artificial intelligence, and concepts such as the "uncanny valley" effect.

[Course Goals]
By the end of this course, students will: Understand the historical development of robots in Japan; Understand the technological and cultural factors that have shaped perceptions; Learn to make a critical response to the assigned readings; Learn to read, write, listen, and speak cogently; Present research findings to an audience.

[Course Schedule and Contents]
Each week there will be a main text assigned for discussion, led by either the instructor or one of the students. The choice and order of texts may be altered during the semester.

WK. 01 Discussion text: Frederik L. Schodt, "The First Japanese Robot"
WK. 02 Discussion text: Frederik L. Schodt, "Robots of the Imagination"
WK. 03 Discussion text: Frederik L. Schodt, "The Toy Robot Kingdom"
WK. 04 Discussion text: Yuji Sone, "Robotics and Representations"
WK. 05 Discussion text: Yuji Sone, "Futuristic Spectacle: Robot Performances at Expos"
WK. 06 Discussion text: Yuji Sone, "The Anthropomorphic Robot and Artistic Expression"
WK. 07 Discussion text: Lee Makela, "From Metropolis to Metropolis"
WK. 08 Discussion text: Frederik L. Schodt, "Designing a World"
WK. 09 Discussion text: Frederik L. Schodt, "An Interface between Man and Robot"
WK. 10 Discussion text: Yuji Sone, "Robots, Space, and Place"
WK. 11 Discussion text: Yuji Sone, "Robots that "Care""
WK. 12 Discussion text: Frederik L. Schodt, "Religion and Robots"
WK. 13 Discussion text: Frederik L. Schodt, "Medley of Messages"
WK. 14 Review

[Class requirement]
No prior knowledge is required. Students should be able to participate in discussions with their classmates in English. This is a seminar, not a lecture series, so students must complete the readings and be involved in the discussions.

[Method, Point of view, and Attainment levels of Evaluation]
The course will comprise close readings of critical texts in the fields of robots and popular culture. Each student will be required to lead one session. They must read and understand the assigned text, then prepare and present a summary of their findings to the rest of the students. The presentation should be about 60 minutes, and illustrated with a PowerPoint file. It should be supplemented with additional quotations, images, video clips, and so forth. For the remainder of the class, the student must lead a discussion on the topics raised. The text of the presentation should be submitted in essay format, citing salient reference works, giving footnotes in the APA style, and captions for all images. Grades are based on participation (20 points), presentations (40 points), and submitted assignments (40 points). Students who are absent more than four times will not be credited. Students who submit work that is plagiarized or lacks proper attribution may fail.

[Textbook]
Frederik L. Schodt, "Inside the Robot Kingdom" (Kodansha) ISBN: 978-4870118548

[Reference book, etc.]

[Regarding studies out of class (preparation and review)]
All students are expected to have read the assigned reading(s) before each class.

[Others (office hour, etc.)]
By appointment.
Lecture code: Z002067

<table>
<thead>
<tr>
<th>Course number</th>
<th>U-LAS70 10002 SE50</th>
</tr>
</thead>
<tbody>
<tr>
<td>Course title</td>
<td>ILAS Seminar-E2 : The Life and Work of Albert Einstein</td>
</tr>
<tr>
<td>Affiliated department, Job title, Name</td>
<td>Research Institute for Mathematical Sciences Assistant Professor, Helmke, Stefan</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Group</th>
<th>Seminars in Liberal Arts and Sciences</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of credits</td>
<td>2</td>
</tr>
<tr>
<td>Number of weekly time blocks</td>
<td>1</td>
</tr>
<tr>
<td>Class style</td>
<td>Seminar</td>
</tr>
<tr>
<td>Course offered year/period</td>
<td>2019 • First semester</td>
</tr>
<tr>
<td>Quota</td>
<td>15 (15)</td>
</tr>
<tr>
<td>Target year</td>
<td>Mainly 1st year students</td>
</tr>
<tr>
<td>Eligible students</td>
<td>For all majors</td>
</tr>
<tr>
<td>Day/period</td>
<td>Tue.5</td>
</tr>
<tr>
<td>Classroom</td>
<td>04, Yoshida-South Campus Bldg. No. 1</td>
</tr>
<tr>
<td>Language</td>
<td>English</td>
</tr>
<tr>
<td>Keyword</td>
<td>Non-euclidean geometry / curvature / relativity</td>
</tr>
</tbody>
</table>

[Outline and Purpose of the Course]

In spite of what the title of this seminar may suggest, its main objective is to study the developments of geometry during the 19th century, which culminated in Einstein's general theory of relativity in the early 20th century. At this early time, the only experimental fact confirming Einstein's theory was the abnormal orbit of mercury. Shortly after, the bending of light in the gravitational field of the sun was also confirmed. We will develop the geometric tools necessary to understand those phenomena and also gravitational waves, whose recent discovery received the Nobel price in physics of the year 2017.

[Course Goals]

The aim of this course is to understand the interaction between mathematics and the natural sciences and to engage in English discussions on a scientific topic.

[Course Schedule and Contents]

The exact contents of the seminar is flexible and may depend on special interests of the students. But the topics to be covered will be essentially as follows.

The first four weeks we will study Einstein's special theory of relativity and its historical background. This includes a brief introduction to multidimensional calculus, electrodynamics and the four dimensional Minkowski space.

The following five weeks will be devoted to the developments of differential geometry, beginning with the notion of curvature of a plane curve due to Huygens and Newton in the 17th century, followed by Euler's definition of principal curvatures of a surface embedded into space, Gauss's intrinsic geometry of a surface and finally Riemann's concept of a manifold and its curvature. Parallel, we will also study the idea of Non-Euclidean geometry which developed during the same period of time and which turned out to be related to the above and of some importance for Einstein later.

We will then just need two more weeks to understand the basic ideas of the general theory of relativity, i.e. the equivalence principle and Einstein's field equations.

The last three weeks we will study the following applications of the general theory of relativity:
1. The mercury orbit and bending of light.
2. Simple cosmological models and

Newton's fixed space **Einstein's flexible space-time**

Einstein's flexible spacetime, from the film "Testing Einstein's Universe" by Norbert Bartel
ILAS Seminar-E2: What are Liquids? Answers from Physics, Chemistry and Engineering

[Class Schedule and Contents]

This seminar is held in a causal and interactive way! Students can influence the selection of topics based on their interest!

The course will work through several aspects of liquids, which include the following topics. The plan below is not strict and rather serves as a guideline.

1. Introduction to liquids - Honey, toothpaste or even sand? (3 weeks)
 We look at liquids from different scientific viewpoints and identify their behavior.

2. Oil and water do not mix? (4 weeks)
 We learn why liquids form and which different forces hold liquids together.

3. The shape of a raindrop and the lotus effect. (4 weeks)
 We take a closer look at liquid surface and interface effects such as adhesion, cohesion, surface tension.

4. How to get ketchup out of the tube? (3 weeks)
 We see what makes liquids flow and how different liquids react to forces.

Depending on the available time and interest of the students, we may also discuss topics such as the application of liquids in nature, science, and technology or exotic liquids such as ionic or magnetic liquids.

[Class requirement]
None

[Method, Point of view, and Attainment levels of Evaluation]
Preparing homework (30%)
Small exercises during the seminar (30%)
Giving a short presentation at the end of the seminar (40%)

[Textbook]
Not used
No textbook is used. Handouts will be provided during class.

[Reference book, etc.]

(Reference book)

[Regarding studies out of class (preparation and review)]
Students are expected to review the lecture handouts after each class and look up unknown English terms themselves. Homework assignments need to be prepared before the next lecture. It is also encouraged to refer to additional sources of information (books, websites) for the specific topics. If something is unclear or difficult, the instructor can be asked at any time.

[Others (office hour, etc.)]
The lectures will be held in English, but some supporting material and explanations are given in Japanese. Students are welcome to ask questions in English or Japanese during and after the class. Office hours are flexible. Appointments can be made directly or via email.
Course title
ILAS Seminar-E2 : First Step to Qualitative Research Methods - Field Surveys and Data Analysis

Affiliated department, Job title, Name
Disaster Prevention Research Institute Associate Professor, SAMADDAR, Subhajyoti

Group
Seminars in Liberal Arts and Sciences

Number of credits
2

Number of weekly time blocks
1

Class style
Seminar

Course offered year/period
2019 • First semester

Quota (Freshman)
25 (15)

Target year
1st year students

Eligible students
For all majors

Day/period
Wed. 5

Classroom
Seminar room 21, ILAS Bldg.

Language
English

Keyword
Research Methodology / Qualitative research / Survey tools and techniques / Field Surveys / Action Research

Outline and Purpose of the Course

Qualitative research methods bring the deep and real opinions, thoughts and perspectives of the people and local communities, which cannot be possible to capture through predetermined questionnaires as used by quantitative research methods. The process of obtaining knowledge in case of qualitative research is more sort of a bottom-up approach. It brings the voices of voiceless and hears the unheard. More than theory, qualitative research method is an art to build rapport with communities, observe their behaviors and activities, interview those marginalized, isolated people who have never been interviewed.

This course will offer to learn a basic practical knowledge on qualitative research methods by conducting practical exercises, field surveys and analyzing field data. Emphasis will be placed on equipping students to gain the practical skills necessary to conduct a small field work project using action-oriented methods. Students individually or in group will take small projects or existing case studies within the university campus to practically learn the qualitative research method techniques.

Course Goals
This seminar course has following key objectives -
1. To learn the art and practical skills to conduct qualitative research methods.
2. To learn how to analyze the qualitative research data.
3. To learn how to present and articulate the findings of qualitative research.

Course Schedule and Contents

Week 1: Introduction
- Understanding the basic concepts of qualitative research.
- Why study qualitative research methods.

Week 2: Reading and learning major qualitative research methods.
- Ethnomethodology.
- Phenomenology.

Week 3: Reading and Learning major qualitative research methods.
- Content analysis.
- Visual Anthropology.

Week 4: Designing qualitative studies
- Data collection decisions.
- Sampling : Purposeful sampling and case selection.
- Deciding sample size for qualitative designs
- Group characteristics sampling strategies and options.

Week 5 and 6: Fieldwork strategies
- Method choices and decisions.
- Rapport building techniques.
- Pilot survey techniques for knowing the fields.
- How to reduce the biases.
- Managing field-based research.

Week 7: Doing field studies:
- Interview techniques:
 - Question options and skilled question formulation.
 - Rapport, neutrality and interview relationships.
 - Open-ended interviews.
 - Ethical issues and challenges

Week 8: Observation techniques for data collection
- Variation of observation methods.
- Variation in duration of observation and site visits.
- What to observe: Sensitizing concepts.
- How to observe?
- Data gathering process through observation.

Week 9: Other Methods of Qualitative Data Collections
- Case Study
- Oral history
- Focus group meetings.

Week 10: Recording data
- What to record
- Note-taking practices when doing field works.
- Converting field notes into fuller notes.
- Keeping personal journal.

Week 11: Analyzing Qualitative Data.
- Organizing the data
- Reading and Memoing.
- Codes and themes
- Representing and visualizing
Week 12: Presenting the results from qualitative research
- Tabular, graphic and pictorial presentation.
- Three modes for displaying qualitative data.
- Using words table to summarize an analytical findings.
- Variation among household types.
- Making good use of photographs.

Week 13: Writing a Qualitative Data
- Reflexivity and representation in writing.
- Audience of our writings.
- Encoding our writings.
- Quotes in our writings.
- Overall structure.
- Embedded structure.

Week 14: Composing research, to share it with others.
- Composing: General hints.
- Composing qualitative research.
- Presenting your declarative self.
- Presenting your reflexive self.
- Reworking your composition.

Week 15: Final Presentation and report submission

Week 16: Feedback

[Class requirement]
None

[Method, Point of view, and Attainment levels of Evaluation]
Evaluation will be based on
- Active participation (20 points).
- Report Writing (40 Points)
- Final presentation (40 points). Assignments and report presentations will be assessed on the basis of achievement level for course goals

[Textbook]
Handouts will be distributed by the instructor if necessary.

[Regarding studies out of class (preparation and review)]
Site appraisal and field surveys will be conducted.
Students individually or in group will take small projects or existing case studies within the university campus to practically learn the qualitative research method techniques.

[Others (office hour, etc.)]
The course with experiments or offered outside of the campus, state on the taking out accident insurance of Personal Accident Insurance for Students Pursuing Ed. & Rsch. as needed.
Outline and Purpose of the Course

This will be in the form of a small class (around 7 students). The purpose is to learn interactively various up-to-date topics in theoretical physics. Topics will be taken from journals like Physics Today, Physics World, Nature etc. The topics taken in this course are different from those in the course "Frontiers in Theoretical Physics II".

Course Goals

The students will be able to read an article from some journal and enucleate the main message from it. The student will closely interact with professor and other students, so that ideas/comments can be exchanged.

Course Schedule and Contents

1. Each student would read in turn a paper and report her/his impressions to the other people.
2. The paper will be freely chosen consistently with field of theoretical physics.
3. In case the paper requires more work, analysis, the same paper can be discussed in groups.
4. As for the paper, the student must be able to get the key-message and show to the others why the paper might (or might not) be of importance in theoretical physics.
5. Share comments, and toss out possible new ideas to expand the idea of the original paper.

Class requirement

None

Method, Point of view, and Attainment levels of Evaluation

Discussion in class.

Textbook

Instructed during class
Course title
ILAS Seminar-E2 : Frontiers in Theoretical Physics II

Affiliated department, Job title, Name
Hakubi Center for Advanced Research Postgraduate Assistant Professor, Werner, Marcus Christian

Group
Seminars in Liberal Arts and Sciences

Number of credits
2

Number of weekly time blocks
1

Class style
Seminar

Language
Japanese and English

Classroom
11, Yoshida-South Campus Academic Center Bldg. North Wing

Keywords
Theoretical Physics / Astrophysics / 宇宙物理学

Outline and Purpose of the Course

Physics Today の論文を読んで物理学の最前線を取り組みます。この科目では、宇宙物理学に関するトピックを焦点が当てられますが、量子力学や流体力学などの物理学の全範囲をカバーします。この科目の内容は「理論物理学最前線 I」と異なります。各回の講義は次の3つのパートから構成されます: まず、私が講義スタイルでトピックの紹介を行います。その後、全員が事前に読んだ論文の内容を、学生の一人が発表します。最後に、全員が新しいアイディアや提案について議論します。このコースは小規模で、インタラクティブに進める予定です。

Course Goals

この科目の主な目的は、最近の物理学の発展と、特にそのいくつかの側面について理解を得ることです。学生は物理学における方法論的問題を批判的に議論することが奨励されます。同時に、英語の会話や文章理解のスキルを向上させることも目的としています。これは、すべての研究が基本的に英語で出版されるので、特に重要です。

Course Schedule and Contents

1. 訪問: 学生が論文の内容と発表の方法を考えられるように、私が典型的な論文を提示します。
2. 毎週、学生は順番に英語で論文の発表を行います。発表回数は出席者の総数に依存します。グループで発表することもできます。
3. 試験の前に、セミナーとテストはありません。
4. 試験の後のフィードバックセッションで、私がコース要約を提供します。

Class requirement

物理学への興味/高度なトピックの予備知識は有益ですが、必須ではありません。

Method, Point of view, and Attainment levels of Evaluation

試験はありません。評価は、学生の出席と授業への貢献度に基づいて行われます。

[Textbook]
Not fixed

[Reference book, etc.]

(Reference book)
Introduced during class

[Regarding studies out of class (preparation and review)]

毎週、学生は論文を一部事前に読んで理解を深めることが期待されます。

[Others (office hour, etc.)]

Continue to ILAS Seminar-E2 : Frontiers in Theoretical Physics II (II)
Outline and Purpose of the Course

Why should we care about the health of other people, especially that of people in other countries? Global health is not just about health in low-income countries; it is about common health problems faced by human population as a whole. As the world has become more globalized, so too has health. Diseases do not respect political boundaries, thus global cooperation is critical for our collective survival. Health is closely linked with economic and social development and has important implications for global security and freedom.

This course will introduce students to major global health challenges that affect the health of populations globally.

Course Goals

* To understand key concepts used in examining global health issues
* To gain insight into the current challenges of global health
* To gain an understanding of why tackling global health issues has the potential to reduce poverty, build stronger economies and promote peace

Course Schedule and Contents

In principle, the course will include the following topics:

1. Introduction to Global Health
2. Social determinants of health, measurements, MDGs, SDGs
3. Infectious diseases and epidemics
4. Infectious diseases (cont.)
5. Child and maternal health
6. Non-communicable diseases
7. Injury and violence
8. The environmental context of health
9. Culture and health
10. Migration
11. Mental health
12. Global health partnerships
13. Social marketing for health promotion
14. Social marketing for health promotion (cont.)

More details will be provided in class.

Reference book, etc.

Richard Skolnik (Global Health 101) (Jones and Bartlett Learning) ISBN:978-1-284-05054-7

Students will be provided with a list of recommended readings for each topic in due time. Class handouts will be available.

Regarding studies out of class (preparation and review)

* Students will do additional research on their own to prepare short written assignments/presentations. Further details will be provided during class.*

Others (office hour, etc.)

Seminars will be held at:
Science Frontier Laboratory, Faculty of Medicine Campus, Small seminar room (1F).

Please visit KULASIS to find out about office hours.
Course title <English>
ILAS Seminar-E2 : Introduction to Human Genetics and Genetic Disease

Affiliated department, Job title, Name
Graduate School of Medicine, Senior Lecturer, Marco, Marques Candeias

Group
Seminars in Liberal Arts and Sciences

Number of credits
2

Number of weekly time blocks
1

Class style
Seminar

Course offered year/period
2019 • First semester

Quota (Freshman)
15 (15)

Target year
Mainly 1st year students

Eligible students
For all majors

Day/period
Wed. 5

Classroom
04, Yoshida-South Campus Bldg. No. 1

Language
English

Keyword
Human Genetics / Genetic Disorders / Cancer Genetics / Genetics Research / Molecular Therapy

[Outline and Purpose of the Course]
An overview of human genetic disorders and how current research is creating new treatments. Topics include: single gene disorders, multifactorial disorders; cancer genetics; identification and analysis of human disease genes. Students will learn from recent research articles as well as from a recent textbook on human genetics. After learning about the several subjects, the students will present recent research in class and active discussion will be encouraged.

[Course Goals]
The classes will be interactive. The students will learn from the instructor as well as from each other. Recent exciting research discoveries about human genetics and genetic disease will be introduced and discussed. The students will learn about gene structure and function, mutations and diversity, inheritance, detection and treatment.

[Course Schedule and Contents]
The following topics will be viewed during a total of 14 classes:
1. The Human Genome: Gene Structure and Function
2. Human Genetic Diversity: Polymorphism or mutation?
3. The Chromosomal and Genomic Basis of Disease: Disorders of the Autosomes and Sex Chromosomes
4. Single-Gene Inheritance
5. Complex Inheritance (known and unknown molecular mechanisms) of Common Multifactorial Disorders
6. Genetic Variation in Populations
7. Identifying the Genetic Basis for Human Disease
8. The Molecular, Biochemical, and Cellular Basis of Genetic Disease
9. The Treatment of Genetic Disease
10. Developmental Genetics and Birth Defects
11. Cancer Genetics

[Class requirement]
None

[Method, Point of view, and Attainment levels of Evaluation]
Evaluation will be based on active participation (20%), assignments (50%) and quizzes/test (30%). Those who are absent more than four times will not be credited.

[Textbook]

[Regarding studies out of class (preparation and review)]
A few hours will be necessary weekly to prepare for the class. Handouts will be available to help with the preparation. During the assignment weeks extra hours will be necessary in order to prepare for the presentation in class.

[Others (office hour, etc.)]
Questions and discussions during class are highly encouraged. Questions and discussions will also be addressed, happily, any other time, even outside the official office hours.

[Outline and Purpose of the Course]
An overview of human genetic disorders and how current research is creating new treatments. Topics include: single gene disorders, multifactorial disorders; cancer genetics; identification and analysis of human disease genes. Students will learn from recent research articles as well as from a recent textbook on human genetics. After learning about the several subjects, the students will present recent research in class and active discussion will be encouraged.

[Course Goals]
The classes will be interactive. The students will learn from the instructor as well as from each other. Recent exciting research discoveries about human genetics and genetic disease will be introduced and discussed. The students will learn about gene structure and function, mutations and diversity, inheritance, detection and treatment.

[Course Schedule and Contents]
The following topics will be viewed during a total of 14 classes:
1. The Human Genome: Gene Structure and Function
2. Human Genetic Diversity: Polymorphism or mutation?
3. The Chromosomal and Genomic Basis of Disease: Disorders of the Autosomes and Sex Chromosomes
4. Single-Gene Inheritance
5. Complex Inheritance (known and unknown molecular mechanisms) of Common Multifactorial Disorders
6. Genetic Variation in Populations
7. Identifying the Genetic Basis for Human Disease
8. The Molecular, Biochemical, and Cellular Basis of Genetic Disease
9. The Treatment of Genetic Disease
10. Developmental Genetics and Birth Defects
11. Cancer Genetics

[Class requirement]
None

[Method, Point of view, and Attainment levels of Evaluation]
Evaluation will be based on active participation (20%), assignments (50%) and quizzes/test (30%). Those who are absent more than four times will not be credited.

[Outline and Purpose of the Course]
An overview of human genetic disorders and how current research is creating new treatments. Topics include: single gene disorders, multifactorial disorders; cancer genetics; identification and analysis of human disease genes. Students will learn from recent research articles as well as from a recent textbook on human genetics. After learning about the several subjects, the students will present recent research in class and active discussion will be encouraged.

[Course Goals]
The classes will be interactive. The students will learn from the instructor as well as from each other. Recent exciting research discoveries about human genetics and genetic disease will be introduced and discussed. The students will learn about gene structure and function, mutations and diversity, inheritance, detection and treatment.

[Course Schedule and Contents]
The following topics will be viewed during a total of 14 classes:
1. The Human Genome: Gene Structure and Function
2. Human Genetic Diversity: Polymorphism or mutation?
3. The Chromosomal and Genomic Basis of Disease: Disorders of the Autosomes and Sex Chromosomes
4. Single-Gene Inheritance
5. Complex Inheritance (known and unknown molecular mechanisms) of Common Multifactorial Disorders
6. Genetic Variation in Populations
7. Identifying the Genetic Basis for Human Disease
8. The Molecular, Biochemical, and Cellular Basis of Genetic Disease
9. The Treatment of Genetic Disease
10. Developmental Genetics and Birth Defects
11. Cancer Genetics

[Class requirement]
None

[Method, Point of view, and Attainment levels of Evaluation]
Evaluation will be based on active participation (20%), assignments (50%) and quizzes/test (30%). Those who are absent more than four times will not be credited.
Lecture code: Z002020

Course title
ILAS Seminar-E2 : Project-based data analysis seminar

Course numbering U-LAS70 10002 SE50

Affiliated department, Job title, Name
Graduate School of Medicine Senior Lecturer, John BROWN

Group
Seminars in Liberal Arts and Sciences

Number of credits 2

Number of weekly time blocks 1

Course offered year/period 2019 • First semester

Quota (Freshman) 5 (5)

Target year Mainly 1st year students

Eligible students For all majors

Day/period Wed.5

Classroom Seminar room 110, 1F, Faculty of Medicine Bldg. E (Faculty of Medicine/Pharmaceutical Science Campus/University Hospital Campus)

Language English

Keyword Data processing / Informatics / Data analysis / Scripting / Programming

Outline and Purpose of the Course

Students of all disciplines are encouraged to enroll.

Students will learn techniques in order to perform project-based analysis of large datasets related to their field of study. Emphasis will be placed on creating structured and maintainable solutions to problems arising in their project, visualization of results, and coherent presentation of their project development.

Students can combine techniques from the course "Processing and analyzing data I" with new techniques to be learned in the seminar. The prior course is recommend to be completed or taken in parallel, though is not a hard requirement.

Course Goals

Students will have successfully completed a data analysis project using data in their field of study or their hobby/interest.

Students will be able to present their project to the instructor and their peers, including a detail of their data analysis methods.

(Optional) Students who wish to pursue an advanced analysis of data and present their findings in an academic venue (for example, conference presentation or paper) will receive appropriate advisory support.

Course Schedule and Contents

(1) Review: shell scripting and basic data processing/filtering techniques.

(2–7) The Python programming language basics:
[Development environment, project organization and presentation]: the Jupyter Notebook
[Data types]: strings, lists, tuples, dictionaries, numbers
[Control structures]: if/for/while
[Functions]: Function definitions, function arguments
[Documentation]: getting help, writing help
[Modules]: importing, using, and creating

Keywords
Data processing / Informatics / Data analysis / Scripting / Programming

Method, Point of view, and Attainment levels of Evaluation

Attendance and participation (35%), project quality (40%), final presentation (25%)

Textbook
Not used

Reference book, etc.

Introduced during class

Regarding studies out of class (preparation and review)

Students will need to acquire datasets outside of class. Students should review seminar contents for 2-6 hours per week, and be prepared to spend 3-6 hours per week analyzing their data and preparing to present their projects.

Others (office hour, etc.)

It is required that students have their own computer to participate in seminars and actively develop their projects.

Class requirement

"Processing and analyzing data I" IS STRONGLY RECOMMENDED to be completed before this seminar. *Students with prior experience in computer science or programming may be considered for this course even if they have not completed "Processing and analyzing data I". An appointment for discussion with the instructor is recommended.
ILAS Seminar-E2 : Wearable technology

Affiliated department, Job title, Name

Graduate School of Engineering
Senior Lecturer, PHILAMORE, Hemma

Group
Seminars in Liberal Arts and Sciences

Number of credits
2

Number of weekly time blocks
1

Class style
Seminar

Course offered year/period
2019 • First semester

Quota (Freshman)
10 (10)

Target year
Mainly 1st year students

Eligible students
For all majors

Day/period
Wed.5

Classroom
B1, Yosida-South Campus Academic Center Bldg. West Wing

Language
English

Keyword
Electronics / Wearable devices / Smart materials / Programming / Arduino

[Outline and Purpose of the Course]

Electrical technology worn on the body is advancing areas from medical devices (e.g., fitness trackers and robotic prostheses) to fashion design and consumer electronics (e.g., the Apple watch).

This course is about the electronics, smart-materials, and design features that are used in these miniature, lightweight, and ergonomic devices.

Students will study the technology behind wearable devices:
- taught theory about smart-materials, sensors for biological and environmental parameters and wearable actuators.
- Arduino micro-controller programming
- in-class practical experiments to build and test simple wearable electronic devices.

[Course Goals]

- Obtain a strongly connected theoretical and practical understanding of wearable technologies including sensors, materials and actuators.
- Develop broadly applicable practical laboratory skills including experimental setup, documentation and group work.
- Obtain skills in micro-controller program.
- Develop applied skills in practical electronics and device design.
- Learn about the interaction between measurable electrical data and human biology.

[Course Schedule and Contents]

1. Introduction (1 week)
2. Wearable electrical circuits (1 week)
3. Introduction to Arduino programming (1 week)
4. Sensing motion with smart materials (1 week)
5. Sensing touch (1 week)
6. Making sense of biometrics (1 week)
7. Reading bio-electrical signals (1 week)

[Class requirement]
None

[Method, Point of view, and Attainment levels of Evaluation]
Evaluation will be based on:
- active participation 15%
- individual project (design and build a wearable device) 50%
- report 20%
- oral presentation 15%

[Textbook]
Instructed during class

[Reference book, etc.]
Introduced during class

[Regarding studies out of class (preparation and review)]
More detailed instructions will be provided in class.

[Others (office hour, etc.):]
ILAS Seminar-E2: Minds and Machines - Can a Machine Think

Group: Seminars in Liberal Arts and Sciences
Number of credits: 2
Number of weekly time blocks: 1

Class style: Seminar
Course offered year/period: 2019 • First semester
Quota (Freshman): 15

Target year: Mainly 1st year students
Eligible students: For all majors
Day/period: Thu. 2

Classroom: 3B, Yoshida-South Campus Academic Center Bldg. North Wing
Language: English

Affiliated department, Job title, Name:
Graduate School of Medicine
Senior Lecturer, ZENAS C. CHAO

Course title:
ILAS Seminar-E2: Minds and Machines - Can a Machine Think

Course offered year/period: 2019 • First semester
Quota (Freshman): 15

Classroom: 3B, Yoshida-South Campus Academic Center Bldg. North Wing
Language: English

Keyword: Mind / Brain / Artificial Intelligence / Neuroscience / Robot

Outline and Purpose of the Course:
This course examines the nature of mind and the prospect of artificial intelligence. You will have class discussions and debates about issues such as "What is the mind?" and "Can a machine think?" During the course, you will learn to make philosophical and scientific arguments, and to express them in writing and presentation. Final project is to build and program a LEGO robot for a sumo challenge (no programming experience required).

Course Goals:
1. To investigate fundamental issues relating to our minds philosophically and scientifically.
2. To express investigation results in discussion, writing, and presentation.
3. To design an autonomous LEGO robot.
4. To work with others as both a team member and leader.

Course Schedule and Contents:
(1) Introduction
PART I. The Philosophy of Mind
(2) Chinese Room Argument - Can a Computer Have a Mind?
(3) Debate Practice #1
(4) Debate Practice #2
(5) Turing Test - How Intelligent Can a Computer Be?
(6) Personal Identity - Who Am I?
(7) Midterm Debate
(8) Midterm Debate

PART II. The Science of Mind
(9) LEGO Robot Programming Tutorial
(10) Mind Reading & Mind Control
(11) Self & Free Will
(12) Consciousness
(13) Machine Minds
(14) Final Project - LEGO Robot Sumo Competition

Method, Point of view, and Attainment levels of Evaluation:
In-class discussion (~40%), midterm debate (~30%), final project (~30%).

Textbook:
Not used

Reference book, etc.:
Introduced during class

Regarding studies out of class (preparation and review):
Students will need to prepare for class discussions, which will be assigned at least a week earlier. For the midterm and final projects, students are expected to meet up with their team members on a weekly basis.

Others (office hour, etc.):
Course title
ILAS Seminar-E2 : Introduction to Probability

Affiliated department, Job title, Name
Research Institute for Mathematical Sciences Program-Specific Associate Professor, Coydon, Daniel Alexander

Group
Seminars in Liberal Arts and Sciences

Number of credits
2

Number of weekly time blocks
1

Course style
Seminar

Course offered year/period
2019 • First semester

Quota (Freshman)
8 (8)

Target year
Mainly 1st year students

Eligible students
For all majors

Day/period
Thu. 4

Classroom
23, Yoshida-South Campus Bldg. No. 1

Language
English

Keyword
mathematics / probability / random variable / stochastic process / Markov chain

[Outline and Purpose of the Course]

This seminar-style course will give students a chance to learn about some important models in applied probability. The focus will be on Markov chains, which are central to the understanding of random processes, and have applications in simulation, economics, optimal control, genetics, queues and many other areas. As well as introducing mathematical techniques, it will be a goal to show how these can be applied to understand certain random phenomena, such as the long-time behaviour of random walks, survival/extinction of branching processes, convergence of algorithms, and reinforcement.

[Course Goals]

- To understand basic models of applied probability, particularly Markov chains
- To apply mathematical techniques to understand random phenomena in applications
- To gain experience in reading and presenting mathematics in English

[Course Schedule and Contents]

In the first lecture, the lecturer will introduce the topic, and basic aims of the course. In subsequent weeks, students will be asked to prepare and present part of the material. The following indicates possible topics, though this may vary depending on the students’ proficiency level and background.

1. Introduction to applied probability and Markov chains [1 week]
 - Review of basic probability, definition of a Markov chain, outline of course
2. Discrete-time Markov chains [7 weeks]
 - Class structure, hitting times/probabilities, recurrence/transience, invariant distributions, convergence to equilibrium, time reversal, ergodic theorem
3. Continuous-time Markov chains [3 weeks]
 - Generator, jump chain and holding times, Poisson processes
4. Applications [3 weeks]
 - Random walks, branching processes, urn models, queueing models

[Class requirement]

None

[Method, Point of view, and Attainment levels of Evaluation]

Students will be expected to participate in class, both by presenting material prepared in advance, and by discussing problems. Their performance in these aspects will contribute 50% of the final mark. There will also be a written assignment, in which students will be asked to apply the techniques covered on the course, which will also contribute 50% of the final mark.

[Textbook]

Norris "Markov Chains" (University Press, 1997)
Grimmett and Stirzaker "Probability and random processes." (Oxford University Press, 2001)

[Regarding studies out of class (preparation and review)]

Details will depend on the number of students enrolling on the course, and will be discussed in the first class.

[Others (office hour, etc.])

Details will depend on the number of students enrolling on the course, and will be discussed in the first class.
[Outline and Purpose of the Course]

It is a classical question from centuries ago whether a quintic (or of higher degree) polynomial equation is solvable in terms of its coefficients, with only use of the usual operations (addition, subtraction, multiplication, division) and application of radicals (square roots, cube roots, etc). Galois theory was born to answer this question, the answer to which turns out to be negative in general. On the other hand, Galois theory has gone far beyond this and is rightly regarded as one of the central features of modern mathematics nowadays, which is in particular fundamental for the study of arithmetic problems.

Although the so-called "fundamental theorem of Galois theory" is commonly considered as the summit of undergraduate algebra, which usually takes a year to reach, in this course we learn to prove the unsolvability of the general quintic equation with as little Galois theory as possible. Along the way, we shall see the elegance and beauty of modern/abstract algebra.

It is worth mentioning that abstract algebra has also found applications in science and engineering, e.g. in cryptography.

[Course Goals]

We will learn the basic concepts and theorems in group theory, ring theory, field theory, and Galois theory. As an application, we shall also be able to determine which polynomial equations are solvable in radicals.

[Course Schedule and Contents]

We intend to cover a big chunk of modern algebra in a condensed and interesting way, to make it accessible to most undergraduate students. Both concepts and examples will be emphasized.

Below is the plan and contents of the course. (The lectures, as well as the order of the lectures, may be modified, depending on students' background and understanding of the course materials.)

- Set Theory [1 week]:
 - Notion of sets, mappings, mathematical induction, Zorn's lemma.
- Group theory [3-4 weeks]:
 - Definition and examples of groups, homomorphisms, abelian groups, symmetric groups, Sylow's theorem.
- Ring theory [3-4 weeks]:
 - Definition and examples, ideals, quotient rings, polynomial rings.
- Field theory [2-3 weeks]:
 - Definition and examples, field extensions, polynomials, finite fields.
- Galois theory [2-3 weeks]:
 - Galois extensions, roots of unity, solvability.

[Class requirement]

It is helpful to know basics in linear algebra, but not required.

[Method, Point of view, and Attainment levels of Evaluation]

The evaluation consists of three weighted parts, which may be modified, depending on the number of students in class:

- Discussion performance in class (35%).
- Final presentation (65%): A variety of topics will be provided by the instructor. If the number of students is small, each student will select his/her own topic among these topics. If the number of students is relatively large, a student will obtain his/her topic by lottery (among the topics provided by the instructor). The pool of topics will be shown to the students by Week 4 and the presentations will start no earlier than Week 6.

[Textbook]

[Reference book, etc.]

Other supplemental materials will be introduced during the classes.

[Regarding studies out of class (preparation and review)]

Along with preparation and review, students are encouraged to form study groups.

[Others (office hour, etc.)]
Lecture code: Z002046

Course number
U-LAS70 10002 SE50

Course title
ILAS Seminar-E2 :Ethical issues in Health sciences (健康科学における倫理的課題)

Affiliated department, Job title, Name
Graduate School of Medicine, Assistant Professor, POUDYAL, Hemant

<table>
<thead>
<tr>
<th>Group</th>
<th>Number of credits</th>
<th>Number of weekly time blocks</th>
</tr>
</thead>
<tbody>
<tr>
<td>Seminars in Liberal Arts and Sciences</td>
<td>2</td>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Class style</th>
<th>Course offered year/period</th>
<th>Quota (Freshman)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Seminar</td>
<td>2019 • First semester</td>
<td>10 (10)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Target year</th>
<th>Eligible students</th>
<th>Day/period</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mainly 1st year students</td>
<td>For all majors</td>
<td>Thu.5</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Classroom</th>
<th>Language</th>
</tr>
</thead>
<tbody>
<tr>
<td>Seminar room 23, ILAS Bld.</td>
<td>English</td>
</tr>
</tbody>
</table>

Keyword
Ethics / Euthanasia / Stem Cell Research / Genetic modification / Abortion

[Outline and Purpose of the Course]

In this course, we will explore major ethical issues in health sciences and will introduce institutional positions and debate various topics based on relevant case studies. Classical themes such as end of life care, euthanasia and animal/human research as well as emerging topics such as stem cell research and genetically modified organisms will be covered.

The purpose of this course is to enable the students to think clearly and carefully through their own positions on important ethical issues in healthcare. Students will be taught to craft well-argued, well-written papers and express their own views clearly in class discussions and engage the views of their classmates.

[Course Goals]

1. To achieve familiarity with some basic ethical frameworks
2. To identify, analyze and summarize ethical issues
3. Clearly and carefully develop own positions on important ethical issues
4. Express your own views clearly in class discussion and engage the position of others

[Course Schedule and Contents]

In principle, the course will be offered along the following plan. However, order or the number of times for each theme may change depending on the progress of the course or handling on current topics.

1. Ethical reasoning
2. Principles and theories of bioethics
3. Request to die: Doctor-assisted suicide
4. Abortion
5. Assisted reproduction
6. Seriously ill infants
7. Ethical issues in testing for genetic diseases
8. Ethical issues in transplantation
9. Medical research on animals
10. Clinical Research
11. & 12. Embryos, stem cells and cloning
13. Genetically modified plants and dietary futures
14. Healthcare policy-Right to health care

[Class requirement]

None

[Method, Point of view, and Attainment levels of Evaluation]

Classroom participation and discussion 50%
Evaluating a case study 50%

[Textbook]

Not used

[Reference book, etc.]

Reference materials will be provided during the class.

[Regarding studies out of class (preparation and review)]

1. Students are expected to come to class having completed the assigned reading and writing, and ready to contribute to discussions.
2. Students are required to write a report on one of the cases covered in class for which they will do additional research on their own.

[Others (office hour, etc.)]

Please contact the instructor by email if you have any questions. The instructor will also be available for course-related consultation out of seminar hours is requested by the students. Please make an appointment by email (medsocio.kyodai@gmail.com).
Course Title

ILAS Seminar-E2 : Frontiers of Earthquake Science

Affiliated Department, Job Title, Name

Graduate School of Science
Associate Professor, ENESCU, Bogdan Dumitru

Group

Seminars in Liberal Arts and Sciences

Number of Credits

2

Number of Weekly Time Blocks

1

Class Style

Seminar

Course Offered Year/Period

2019 • First semester

Quota (Freshman)

15 (10)

Target Year

Mainly 1st year students

Eligible Students

For all majors

Day/Period

Thu. 5

Classroom

152, Faculty of Science Bldg. No.1 (North Campus)

Language

English

Keyword

Earthquakes / Tsunami / Disaster Prevention

Outline and Purpose of the Course

We are going to read scientific papers related to important/frontier topics of Earthquake Science. The purpose is to understand the key-message of the paper, rather than the detailed technical background. To facilitate understanding, some materials/vocabulary in Japanese will be provided during the seminar.

Course Goals

The student will become familiar with current important topics of Earthquake Science. The seminar also aims enabling the student to discuss earthquake related research topics in English.

Course Schedule and Contents

Each student is going to choose a paper in the field of Earthquake Science, and prepare a short report (few PowerPoint slides), summarizing the main ideas of the study. The paper can be chosen freely; some broad suggestions include:
- Megathrust earthquakes: physics and possibility of prediction;
- Tsunami: physics and early warning;
- Deep structure of the Earth ‘illuminated’ by seismic waves;
- Earthquake disaster prevention.

The first class will give students some broad options of topics/papers. During the second class we will decide the paper that each student is going to present. I will exemplify with a research presentation during the third class. Starting with the fourth class each student is going to present the chosen paper and will get feedback for improving his report. In the examination day, each student should present briefly his updated/revised report.

Depending on the number of students and available time, we will visit the underground seismic base isolation at the ‘Kyoto University Clock Tower’, go to the nearby Hanaore Fault or visit the Disaster Prevention Research Institute (DPRI), Kyoto University, to discuss with an earthquake scientist.

Class Requirement

None

Method, Point of View, and Attainment Levels of Evaluation

Grading will be based on attendance and participation (60%) and presentation of chosen paper (40%).

Textbook

Not used

Regarding Studies Out of Class (Preparation and Review)

The student will have to prepare the assigned paper.

Others (Office Hour, etc.)

Students can meet me during office hours with prior appointment.
(2)

Outline and Purpose of the Course

Scientific literacy is essential for a scientific career. More importantly, however, for a democracy to function, an educated electorate must be capable of discerning fact from hyperbole. In this class, we will examine a few influential papers in depth. This will introduce you to a basic approach to reading the primary scientific literature that will help you to reach your own conclusions about the data. Each student will pick one or two papers, and in class, together, we will try to understand everything about them—concepts, methods, analysis, interpretation, significance. This will be an opportunity to learn some science, as well as to see how experiments are designed. The class structure will depend on how many students enroll.

Course Goals

Students will acquire the ability to read scientific papers on their own, including how to track down additional information and how to look critically at data. Students will use their chosen papers as a springboard to explore subjects that are of particular interest to them, or subjects that are brand new.

Course Schedule and Contents

First Semester, Thursdays, 16:30-18:00PM

Optimally, each student will be able to choose 2 scientific papers to read in depth. During each class, we will spend a little time on each student's chosen paper, analyzing each paper over several weeks. If many students are enrolled, we may only have time for one paper from each student.

1. Types of Scientific Communication and Resources
2. Students find papers that interest them and bring them to class
3. Overviews of the papers, learning the background information
4. Analysis of the Abstract and Introduction (in-class discussion)
5. Understanding the Methods (in-class discussion)
6. Analysis of Figures and Results (in-class discussion)
7. Analysis of the Discussion (in-class discussion)
8. Analysis of style (in-class discussion)
9. Analysis of Paper #2 Abstract and Introduction (in-class discussion)
10. Analysis of Paper #2 Methods (in-class discussion)
11. Analysis of Paper #2 Figures and Results (in-class discussion)

This schedule is flexible, and will depend on how many students enroll in the course. The schedule also will depend on the types of papers that we are analyzing. For example, a paper with many results may require 2 weeks just to cover the results; we may also spend more time understanding particular methods, again depending on the papers that you will choose to read. Some papers will require a lot of background reading—that's part of the fun of science!

The class is open to all 1st and 2nd year students, although the papers will mainly come from the field of Biology (my expertise). Grading will be based on attendance, participation, and a take-home written assignment.

Class requirement

None

Method, Point of view, and Attainment levels of Evaluation

Grading will be based on attendance (40 points), participation (40 points), and a take-home written assignment (20 points), which will be a summary of one of the papers that we have read together. The take-home written assignment will be graded on the basis of content and concepts rather than grammar.

Textbook

Not used

No textbook is required. I will provide background materials as the need arises. Often I help to explain methods or background information, and provide information from textbooks or review articles as needed. The class will be held in English, so an intermediate level of English or better would be helpful, since much of the background reading will be in English.

Reference book, etc.

I will provide additional background material as the need arises, depending on the topic of each paper that is chosen by students.

Regarding studies out of class (preparation and review)

Out of class reading may take 2-3 hours per week, to learn about the background for the papers that are discussed during class.

Others (office hour, etc.)

Office hours, Mondays, 10:00-12:00. I am often in my office, so you are free to drop in, and if I am there, I can usually find some time to discuss biology.
ILAS Seminar-E2 : Introduction to Stem and iPS Cells

Outline and Purpose of the Course
How a single egg-cell can give rise to a tridimensional complex system of tissues and organs in the organism. Fundamentals of Embryology (from the oocyte until gastrulation/neurulation) and Stem Cell Biology (from ES to IPS) will be introduced. Students will learn from recent research articles (including the original Takahashi & Yamanaka paper) as well as from recent textbooks on Developmental Biology and Stem Cell Research. After learning about the several subjects, the students will present recent research in class and active discussion will be encouraged.

Course Goals
The classes will be interactive. The students will learn from the instructor as well as from each other. Recent exciting research discoveries about iPS cells and cell replacement therapy will be introduced and discussed. The students will learn about stem cells, cell commitment and differentiation, IPS cells, disease modelling, drug screening and personalised cellular therapy.

Course Schedule and Contents
The following topics will be viewed during a total of 14 classes:
- Differential Gene Expression
- Fertilization: Beginning a New Organism
- Early Development in Mammals
- Embryonic Stem Cells
- Differentiation in Early Development
- Generation of Induced Pluripotent Stem (iPS) Cells
- Characteristics and Characterization of Pluripotent Stem Cells
- Cancer Stem Cells
- Neural Stem Cells: Therapeutic Applications in Neurodegenerative Diseases
- Use of Embryonic Stem Cells to Treat Heart Disease
- Insulin-Producing Cells Derived from Stem Cells. A Potential Treatment for Diabetes
- Stem Cells for the Treatment of Muscular Dystrophy
- Cell Therapy for Liver Disease
- Skin Regeneration
- Embryonic Stem Cells in Tissue Engineering
- Adult Stem Cells in Tissue Engineering
- Stem Cell Gene Therapy

Class requirement
None

Method, Point of View, and Attainment Levels of Evaluation
Evaluation will be based on active participation (20%), assignments (50%) and quizzes/test (30%). Those who are absent more than four times will not be credited.

Textbook

Regarding studies out of class (preparation and review)
A few hours will be necessary weekly to prepare for the class. Handouts will be available in advance to help with the preparation. During the assignment week extra hours will be necessary in order to prepare for the presentation in class.

Others (office hour, etc.)
Questions and discussions during class are highly encouraged. Questions and discussions will also be addressed, happily, any other time, even outside the official office hours.
ILAS Seminar-E2: Introduction to Biomedical Presentation and Debate

Course Title

ILAS Seminar-E2: Introduction to Biomedical Presentation and Debate

Affiliated department, Job title, Name

Graduate School of Medicine, Assistant Professor, Erik WALINDA

<table>
<thead>
<tr>
<th>Group</th>
<th>Number of credits</th>
<th>Number of weekly time blocks</th>
</tr>
</thead>
<tbody>
<tr>
<td>Seminars in Liberal Arts and Sciences</td>
<td>2</td>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Class style</th>
<th>Course offered year/period</th>
<th>Quota (Freshman)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Seminar</td>
<td>2019 • First semester</td>
<td>7 (7)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Target year</th>
<th>Eligible students</th>
<th>Day/period</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mainly 1st year students</td>
<td>For all majors</td>
<td>Thu.5</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Classroom</th>
<th>Language</th>
</tr>
</thead>
<tbody>
<tr>
<td>3B, Yoshida-South Campus Academic Center Bldg. North Wing</td>
<td>English</td>
</tr>
</tbody>
</table>

[Outline and Purpose of the Course]

1. Presentation

Sadly, 95% of presentations are really not interesting. Really? No, it is actually 99%

In fact, when we attend a presentation, we often see members of the audience sleeping. This is a problem.

Most people <have to> give presentations at conferences or business meetings.

Unfortunately, most presentations are:

- long
- boring
- bad slides
- no meaning

What we actually <want> is:

- short
- simple
- easy to understand
- entertaining

In this class, students will learn what is important to give a great presentation. They will see that presentations can be <fun>.

2. Debate

Most Japanese students do not like debate. However, this can be fun, too, if you just try it!

In the class, we will first find a topic, which the class is interested in.

Before the debate, students will research about the topic and choose their arguments.

Then, students will choose the Pro- or Contra-side (about 3 students each).

Next is the actual debate. Now, students in the pro- and contra-groups will deliver their speeches (about 2-3 minutes per speaker). The audience group will actively join the floor discussion.

At the end of the debate we will discuss, whether the pro- or the contra-group delivered the more convincing speeches.

[Course Goals]

This seminar focuses on developing the students' ability to present and discuss scientific matters in English. This class mainly aims at (i) raising the students' confidence in talking about non-trivial things in a foreign language, (ii) making sure that the points presented by the students are indeed logically connected and (iii) being able to deal with questions and answers.

[Course Schedule and Contents]

1. Course Introduction [Weeks 1-2]
2. Presentation Preparation [Weeks 3-5]
3. Presentation Design [Weeks 6-8]
4. Presentation Delivery [Week 9]
5. Final Presentation by the Students (evaluation) [Week 10]
6. Debating [Week 11-14]
7. Feedback [Week 16]

[Class requirement]

None

[Method, Point of view, and Attainment levels of Evaluation]

Active participation is absolutely required in this seminar. In the debating part, students are expected to talk about scientific matters in English. In the presentation section, not only the presenter, but all students are expected to ask questions or share their opinion about the subject in English.

Attendance and Active participation [60%]
Assignments (presentation and debate) [40%]

[Textbook]

Not used
<table>
<thead>
<tr>
<th>Regarding studies out of class (preparation and review)</th>
</tr>
</thead>
<tbody>
<tr>
<td>* Research on assigned presentation topics.</td>
</tr>
<tr>
<td>* Preparation of presentations.</td>
</tr>
<tr>
<td>* Research about debate topics</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Others (office hour, etc.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Office hour: any time.</td>
</tr>
</tbody>
</table>
Course title: Introduction to the biology of nematodes

Outline and Purpose of the Course

This class will introduce to students one of the most abundant forms of life on earth: the Nematodes or roundworms. The most famous of these is the useful model organism called *Caenorhabditis elegans*. The goal of the class is to provide both a survey of how scientists use the worm to conduct research, demonstrate the worm's great importance to biology, and provide hands-on experience with simple worm manipulation.

Students will learn directly about some of the current biological questions that are being addressed with this versatile model organism. We will also find wild nematodes around Kyoto, make scientific observations on them and use DNA sequencing to identify their species. Whether we find a new species, or identify new isolates of known ones, this class will introduce you to a new realm of life.

Course Goals

- To understand the biology and diversity of nematodes
- To understand the uses of the nematode *Caenorhabditis elegans* in modern biological research
- To understand the anatomy and life cycle of *C. elegans*
- To learn how to create new strains containing desired mutations by designing crosses between animals
- To acquire the knowledge and experience needed to begin genetic research with *C. elegans*

Course Schedule and Contents

1. Overview of the course; nematodes and the place of *C. elegans* in the tree of life. Set up for worm collection.
2-3. Nematode development, anatomy, and life cycle
4-8. Wild Worms of Kyoto: worm observation and species identification
5. Basic worm genetics: selfing and crossing (with microscopy observation)
6. Fluorescence microscopy of worm chromosomes
7-10. Genetics, meiosis, and sex chromosomes
11-12. Genome sequence of *C. elegans* and its relatives
13-14. Selected topics in nematode research and application to human health

Class requirement

This is an introductory course. There are no requirements, but a basic familiarity with biology and genetics will be beneficial.

Method, Point of view, and Attainment levels of Evaluation

Evaluations will be based on participation, short quizzes, and either a final exam or a term paper. Each area will contribute 1/3rd of the total grade.

Textbook

Instructed during class

Reference book, etc.

Reference book

Fay, Starr, Spencer, Johnson 『Worm Breeding for Dummies: A guide to genetic mapping in *C. elegans*』 (PDF textbook)

Regarding studies out of class (preparation and review)

Students will have to understand technical vocabulary in English. This may require studying outside of class hours.

Others (office hour, etc.)

Office hours will be 1 hour once per week, schedule to be announced on the first day of class.

This class involves some genetic experiments on nematodes.

ILAS Seminar-E2: Introduction to the biology of nematodes

Affiliated department, Job title, Name

Graduate School of Biostudies
Associate Professor, CARLTON, Peter

Number of weekly time blocks

1

Language

English

Number of credits

2

Class style

Seminar

Classroom

3C, Yoshida-South Campus Academic Center Bldg. North Wing

Keywords

biology / genetics

Target year

Mainly 1st year students

Day/period

Thu.5

Quota (Freshman)

10 (10)

Graduate School of Biostudies

Associate Professor, CARLTON, Peter

Group

Seminars in Liberal Arts and Sciences

ILAS Seminar-E2: Introduction to the biology of nematodes

Course number

U-LAS70 10002 SE50

Lecture code: Z002018
Outline and Purpose of the Course

This class will introduce to students one of the most abundant forms of life on earth: the Nematodes or roundworms. The most famous of these is the useful model organism called Caenorhabditis elegans. The goal of the class is to provide both a survey of how scientists use the worm to conduct research, demonstrate the worm's great importance to biology, and provide hands-on experience with simple worm manipulation. Students will learn directly about some of the current biological questions that are being addressed with this versatile model organism. We will also find wild nematodes around Kyoto, make scientific observations on them and use DNA sequencing to identify their species. Whether we find a new species, or identify new isolates of known ones, this class will introduce you to a new realm of life.

Course Goals

- To understand the biology and diversity of nematodes
- To understand the uses of the nematode Caenorhabditis elegans in modern biological research
- To understand the anatomy and life cycle of C. elegans
- To learn how to create new strains containing desired mutations by designing crosses between animals
- To acquire the knowledge and experience needed to begin genetic research with C. elegans

Course Schedule and Contents

1 Overview of the course; nematodes and the place of C. elegans in the tree of life. Set up for worm collection.
2-3 Nematode development, anatomy, and life cycle
4-8 Wild Worms of Kyoto: worm observation and species identification
5 Basic worm genetics: selfing and crossing (with microscopy observation)
6 Fluorescence microscopy of worm chromosomes
7-10 Genetics, meiosis, and sex chromosomes
11-12 Genome sequence of C. elegans and its relatives
13-14 Selected topics in nematode research and application to human health

Class Schedule and Contents

1 Overview of the course; nematodes and the place of C. elegans in the tree of life. Set up for worm collection.
2-3 Nematode development, anatomy, and life cycle
4-8 Wild Worms of Kyoto: worm observation and species identification
5 Basic worm genetics: selfing and crossing (with microscopy observation)
6 Fluorescence microscopy of worm chromosomes
7-10 Genetics, meiosis, and sex chromosomes
11-12 Genome sequence of C. elegans and its relatives
13-14 Selected topics in nematode research and application to human health

[Class Requirements]

This is an introductory course. There are no requirements, but a basic familiarity with biology and genetics will be beneficial.

[Method, Point of view, and Attainment levels of Evaluation]

Evaluations will be based on participation, short quizzes, and either a final exam or a term paper. Each paper will contribute 1/3rd of the total grade.

[Textbook]

Instructed during class

[Reference book, etc.]

[Regarding studies out of class (preparation and review)]

Students will have to understand technical vocabulary in English. This may require studying outside of class hours.

[Others (office hour, etc.)]

Office hours will be 1 hour once per week, schedule to be announced on the first day of class.

This class involves some genetic experiments on nematodes.

遺伝子実験: 対象(ヒト以外の動物、植物、生物等)
Outline and Purpose of the Course
A course about wheeled mobile robots combining taught theory and weekly, practical, problem-solving experiments.

Students will learn:
- the working principles of widely used sensors and actuators.
- robot programming using the C language.
- practical experimentation using robots.
- hardware modification to develop the design of a simple robot.
- simple control algorithm development.

Course Goals

Students can expect to:
- Improve their knowledge of programming, engineering theory and application.
- Obtain a strongly connected theoretical and practical understanding of robotics.
- Develop broadly applicable practical skills including experimental setup, documentation and group work.

Course Schedule and Contents
1. Introduction (1 week)
2. Wheeled robot motion & Programming fundamentals 1 (1 week)
3. Internal sensing and communication (1 week)
4. Programming fundamentals 2 (1 week)
5. Navigation (1 week)
6. Actuators (1 week)
7. External sensing (1 week)
8. Proportional control (1 week)
9. Arbitration (1 week)
10. Obstacle avoidance (1 week)
11. Beacons and environmental markers (1 week)
ILAS Seminar-E2 : Programming for data analysis

Affiliated department, Job title, Name
Institute for Frontier Life and Medical Sciences
Program-Specific Senior Lecturer, VANDENBON, Alexis

Course title
ILAS Seminar-E2 : Programming for data analysis

Course numbering
U-LAS70 10002 SE50

Course offered year/period
2019 * First semester

Class style
Seminar

Number of credits
2

Number of weekly time blocks
1

Eligible students
For all majors

Number of weekly time blocks
1

Day/period
Thu. 5

Classroom
26, Yoshida-South Campus Bldg. No. 1

Language
English

Outline and Purpose of the Course
R programming language is a useful environment for statistical data analysis and graphical display. The R language is widely used in many fields of science, for data processing, analysis, and visualization. In this course, I will introduce basic R programming techniques and objects. Using example applications, I will also illustrate the use of R for running statistical tests, machine learning, data visualization, and the R Bioconductor packages.

Course Goals
Students will learn the basic features of the R language for data manipulation, computation, and visualization. They will learn how to write your own code and functions, and how to use publicly available packages. Example applications introduced during the course will give students enough experience to use R for their own analysis.

Course Schedule and Contents
In principle, the course will be offered according to the following plan. However, depending on the progress of the course the order or the number of lectures for each topic may change.

1. **Introduction to R**
 - We will introduce R, its main features, and advantages and disadvantages. Using R interactively we will discuss some simple data types and commands.

2. **Simple manipulations, numbers and vectors**
 - In this session, we will continue introducing simple operations. We will also discuss vectors, how to access their elements, and how to manipulate them.

3. **Arrays and matrices**
 - We will cover how to make arrays and matrices, and how to apply commands on them. Outer products, determinants, transpose, inverse matrices and matrix multiplication will be introduced.

4. **Lists and data frames**
 - We will introduce lists and data frames, and their basic commands and features.

5. **Reading data from files**
 - We will discuss several ways of reading in data from files, and how to store them into variables. Also, we will cover commands for writing data to files.

6. **Plotting**
 - We will introduce the plot() function and its properties. We will discuss manipulations such as changing line types, colors, sizes.

7. **Statistical tests (part 1)**
 - R is particularly useful for applying statistical tests on data. In this and the next session, we will introduce commands related to probability distributions, and commands for applying various widely used statistical tests, such as the t-test.

Class requirement
None

Method, Point of view, and Attainment levels of Evaluation
Grading: attendance and active participation (20%) and assignments (80%). In the assignments, students solve a number of practical problems by programming scripts in the R language.

Textbook

The course lectures will roughly follow the content of this textbook. It will be supplemented with additional material, including an introduction to R available on the CRAN website (https://cran.r-project.org/manuals.html).

Regarding studies out of class (preparation and review)
The course will follow a textbook. At the end of each lecture I will specify the sections to read before the next lecture.

We will be using RStudio to learn programming in "R."
Course title
ILAS Seminar-E2: Regional Disaster Prevention
Affiliated department, Job title, Name
Graduate School of Agriculture, Assistant Professor, VILAYVONG, Khonesavanh
Group
Seminars in Liberal Arts and Sciences
Number of credits
2
Number of weekly time blocks
1
Class style
Seminar
Course offered year/period
2019 • First semester
Quota (Freshman)
15 (15)
Target year
Mainly 1st year students
Eligible students
For all majors
Day/period
Thu.5
Classroom
W302, Faculty of Agriculture Main Bldg. (North Campus)
Language
English
Keyword
Agriculture and forestry / Climate change / Disaster prevention / research methodology / Information technology

Outline and Purpose of the Course
This course introduces basic environmental hazards and disaster prevention methods. The course offers the concepts and knowledge to harness students' ability in understanding hazard mechanisms, conducting basic research studies, applying practices and methods for reducing and preventing hazards and disasters. Useful concepts and tools both theories and applications are covered such as topics of climate change-induced drought and flood, desertification, food security, energy resources, disaster risk assessment, vulnerability, mitigation, preparedness, responses, recovery, resilience, disaster management using update technology such as information communication technology, geographical information system (GIS), and Internet of Things (IoT).

Course Goals
1. To introduce students with knowledge, concept and terminology on disasters and methods of prevention.
2. To encourage students’ technical discussion and presentation on disasters prevention and risk reduction.
3. To facilitate students in applying knowledge and lessons in finding innovation and solution for disasters prevention and risk reduction.

Course Schedule and Contents
1. Understanding basic science on environmental hazards
2. Importance of agriculture and natural events
3. Understanding hazards
 - Classification
 - Types
 - Characteristics
4. Understanding vulnerability
 - Political factors
 - Economical factors
 - Physical factors
 - Social factors
 - Environmental factors
5. Disaster risk identification and assessment
 - Preparedness
 - Response
 - Recovery

[Class requirement]
None

[Method, Point of view, and Attainment levels of Evaluation]
- Class performance (25%)
- Assignment report (25%)
- Oral presentation (25%)
- Examination (25%)

[Textbook]
Not used
Reading materials and handouts will be distributed.

[Reference book, etc.]
Damon P. Coppola Introduction to International Disaster Management (Butterworth-Heinemann)

[Regarding studies out of class (preparation and review)]
Students are expected to be independent in finding online resources to attain relevant issues of discussion during seminar to enhance student interaction and understanding during classes.

[Others (office hour, etc.)]
After class, student consultation will be arranged with prior notice.
[Course title <English>]
ILAS Seminar-E2 : Smart Materials (Innovations in Materials Chemistry)

[Course Goals]
This course will provide students with a broad overview and introduction to “smart materials” as present in current research and current applications. The research topics will consider various “smart materials” including stimuli-responsive materials, drug delivery systems, self-healing materials, shape memory materials and various biomimetic systems. Students will be asked to engage in the course material more fully by preparing a semester project as well as completing occasional tasks outside of class throughout the semester.

[Outline and Purpose of the Course]
This course is intended to equip students with a basic understanding of what “smart materials” are and how these materials are present both in current research and the world around them. This course also aims to encourage students to be more creative in their own future studies and research. The course will focus on basic stimuli-sensitive materials in the beginning and then on actual systems in the second half of the class.

[Class requirement]
None

[Method, Point of view, and Attainment levels of Evaluation]
Class attendance and participation (30%), homework (25%) and a semester presentation (45%).

[Textbook]
Not used

[Reference book, etc.]

[Regarding studies out of class (preparation and review)]
Students will be asked to prepare a short oral presentation for the end of the semester. Additionally, to encourage students to engage with the course material throughout the semester, short assignments will occasionally be given.

[Others (office hour, etc.)]

[Outline and Purpose of the Course]
Our Universe is far beyond what our eyes can perceive. Hidden in the tranquil ocean of stars, nebulae and galaxies pictured by optical telescopes and cameras around the world everyday, extreme energetic phenomena that can only be observed through ‘invisible lights’ (e.g., radio waves, X-rays, gamma-rays) or even messengers other than electromagnetic waves (e.g., cosmic-rays, neutrinos) are happening frequently here and there in the Cosmos. This seminar will bring students into this exciting world of the Invisible Universe.

Some projects pursued by past members:
1) Stellar evolution and numerical simulations
2) Gamma-ray emission from supernova remnant and cosmic-ray acceleration
3) Astrophysics of blackholes
4) Planetary nebulae
5) X-ray emission from pulsar wind nebulae
6) Dynamics of spiral galaxies

[Course Goals]
1) To obtain basic knowledge and feel the excitement of forefront astronomy and astrophysics beyond optical telescopes.
2) To briefly experience the everyday life of an astrophysicist nowadays through the process of guided independent research, report writing and oral presentation.

[Course Schedule and Contents]
In this seminar, besides a few introductory lectures on topics surrounding multi-wavelength astronomy, the students will perform guided but independent research on intriguing astrophysical objects of their choices.

This seminar will be in a casual format and conducted mainly in English (with occasional Japanese when necessary). Students are encouraged to ask questions and discuss on topics with their peers and instructor spontaneously at each meeting.

Students will present their studies and findings through a written report and an oral talk during a seminar meeting.

<table>
<thead>
<tr>
<th>[Class requirement]</th>
<th>None</th>
</tr>
</thead>
<tbody>
<tr>
<td>[Method, Point of view, and Attainment levels of Evaluation]</td>
<td>Final grades will be assessed according to: 1) in-class participation (40%) 2) one written report (30%) 3) one oral presentation (30%)</td>
</tr>
<tr>
<td>[Textbook]</td>
<td>Not used</td>
</tr>
<tr>
<td>[Reference book, etc.]</td>
<td>Introduced during class</td>
</tr>
<tr>
<td>[Regarding studies out of class (preparation and review)]</td>
<td>Independent research. Guidance will be given in a seminar meeting.</td>
</tr>
<tr>
<td>[Others (office hour, etc.)]</td>
<td>No fixed office hour will be scheduled. Students can make appointment with the instructor in-person if necessary, or simply contact by Emails.</td>
</tr>
</tbody>
</table>
Outline and Purpose of the Course

This is a seminar-based course, consisting different types of activities including lecture, reading/discussion and hands-on. The course is designed to understand the urban environment and pests associated with it. Three major themes will be focused in this lecture:

1. Urbanization and urban ecology;
2. Introduction of important urban pests and their impacts;
3. How to manage the urban pests.

This class will start with a standard lecture in the first several weeks, followed by hands-on section in the rest of the semester. The hands-on section will include an examination of pest specimens, field survey for pests at campus, design of a pest trap, and demonstration of various pest control device. Students are highly encouraged to interact with the instructor in class.

Course Goals

While urbanization has led to comfortable and better life quality, urban environments have created excellent breeding grounds for many pests of human concerns. This course is therefore designed to strengthen students' understanding of these pests (insects, spiders, rodents and stray animals) in the urban settings, as well as how to properly manage them in a smarter way.

Course Schedule and Contents

In principal, the course will be offered as the following plan. However, the order or time for each theme may change depending on the progressive of the course or handling on current topics. Note that students may have to pay their own transportation fee for the proposed field trips.

- **Week 01**: Course introduction
- **Week 02**: Introduction to URBAN ECOLOGY (lecture)
- **Week 03**: What is pest? Where are them? (lecture)
- **Week 04**: What is pest management? How does it work? (lecture)
- **Week 05**: Cockroach (lecture)
- **Week 06**: Cockroach Lab (reading/hands-on)
- **Week 07**: Ant (lecture)
- **Week 08**: Ant Lab 01 (reading/hands-on)
- **Week 09**: Ant Lab 02 (reading/hands-on)
- **Week 10**: Termite & Lab (lecture/reading/hands-on)
- **Week 11**: Fly & mosquito (lecture/reading/hands-on)
- **Week 12**: Fly & mosquito Lab (lecture/reading/hands-on)
- **Week 13**: Field trip to home-center shop
- **Week 14**: Student presentation
- **Week 15**: Finals
- **Week 16**: Feedback

Class requirement

None

Method, Point of view, and Attainment levels of Evaluation

40% in-class discussion; 40% term paper; 20% hands-on

Textbook

Reference book, etc.

RTT Forman Urban ecology-science of cities. (Cambridge University Press, 2014)
Regarding studies out of class (preparation and review)

Students are encouraged to preview lecture materials ahead of the class each week as class materials will be uploaded to KULASIS and PanDa at least one day in advance.

Others (office hour, etc.)

Lecturer: Chin Cheng Yang (ccyang@rish.kyoto-u.ac.jp)
Office: HW 412, Research Building No. 1, Uji Campus
Office hours: to be announced

Note: There is a possibility that the instructor may organize a field trip that normally is a one-day event on the weekend, instead of the regular slot of this lecture. The lecturer will discuss date and time with students for the field trip at the beginning of the semester. Students are advised to pay the travel expense. Also be advised to obtain the insurance for study and research “Personal Accident Insurance for Students Pursuing Ed. & Rsch." if you decide to take the class.
Course title<English>
ILAS Seminar-E2: Wonders of semiconductor

Affiliated department, Job title, Name
Graduate School of Engineering
Senior Lecturer, DE ZOYSA, Menaka

Group
Seminars in Liberal Arts and Sciences

Number of credits
2

Number of weekly time blocks
1

Class style
Seminar

Course offered year/period
2019・First semester

Quota (Freshman)
10 (10)

Target year
Mainly 1st year student

Eligible students
For all majors

Day/period
Thu.5

Classroom
34, Yoshida-South Campus Academic Center Bldg. North Wing

Language
English

Keyword
Semiconductor

[Outline and Purpose of the Course]
The objective of this seminar is for students to learn about the basics of semiconductors, by investigating semiconductor devices such as solar cells, light emitting diodes (LEDs), laser diodes, transistors etc. Students will be asked for a short presentation about a semiconductor device. To familiarize students with semiconductors, experimental demonstrations will be carried out. In addition, students will be asked to join for laboratory tours, which help to understand the fabrication methods and characterizations of cutting-edge semiconductor devices.

[Course Goals]
- Understand the semiconductors.
- Familiarize with semiconductors devices with the help of experiments.
- Learn about the cutting-edge technologies of semiconductor devices.

[Course Schedule and Contents]
1. Overview of the course, introduction to semiconductors (5 weeks)
2. Solar cells: presentation and discussion (1 week)
3. LEDs: presentation and discussion (1 week)
4. Laboratory tour and experimental demonstrations (1 week)
5. Laser diodes: presentation and discussion (1 week)
6. Transistors: presentation and discussion (1 week)
7. Laboratory tour and experimental demonstrations (1 week)
8. Introduction of cutting-edge technologies (3 weeks)

[Class requirement]
None

[Method, Point of view, and Attainment levels of Evaluation]
Evaluation will be based on participation (40%), presentation (30%), and discussion (30%).
Course title
ILAS Seminar-E2: Contracts and Law in Modern Society

Affiliated department, Job title, Name
Graduate School of Law
Associate Professor, KARAISKOS, Antonios

Group
Seminars in Liberal Arts and Sciences

Number of credits
2

Number of weekly time blocks
1

Class style
Seminar

Course offered year/period
2019 • First semester

Quota (Freshman)
25 (15)

Target year
Mainly 1st year students

Eligible students
For all majors

Classroom
33, Yoshida-South Campus Academic Center Bldg. North Wing

Language
English

Keyword
contract law / Japanese law / European law / international transactions / harmonization of laws

Course Schedule and Contents
<table>
<thead>
<tr>
<th>Part one: Introduction to contract law</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. General introduction</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Part two: Japanese contract law</th>
</tr>
</thead>
<tbody>
<tr>
<td>5. Formation of contracts and manifestation of intention</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Part two: Japanese contract law</th>
</tr>
</thead>
<tbody>
<tr>
<td>6. Interpretation and revision of contracts</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Part three: The way towards a European contract law</th>
</tr>
</thead>
<tbody>
<tr>
<td>8. Breach of contract</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Part three: The way towards a European contract law</th>
</tr>
</thead>
<tbody>
<tr>
<td>9. Realization of monetary claims</td>
</tr>
</tbody>
</table>

Recent updates
- Part three: The way towards a European contract law
 - 10. CISG
 - 12. Principles of European Contract Law (PECL) and Draft Common Frame of Reference (DCFR)
 - 14. Online Platforms

Recent updates
- 15. Conclusions
 - Feedback (the method will be explained later)

Class requirement
Students must be willing to talk in class, engage with other students and write a report paper in English.

[Method, Point of view, and Attainment levels of Evaluation]

- No written examinations will be conducted.
- Class attendance and participation: 60%
- Oral presentation: 15%
- Submission of report paper: 25%

[Textbook]
Instructed during class

[Reference book, etc.]
(Reference book)
Introduced during class

[Regarding studies out of class (preparation and review)]
- Students are expected to review the content covered in the previous class.
- Students are also recommended to briefly preview the content of the next class. More detailed instructions will be provided in class.

[Others (office hour, etc.)]
Students will be required to actively participate and express their thoughts in English during the classes. Further, students will be assigned one oral presentation (of around 10 minutes, individual or in group, depending on the number of students) in part two or three. A paper of the presentation (around 2 pages sized A4/around 800 words) shall be submitted at the end of the course.

[Outline and Purpose of the Course]
This is an introductory seminar on Japanese and European contract law. The course is organized into the following three parts:
1) Brief overview of the history and development of Japanese and European contract law,
2) Description of Japanese contract law,
3) Presentation of the efforts and steps towards a harmonized European contract law.

Along the way, relevant cases decided by Japanese courts and by the Court of Justice of the European Union (CJEU) will also be discussed.

The goal of this course is for students to acquire a basic knowledge of the structure and content of Japanese and European contract law, and learn about the similarities and differences between these laws. An additional goal is for students to get familiar with comparative law and its methods.

During this course, students will be given the opportunity to actively participate in discussions and exchange of ideas.

[Course Goals]
- Acquiring a basic knowledge of the structure and content of Japanese and European contract law.
- Learning about the similarities and differences between Japanese and European contract law.
- Getting familiar with comparative law and its methods.
- Improving presentation and communication skills in English.
Course title

ILAS Seminar-E2 : Introduction to life science and scientific conversation

Course offered year/period

2019 • First semester

Number of credits

2

Number of weekly time blocks

1

Target year

Mainly 1st year students

Eligible students

For all majors

Day/period

Fri.5

Classroom

21, Yoshida South Campus Bldg. No. 1

Language

English

Keyword

Life / Biophysics / Chemistry / Structure / Biology

[Outline and Purpose of the Course]

This is an introductory course to life science and biochemistry.

It is a tutorial. That means, that after a short introduction by the instructor, students will study and then discuss the material. The material will be provided by the instructor; it is not necessary to buy any books for this class.

Discussions are in English and the instructor will provide additional explanations.

3D means the three dimensions of space: we will look at images of proteins and nucleic acids to understand them. 4D means space and time: we will also study the motion of the biomolecules.

[Course Goals]

The goal of the course is to give first year students a chance to study the basics of life science in English in an interactive way.

[Course Schedule and Contents]

1. Course Introduction: Studying life
2. Atoms
3. Macromolecules
4. Structural levels in proteins
5. Life in 3D
6. Carbohydrates
7. Lipids
8. Nucleic Acids
9. Vitamins
10. Cells
11. Organelles I
12. Organelles II
13. Organelles III
14. Cytoskeleton
15. Evaluation
Course title: ILAS Seminar-E2: Let's create 3D computer animations

Affiliated department: Graduate School of Medicine
Job title: Associate Professor
Name: PATAKY, Todd

Group: Seminars in Liberal Arts and Sciences
Number of credits: 2
Number of weekly time blocks: 1

Class style: Seminar
Course offered year/period: 2019 • First semester
Quota: (Freshman) 6

Target year: Mainly 1st year students
Eligible students: For all majors
Day/period: Fri. 5

Classroom: Seminar room 2, 2F, School of Human Health Sciences, Faculty of Medicine (Faculty of Medicine/Pharmaceutical Science Campus/University Hospital Campus)
Language: English

Keyword: 3D modeling / computer graphics / character animation

[Outline and Purpose of the Course]
This course introduces the basics of computer-based 3D modeling (shape design, lighting, materials, surface textures), animation (keyframes, object motion, camera zooming and panning, etc.) and gaming (interactive 3D worlds). The free, open-source software "Blender" (blender.org) will be used for all lessons; Blender can be used on Windows, Mac and Linux for free. Programming experience is recommended but not required.

[Course Goals]
Students will become familiar with the main concepts of 3D modeling and animation. They will learn how to reproduce example 3D models, animations and simple games. Last, as a final project they will work to produce their own 3D model / animation / game from start-to-finish.

[Course Schedule and Contents]
Over this 14-week lecture the following topics will be covered in each class:

01) Introduction: 3D Modeling & Blender
02) 3D Modeling I: Creating Shapes
03) 3D Modeling II: Materials & Lighting
04) Animation I: Basics
05) Animation II: Advanced
06) Game Design I: Basics
07) Game Design II: Game Flow
08) Character Modeling I: Body
09) Character Modeling II: Rigging
10) Advanced Topics: Modeling
11) Advanced Topics: Animation
12) Advanced Topics: Gaming
13) Advanced Topics: Characters
14) Final Project Presentations & Discussion
[Outline and Purpose of the Course]
Science is not restricted to the academic world - it flows over into the mass media (both factual and fictional). Logic is vital to the presentation of academic research findings and also to analysing the communication of science in the media.

The aim of this course is for students to learn and practice critical thinking with respect to science and its broader reporting in the mass media.

The students will participate in extracting themes, understanding bias in documents, videos and in their own work. They will practice how to critically analyse documents and to develop their own writing skills, particularly in the area of justification of arguments and the logical structuring and linking of content.

[Course Goals]
The goal of the course is for students to be able to present logical written arguments and to be able to critically assess the validity and structure of literature in the natural sciences. This will be based on a variety of scientific literature in the academic realm as well as in the media.

[Course Schedule and Contents]
The course will broadly cover critical thinking, including the following themes:

1. Introduction to critical thinking: what, why and how
2. Proof, argument and opinion (2 weeks)
3. Logic and illogicality
4. Making the most of information (but not too much) (2 weeks)
5. Academic argument in natural science writing (2 weeks)
6. Assumptions, reliability and uncommon sense
7. Structuring and clarity in writing
8. Comprehension, comprehensiveness and conciseness
9. Science in the media (3 weeks)

The course is very flexible, depending on the students ability and topics of societal and scientific interest at the time, so exact topics will vary.

The course will be interactive, involving students in discussions on topical issues.

[Class requirement]
None

[Method, Point of view, and Attainment levels of Evaluation]
Participation in class exercises and take-home exercises (50%) = 50%
Final take-home exam or report (50%)
Students will be marked on the ability to identify and critically analyse text, and to produce text of their own. Standard marking framework is used with a raw score given (0-100)

[Textbook]
(Reference book)
Judith Boss 『THiNK (2nd Edition)』（2011.）
Merrilee H. Salmon 『Introduction to Logic and Critical Thinking (6th Edition)』

[Regarding studies out of class (preparation and review)]
Out of class preparation for in-class exercises may be required.

[Others (office hour, etc.)]
For this class, office hours are Monday and Wednesday 13:00-14:00 but prior email contact is required.
<table>
<thead>
<tr>
<th>Lecture code: Z002060</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Course numbering</th>
<th>U-LAS70 10002 SE50</th>
</tr>
</thead>
</table>

| Affiliated department, Job title, Name |
| Disjoint Prevention Research Institute, Senior Lecturer, LAHOURNAT Florence |

| Group |
| Seemirs in Liberal Arts and Sciences |

| Number of credits | 2 |
| Hours | 30 |

| Class style |
| Seminar |

| Course offered year/period |
| 2019 - Intensive, First semester |

| Quota (Freshman) |
| 7 (7) |

| Target year |
| Mainly 1st year students |

| Eligible students |
| For all majors |

| Day/period |
| Intensive |

| Classroom |
| Yoshida-South Campus |

| Language |
| English |

| Keyword |
| social anthropology / cultural anthropology / culture / society |

[Outline and Purpose of the Course]

This seminar is designed as an interactive introduction to socio-cultural anthropology and anthropological thinking. The purpose of the course is to explore how culture shapes society, what an anthropological perspective is, and how it can contribute to our understanding of the world. We will explore some of the core themes of the discipline using a variety of readings and in-class discussion.

[Course Goals]

The objectives of this seminar are for students to:
- gain an understanding of the different aspects and implications of culture in shaping society and our interpretation of the world,
- gain an understanding of some of its core themes
- develop awareness of cultural diversity and our own preconceptions
- gain experience in engaging in discussions on specific topics

[Course Schedule and Contents]

This is a seminar-type class. Each session will focus on discussion and various activities (including group work) surrounding a specific topic.

The topics we will explore include:
- Culture (as an introduction and entry point to the other topics)
- Time and space
- Language and communication
- Identity and relationships
- Material culture

Note: this schedule may be subject to change. The detailed definitive schedule will be handed out during the first class.

[Class requirement]

This seminar is essentially interactive. Students must be willing to prepare each session by completing the readings and assigned tasks and to participate actively in class, answering questions and participating in discussions and other activities.

[Method, Point of view, and Attainment levels of Evaluation]

Evaluation will be based on active participation (70%), and group work (30%).

Active participation means actively engaging with the class content, participating during discussions and group work, and contributing to the class by sharing opinions, experiences and reflections.

Repeated absence and tardiness will negatively impact the final grade.

[Textbook]

There is no textbook for this seminar. Readings will be available for download.

Printing and preparing the material is the responsibility of the student.

[Reference book, etc.]

- Introduced during class

[Regarding studies out of class (preparation and review)]

Students should expect 2 to 3 hours of preparation outside the classroom to complete the readings and assigned tasks.

[Others (office hour, etc.)]

- This is a seminar-type class, and as such will rely heavily on in-class discussion and student participation. It will be conducted in English. All readings and material will also be in English.
- As stated in the evaluation section, students are expected to engage actively during class. The level of engagement will greatly influence the final grade.
- Office hour is after class or by appointment.
ILAS Seminar-E2 : Introduction to cross-cultural communication

Disaster Prevention Research Institute
Senior Lecturer, LAHOURNAT, Florence

Group	Course offered year/period	Number of credits	Hours
Seminars in Liberal Arts and Sciences | 2019 • Intensive, First semester | 2 | 30

Target year	Eligible students	Day/period
Mainly 1st year students | For all majors | Intensive

Class style	Classroom	Language
Seminar | Yoshida-South Campus | English

Affiliated department, Job title, Name
Disaster Prevention Research Institute
Senior Lecturer, LAHOURNAT, Florence

Outline and Purpose of the Course
This seminar is designed as an introduction to cross-cultural communication and aims at providing a working level of cross-cultural competence. With an emphasis on approaching and understanding other cultures and communication without bias, it will cover basic concepts and principles necessary for the promoting and improving of cultural self-awareness and inter-group, cross-cultural communication.

With the basic question of what culture is as a starting point, we will explore the mechanisms of culture and inter-group relationships and their implications in our perceptions of ourselves and others along the following themes: cultural awareness, cultural identity, ethnocentrism and cultural relativism, stereotype and prejudice, cultural competence.

Course Goals
The objectives of this seminar are for students to:
- gain an understanding and good command of the basic notions related to culture and cross-cultural communication
- acquire awareness and understanding of cultural processes (including our own preconceptions), the dynamic aspect of cross-cultural adaptation, and the impact of culture on communication
- become comfortable formulating ideas and opinions, and engaging in discussions on specific topics.

Course Schedule and Contents
This is a seminar-type class. Each session will start with a short lecture and rely mostly on discussion and group work based on this week's topic and readings.

1- orientation and overview
2- introduction to the notion of culture
3- Social and cultural identities
4- Culture and worldviews
5- Bias, stereotype, prejudices
6- Models of culture (P.1)
7- Models of culture (P.2)
8- Group work/presentation
9- Languages and culture
10- Nonverbal communication
11- Culture shock
12- Towards cultural competence (P.1)
13- Towards cultural competence (P.2)
14- Final presentations

Note: this schedule may be subject to change. The detailed definitive schedule will be handed out during the first class.

Class requirement
There are no specific requirements for taking this seminar. However, students must be willing to prepare each session by completing the weekly readings and assigned tasks, and to participate actively in class.

Method, Point of view, and Attainment levels of Evaluation
Evaluation will be based on class attendance and active participation (60%), a group work (20%) and final presentation (20%).
Active participation means actively listening and engaging with the class content, participating during discussions and group work, and contributing to the class by sharing opinions, experiences and reflections. It also means taking notes and reviewing them each week, since each class will start with a quick recap of the previous week done by a student. Students absent 3 times or more will fail this class.
Tardiness (by 15 minutes or more) will be treated as absence.
Systematic tardiness and/or unexplained early departures will greatly reduce your attendance and participation grade.

Textbook
There is no textbook for this seminar. Weekly readings will be available for download. Printing and preparing the material is the responsibility of the student.

Reference book, etc.
- Introduced during class

Regarding studies out of class (preparation and review)
Students are expected to prepare for each class by reviewing their notes and completing the weekly readings and assigned tasks.

Others (office hour, etc.)
- This is a seminar-type class, and as such will rely heavily on in-class discussion and student participation. It will be conducted in English. All readings and material will also be in English.
- As stated in the evaluation section, students are expected to engage actively during class. The level of engagement will greatly influence the final grade.
- Office hour is after class or by appointment.
Course title
ILAS Seminar-E2 - Consumer Society and Law

Affiliated department, Job title, Name
Graduate School of Law
Associate Professor, KARAIKOS, Antonios

<table>
<thead>
<tr>
<th>Group</th>
<th>Number of credits</th>
<th>Number of weekly time blocks</th>
</tr>
</thead>
<tbody>
<tr>
<td>Seminars in Liberal Arts and Sciences</td>
<td>2</td>
<td>1</td>
</tr>
</tbody>
</table>

Class style
Seminar

Course offered year/period
2019 • Second semester

Quota (Freshman)
15 (15)

Target year
Mainly 1st year students

Eligible students
For all majors

Day/period
Mon. 5

Classroom
Seminar room 22, ILAS Bldg.

Language
English

Keyword
consumer law / Japanese law / European law / international transactions / harmonization of laws

[Outline and Purpose of the Course]
This is an introductory seminar on Japanese and European consumer law. The course is organized into the following three parts:
1. Brief overview of the history and development of Japanese and European consumer law,
2. Description of Japanese consumer law,
3. Presentation of the current state of European consumer law.

Along the way, relevant cases decided by Japanese courts and by the Court of Justice of the European Union will also be discussed.

The goal of this course is for students to acquire a basic knowledge of the structure and content of Japanese and European consumer law, and learn about the similarities and differences between these laws. An additional goal is for students to get familiar with comparative law and its methods.

During this course, students will be given the opportunity to actively participate in discussions and exchange of ideas.

[Course Goals]
- Acquiring a basic knowledge of the structure and content of Japanese and European consumer law.
- Learning about the similarities and differences between Japanese and European consumer law.
- Getting familiar with comparative law and its methods.
- Improving presentation and communication skills in English.

[Course Schedule and Contents]
1. General introduction
 - Part one: Introduction to consumer law
 - 2 Characteristics of consumer law
 - 3 History and development of Japanese consumer law
 - 4 History and development of European consumer law
2. Consumer protection in Japan
 - 5 Product liability
 - 6 Consumer contracts
 - 7 Specified commercial transactions
 - 8 Money lending and interest rate restriction
3. Consumer protection authorities and organizations
 - 9 Consumer protection authorities and organizations
4. Consumer protection in the EU
 - 10 Liability for defective products
 - 11 Unfair terms in consumer contracts
 - 12 Unfair commercial practices
 - 13 The Consumer Rights Directive
 - 14 New Deal for Consumers
5. Conclusions

[Class requirement]
Students must be willing to talk in class, engage with other students and write a report paper in English.

[Method, Point of view, and Attainment levels of Evaluation]
No written examinations will be conducted.
Class attendance and participation: 60%
Oral presentation: 15%
Submission of report paper: 25%

[Textbook]
Instructed during class

[Reference book, etc.]
Introduced during class

[Regarding studies out of class (preparation and review)]
- Students are expected to review the content covered in the previous class.
- Students are also recommended to briefly preview the content of the next class. More detailed instructions will be provided in class.

[Others (office hour, etc.)]
Students will be required to actively participate and express their thoughts in English during the classes. Further, students will be assigned one oral presentation (of around 10 minutes, individual or in group, depending on the number of students) in part two or three.
A paper of the presentation (around 2 pages sized A4 / around 800 words) shall be submitted at the end of the course.
Many exciting or rather puzzling phenomena exist in nature that can only be explained by integrating knowledge from different disciplines; biology, physics, and chemistry. For example, why do astronauts become weak such that they are unable to walk after a prolonged stay in space? Or, how do plants utilize photons of light to make sugar? Again, why are migratory birds able to sense their migration direction over long distances? These are just a few examples highlighting how living systems on earth have adapted to life on earth, where they are exposed to physical forces such as gravity and electromagnetic forces. In this seminar, we will discuss some of the groundbreaking discoveries and technological advances integrating biology, physics, and chemistry. Specifically, we will explore how living systems, including the human body, have adapted to and utilize physical forces to survive and function normally, and sometimes, abnormally.

Our body is a force producing machine; our muscles contract, our hearts beat, our lungs expand and shrink, blood flow through our veins and arteries etc. This topic will explore what we know about how our body adapt and respond to forces at the cellular level, and how this is important to biology and medicine.

4) Role of forces in bone and muscle health (3 weeks)
Why do astronauts lose their ability to walk after staying in space for an extended period of time? Continuing the theme of the previous topic, this topic will look specifically into the role of physical forces in bones and muscles, including why lack of physical exercise or prolonged exposure to microgravity condition contribute to the weakening of muscles and bones.

5) Role of forces in wound healing and disease development (2 weeks)
This topic will introduce latest pioneering researches on the role of physical forces in wound healing and disease development, and how physical forces can be exploited to realize better treatment methods and improve quality of life.

6) Lecture review and student presentations (2 week)

[Class requirement]
None

[Method, Point of view, and Attainment levels of Evaluation]
Class attendance and active participation: 60%, Discussions and presentations: 40%

[Textbook]
Not used

[Reference book, etc.]

[Regarding studies out of class (preparation and review)]
You may consider listening to TED talks to learn about some exciting science topics and how to give a nice presentation.

[Others (office hour, etc.)]
Office hours will be announced separately during class hours. However, you are free to contact me by email anytime.
[Outline and Purpose of the Course]

Birds fascinate people because they are everywhere, they are easy to see and hear, and they are beautiful. In this course we will examine birds by considering their defining characteristics, form and function, behavior, life histories, ecology, and conservation. In doing so, the aim is to gain a thorough understanding of this diverse and interesting group of animals.

[Course Goals]

1) Learn the evolutionary history of modern birds and their evolutionary relationships to other groups
2) Learn the characteristics of birds and the characteristics of the major avian groups
3) Learn the unique life history and behavioral traits of birds
4) Learn some aspects of avian ecology and conservation
5) Learning to identify different species of forest and aquatic birds around Kyoto

[Course Schedule and Contents]

1) Course introduction
2) What are birds and are they feathered dinosaurs?
3) Feathers and flight exercise (video 1)
4) Museum visit and exercise
5) Avian communication exercise (video 2)
6) The annual cycle of birds and their migration exercise (video 3)
7) Avian movement
8) Birds in and around Kyoto University
9) Finding a mate and breeding systems exercise (video 4)
10) Avian reproduction
11) A trip to Takarageike Park to identify aquatic birds
12) Avian intelligence and video exercise (video 5)
13) What to eat. Foraging behavior of birds
14) Avian ecology and bird conservation

[Class requirement]
Understanding of high school biology is recommended.

[Method, Point of view, and Attainment levels of Evaluation]
Assessment will comprise completion of written in-class activities (70%) and a final presentation (30%).

[Textbook]
Not used
No textbook is mandatory although we consult various readings throughout the course.

[Reference book, etc.]
- D. Attenborough 『The Life of Birds: The Complete Series』 (BBC)
- Scott, G 『Essential Ornithology』 (Oxford University Press)

[Regarding studies out of class (preparation and review)]
To achieve the course goals students should review the course materials plus optionally the recommended readings after each class.

[Others (office hour, etc.)]
Lecture code: Z002013

Course number: U-LAS70 10002 SE50

Course title (English):
ILAS Seminar-E2: How to Study Atoms and Molecules with the Help of Light (光を使う原子や分子を調べる)
ILAS Seminar-E2: How to Study Atoms and Molecules with the Help of Light (光を使う原子や分子を調べる)

Affiliated department, Job title, Name: Graduate School of Science
Program Specific Associate Professor, THEKEMER, Stephan

Group: Seminars in Liberal Arts and Sciences
Number of credits: 2
Number of weekly time blocks: 1

Class style: Seminar
Course offered year/period: 2019 · Second semester
Quota (Freshman): 25 (15)

Target year: Mainly 1st year students
Eligible students: For all majors
Day/period: Tue.5

Classroom: Seminar room 21, ILAS Bldg.
Language: English

Keyword: Light / Colors / Laser / Molecule / Spectroscopy

Outline and Purpose of the Course

Light lets you see and get to know the world around you. But we can only see a very small part of all the ‘light’ and it is impossible to see atoms and even big molecules with your eyes. In this seminar we will learn how different forms of light are used in physics and chemistry to ‘see’ the atoms, molecules, distant stars and the world around us. We will learn the fundamentals of light, get to understand light phenomena in your daily life and see how light can be used as a measurement tool in natural sciences. Students with any major are welcome.

Visible light is a crucial part of our natural environment. It is a type of electromagnetic radiation that can travel through the air and be detected by the human eye. The visible light spectrum is composed of seven colors: red, orange, yellow, green, blue, indigo, and violet. These colors are not just aesthetic phenomena, but they play crucial roles in various fields of science, such as biology, chemistry, and physics. For example, the color of objects is determined by the light they reflect. We will learn how to study atoms and molecules with the help of light, which is a powerful tool for both theoretical and experimental research.

We get to know light and the basics of spectroscopy. This knowledge answers questions like ‘why do things have color?’ or ‘what can we learn about distant stars?’

2. Apples are red and water is blue? (3 weeks)
We get to know light’s behavior when interacting with different materials. We learn about the ‘spectrum’ and the basics of spectroscopy. This knowledge answers questions like ‘why do things have color?’ or ‘what can we learn about distant stars?’

3. Laser beams and rainbows (4 weeks)
We see how light is generated in light bulbs, lasers and other light sources. This light then can be selected, modified and redirected with the help of various spectroscopic tools. The same knowledge helps us to understand light phenomena in daily life such as rainbows, anti-reflective glasses or mirrors.

4. Dancing molecules (3 weeks)
We learn how light interacts with atoms and molecules (and induces molecular vibration and rotation in the process), and what this tells us about the shape and properties of molecules. This knowledge is a first look into chemical analysis and studying fundamental physics questions.

Depending on the available time and interest of the students, we may also discuss the use of light in technical applications and astronomy as well as spectroscopic methods in physics and chemistry or the operation principles of advanced spectroscopic devices.

Class requirement
None

Method, Point of view, and Attainment levels of Evaluation
Preparing homework (30%)
Small exercises during the seminar (30%)
Giving a short presentation at the end of the seminar (40%)

Textbook
Not used
No textbook is used. Lecture notes will be provided during class.

Reference book, etc.
Simon Duckett, Bruce Gilbert, Martin Cockett 『Foundations of Molecular Structure Determination』 (Oxford University Press) ISBN:9780199689446 (This compact book gives a good overview over all relevant spectroscopic methods to study molecules)
Ian A. Wainsley 『Light: A Very Short Introduction』 (Oxford University Press) ISBN:9780199682690 (A good read about light, which is the basis of most spectroscopies)

Course Schedule and Contents

This seminar is held in a causal and interactive way! Students can influence the selection of topics based on their interest!

The course will work through fundamentals of light, the interaction of light with materials, and methods of spectroscopy, which include the following topics. The plan below is not strict and rather serves as a guideline.

1. Introduction - What is light and how to use it? (4 weeks)
 We will learn about ‘light’, its fundamentals and properties such as ‘color’ and how we can make use of light as a measurement tool.

2. Apples are red and water is blue? (3 weeks)
 We get to know light’s behavior when interacting with different materials. We learn about the ‘spectrum’ and the basics of spectroscopy. This knowledge answers questions like ‘why do things have color?’ or ‘what can we learn about distant stars?’

3. Laser beams and rainbows (4 weeks)
 We see how light is generated in light bulbs, lasers and other light sources. This light then can be selected, modified and redirected with the help of various spectroscopic tools. The same knowledge helps us to understand light phenomena in daily life such as rainbows, anti-reflective glasses or mirrors.

4. Dancing molecules (3 weeks)
 We learn how light interacts with atoms and molecules (and induces molecular vibration and rotation in the process), and what this tells us about the shape and properties of molecules. This knowledge is a first look into chemical analysis and studying fundamental physics questions.

Depending on the available time and interest of the students, we may also discuss the use of light in technical applications and astronomy as well as spectroscopic methods in physics and chemistry or the operation principles of advanced spectroscopic devices.

Class requirement
None

Method, Point of view, and Attainment levels of Evaluation
Preparing homework (30%)
Small exercises during the seminar (30%)
Giving a short presentation at the end of the seminar (40%)

Textbook
Not used
No textbook is used. Lecture notes will be provided during class.

Reference book, etc.
Simon Duckett, Bruce Gilbert, Martin Cockett 『Foundations of Molecular Structure Determination』 (Oxford University Press) ISBN:9780199689446 (This compact book gives a good overview over all relevant spectroscopic methods to study molecules)
Ian A. Wainsley 『Light: A Very Short Introduction』 (Oxford University Press) ISBN:9780199682690 (A good read about light, which is the basis of most spectroscopies)
The lectures will be held in English, but some supporting material and explanations are also given in Japanese. Students are welcome to ask questions in English or Japanese during and after the class. Office hours are flexible. Appointments can be made directly or via email.
ILAS Seminar-E2: Radical Art and Politics in Japan 1960-70

Affiliated department, Job title, Name
Graduate School of Engineering
Professor, DANIELL, Thomas Charles

Group
Seminars in Liberal Arts and Sciences

Number of credits
2

Number of weekly time blocks
1

Class style
Seminars

Language
English

Classroom
3D, Yoshida-South Campus Academic Center Bldg. North Wing

Outline and Purpose of the Course
This seminar will look at the convergence of radical art and radical politics in 1960s Japan, from the Anpo protests in 1960 to the university riots in the late 1960s and demonstrations at the Osaka Expo in 1970. We will examine the work and ideas of Art collectives such as the Neo Dadaism Organizers and Hi Red Center, events such as the Independents exhibitions, and the contemporaneous writings of art critics.

Course Goals
By the end of this course, students will: Understand the historical development of historical development of art in postwar Japan; Understand the political and cultural factors that have influenced artists; Learn to make a critical response to the assigned readings; Learn to read, write, listen, and speak cogently; Present research findings to an audience.

Course Schedule and Contents
Each week there will be a topic or text assigned for discussion, led by either the instructor or one of the students. The choice and order of texts may be altered during the semester.

WK. 01 Reportage painters
WK. 02 Anpo protests and the “Provoke” photographers
WK. 03 Genpei Akasegawa: from Hi-Red Center to Street Observation
WK. 04 Metabolist architects and Expo’70
WK. 05 Discussion text: Reiko Tomii, “Geijutsu on Their Minds: Memorable Words on Anti-Art”
WK. 06 Discussion text: Michio Hayashi, “Tracing the Graphic in Postwar Japanese Art”
WK. 07 Discussion text: Mika Yoshitake, “The Language of Things: Relation, Perception, and Duration”
WK. 08 Discussion text: Miryam Sas, “Intermedia, 1955 - 1970”
WK. 09 Discussion text: Ming Tiampo, “Decentering Originality”
WK. 10 Discussion text: Midori Yoshimoto, “From Space to Environment: The Origins of Kankyo and the Emergence of Intermedia Art in Japan”
WK. 11 Discussion text: Reiko Tomii, “Matsuzawa Yutaka's Wilderness of Nil”
WK. 14 Midori Yoshimoto, “Expo’70 and Japanese Art: Dissonant Voices”

Class requirement
No prior knowledge is required. Students should be able to participate in discussions with their classmates in English.

Method, Point of view, and Attainment levels of Evaluation
The course will comprise close readings of critical texts in the fields of art, architecture, design, music, and performance. Each student will be required to lead one session. They must read and understand the assigned text, then prepare and present a summary of their findings to the rest of the students. The presentation should be about 60 minutes, and illustrated with a slideshow. It should be supplemented with additional quotations, images, video clips, and so forth. For the remainder of the class, the student must lead a discussion on the topics raised. The text of the presentation should be submitted in essay format, citing salient texts, giving footnotes in the APA style, and captions for all images. Grades are based on participation (20 points), presentations (40 points), and submitted assignments (40 points). Students who are absent more than four times will not be credited. Students who submit work that is plagiarized or lacks proper attribution may fail.

Textbook

Reference book, etc.
Doryun Chong (ed) [From Postwar to Postmodern: Art in Japan 1945-1989] (MoMA) ISBN:978-0822353683

Regarding studies out of class (preparation and review)
All students are expected to have read the assigned reading(s) before each class.

Others (office hour, etc.)
By appointment.
Course title (English)
ILAS Seminar-E2: Understanding and critical appraisal of qualitative research methods in health care

Affiliated department, Job title, Name
Graduate School of Medicine, Associate Professor, ANAGNOSTOU, Despoina

Group
Seminars in Liberal Arts and Sciences

Language
English

Number of credits
2

Number of weekly time blocks
1

Class style
Seminar

Keyword
qualitative research / methodology / methods / quality criteria / critical appraisal / publications

[Outline and Purpose of the Course]
This seminar will enable students to develop critical understanding of a range of qualitative research methodologies and apply their use to specific health care scenarios. We will run workshops to explore the key methodologies and different methods in qualitative research using real examples from research projects. We will also run a journal club where students will be encouraged to critically appraise the appropriateness of a range of study designs in relation to a specific research questions as they are presented in internationally published papers. This knowledge will enhance students ability to critique the value and quality of research evidence underpinning clinical practice.

[Course Goals]
To understand the concept of qualitative research/ versus quantitative research
To understand different schools of thought in qualitative research
To explore different methodologies in qualitative research
To understand quality criteria for evaluation of qualitative research

[Course Schedule and Contents]
Session 1: Introduction to the seminar and introductions of the members of the group
Session 2: Definitions of qualitative research and key principles
Session 3: Different Designs in qualitative research: ethnography
Session 4: Review workshop, using a published ethnographic study
Session 5: Key methods of data collection
Session 6: Qualitative interviews
Session 7: Work on examples of qualitative data, role play
Session 8-9: Different methods of qualitative analysis
Session 10: Considering the quality of qualitative research
Session 11: How to Critically review of qualitative research
Session 12-13: Quality assessment of published papers of qualitative research
Session 14-15: Presentations- course feedback

[Class requirement]
None

[Method, Point of view, and Attainment levels of Evaluation]
Students will be evaluated via presentation

[Textbook]
Not fixed
Recommendations will be given during the course

[Reference book, etc.]
(Reference book)
Introduced during class
References will be introduced during the course

[Regarding studies out of class (preparation and review)]
A couple of published papers will be suggested prior to two sessions, for the students to read. The work of quality appraisal of the publications will take place during sessions.

[Others (office hour, etc.)]
Teacher short lectures, discussion groups, student presentations, small group works during seminar session based on an issue specified by the teacher.

Students are advised to actively participate; make comments and ask questions to generate discussions.
Course Schedule and Contents

Part 1: Fundamentals of Programming
1. Introduction (1 week)
2. Data types, data structures and basic operators (1 week)
3. Introduction to version control (1 week)
4. Control Flow (1 week)
5. Functions and library functions (1 week)
6. Input and Output (1 week)

Part 2: Applications of Programming
9-10. Data science and experimental data analysis
11-12. Simulation
13-14. Basic AI

This is the provisional schedule for the course. The order, time allocated to Part 1 and 2 and the individual themes within each section is subject to change depending on the class size and student ability. Students will be notified of changes to the schedule in advance to give adequate time to prepare for forthcoming seminars.

Class Requirement

Computers will be provided however it is advisable for students to bring their own laptops to use in class where possible.

If using personal laptops, either for classwork or homework, students should download and install two pieces of software before starting the course:

- Git
- Anaconda (please select Python 3.6 version)

Both are free and easy installation instructions can be found here:

Windows
https://www.atlassian.com/git/tutorials/install-git#windows

https://docs.anaconda.com/anaconda/install/windows

Mac
https://www.atlassian.com/git/tutorials/install-git#mac-os-x

https://docs.anaconda.com/anaconda/install/mac-os

Linux
https://www.atlassian.com/git/tutorials/install-git#linux

https://docs.anaconda.com/anaconda/install/linux

Method, Point of view, and Attainment levels of Evaluation

Active participation (15 %)
Coursework project (85%)

Textbook

Instructed during class

Reference book, etc.

(Reference book)
Introduced during class

Regarding studies out of class (preparation and review)

More detailed instructions will be provided in class.
ILAS Seminar-2: Introduction to programming for engineers

[Others (office hour, etc.)]
ILAS Seminar-E2: Socio-epidemiology in health research

Group
Seminars in Liberal Arts and Sciences

Number of credits
2

Number of weekly time blocks
1

Target year
Mainly 1st year students

Eligible students
For all majors

Day/period
Wed.5

Language
English

Classroom
Small seminar room, 1F, Science Frontier Laboratory, Faculty of Medicine (Faculty of Medicine/Pharmaceutical Science Campus/University Hospital Campus)

Keyword
Health / Questionnaire / Research / Interview / Social marketing

Outline and Purpose of the Course
We do research to learn more about people's health, but also to find better ways to prevent diseases. The complexities of the real world and interaction of its people call for effective strategies to ensure good health in its population.

"Socio-epidemiology" is a new public health discipline first established in Kyoto University School of Public Health in 2000. It facilitates an ecological and socio-cultural understanding of health using a multidisciplinary approach. Socio-epidemiology encompasses social sciences and epidemiology, or qualitative and quantitative research methods.

In this course, students will learn the approach of socio-epidemiology and some relevant tools such as social marketing, behavioral theories, and methods of data collection (design of questionnaires or interviews). The course aims at students of all disciplines; a background in health is not required. Come, learn how marketing can be used to encourage behavior change, improve healthcare, or drive social change. Whether you see yourself in the future as a researcher or not, getting the skills to collect useful and meaningful data through a questionnaire or an interview can be very valuable in any discipline.

Course Goals
- To understand key concepts in socio-epidemiology
- To understand the importance of social marketing in behavioral prevention
- To understand the complementary role of qualitative and quantitative methods in health research
- To understand the development of data collection instruments (questionnaires or interviews)

Course Schedule and Contents
In principle, we will cover the following topics:
1. Course overview and introduction to socio-epidemiology
2. The research problem and research question
3. Research design and methods of data collection
4. Causality and measurement
5. Social factors related to health

Course offered year/period
2019, 2nd semester

Quota (Freshman)
5 (5)

Class requirement
None

Method, Point of view, and Attainment levels of Evaluation
Attendance and class discussion (40%)
Assignments (60%)

Textbook
Not used

Reference book, etc.
Reference book
Students will be provided with a list of recommended readings during class.

Regarding studies out of class (preparation and review)
1) Home assignments will be first discussed and drafted during class and later finished at home.
2) Course preparation assignments will be short readings or tasks that will serve to inform and stimulate class discussion.

Others (office hour, etc.)
Seminars will be held at:
Science Frontier Laboratory, Faculty of Medicine Campus.
Small seminar room (1F).
Office hours by appointment. Check KULASIS for details.
ILAS Seminar-E2: Introduction to Computational Neuroscience

Affiliated department, Job title, Name
Graduate School of Medicine
Senior Lecturer, ZENAS C. CHAO

Group
Seminars in Liberal Arts and Sciences

Number of credits
2

Number of weekly time blocks
1

Class style
Seminar

Course offered year/period
2019 • Second semester

Quota (Freshman)
15 (15)

Target year
Mainly 1st year students

Day/period
Thu. 2

Classroom
3B, Yoshida-South Campus Academic Center Bldg. North Wing

Language
English

Keyword
Neuroscience / Data analysis / Artificial neural network / Programming / MATLAB

[Outline and Purpose of the Course]
How do neurons in our brain process information? How can the understanding of our brain help solving medical and engineering problems we’re facing today? In this hands-on course, students will learn to analyze real neural data with MATLAB/Octave, and share their works through discussion and presentation. This class is for the student who is interested in computational neuroscience but fears computer programming. Students with no neuroscience and programming backgrounds are welcome.

[Course Goals]
(1) To learn neuroscience from a quantitative perspective.
(2) To program in a popular programming language MATLAB/Octave.
(3) To work with real data and solve real world problems.
(4) To share experience in discussion, writing, and presentation.

[Course Schedule and Contents]
(1) Introduction
(2) Basic Neurobiology
(3) Programming: The Basics of MATLAB/Octave

PART II. Neural Coding
(4) Neural Coding: Spikes
(5) Programming: Spike Data Analysis
(6) Neural Coding: LFP, ECoG, & EEG
(7) Programming: LFP, ECoG, & EEG Data Analysis

(8) Lab Tours
(9) Midterm Presentation

PART III. Neural Networks
(10) Neural Networks & Plasticity
(11) Artificial Neural Networks
(12) Programming: Artificial Neural Networks
(13) Final Presentation
(14) Final Presentation
(16) Feedback

[Class requirement]
None

[Method, Point of view, and Attainment levels of Evaluation]
Participation (~15%), programming assignments (~40%), midterm presentation (~15%), final presentation (~30%).

[Textbook]
Not used

[Reference book, etc.]
Introduced during class

[Regarding study out of class (preparation and review)]
Students should prepare to spend 1~2 hours per week on the programming assignments or design projects.

[Others (office hour, etc.)]
Programming exercises will be held in the media center, and students will have access to public PCs. Students are also encouraged to bring their own laptops.
Course title

ILAS Seminar-E2 : An introduction to programming for everyone

Affiliated department, Job title, Name

Graduate School of Engineering
Senior Lecturer, PHILAMORE, Hemma

Group

Seminars in Liberal Arts and Sciences

Number of credits

2

Number of weekly time blocks

1

Class style

Seminar

Course offered year/period

2019 • Second semester

Quota (Freshman)

10 (10)

Target year

Mainly 1st year students

Eligible students

For all majors

Day/period

Thu.5

Classroom

302 (CALL), Academic Center for Computing and Media Studies (South Bldg.)

Language

English

Keyword

Python / Programming

[Outline and Purpose of the Course]

Python is an open-source, high level language, widely used in industry and academia.

This course is designed for students who are new to programming. Examples are designed to be approachable to students from a broad range of academic disciplines.

Students will learn the fundamentals of programming by completing based around the development of simple computer games.

[Course Goals]

- Obtain a strong applied knowledge of programming fundamentals
- Learn code management practices through version control
- Develop computing skills that can enhance academic portfolio in a wide range of academic disciplines

[Course Schedule and Contents]

1. Introduction (1 week)
2. Basic operators and data types (1 week)
3. Introduction to version control and code sharing (1 week)
4. Control flow and basic input (1 week)
5. Functions and library functions (1 week)
6. Input, output and libraries (1 week)
7. Computer graphics (1 week)
8. Physical user interfaces (1 week)
9. Importing images, sound and text (1 week)
10. Introduction to classes (1 week)
11. Introduction to sprites (1 week)
12. Accessing peripherals (1 week)
13. Trouble-shooting class for final project
14. Networking : Multi-player games (1 week)

[Class requirement]

Computers will be provided however it is advisable for students to bring their own laptops to use in class where possible.

If using personal laptops, either for classwork or homework, students should download and install two pieces of software before starting the course:
- Git
- Anaconda (please select Python 3.6 version)

Both are free and easy installation instructions can be found here:

Windows
https://www.atlassian.com/git/tutorials/install-git#install-git-windows
https://docs.anaconda.com/anaconda/install/windows

Mac
https://www.atlassian.com/git/tutorials/install-git#install-git-macos
https://docs.anaconda.com/anaconda/install/mac-os

Linux
https://www.atlassian.com/git/tutorials/install-git#install-git-linux
https://docs.anaconda.com/anaconda/install/linux

[Method, Point of view, and Attainment levels of Evaluation]

Active participation (15 %)
Coursework project (85 %)

[Textbook]

Instructed during class

[Reference book, etc.]

(Reference book)
Introduced during class

[Regarding studies out of class (preparation and review)]

More detailed instructions will be provided in class.

[Others (office hour, etc.)]
In order to take this seminar, it is recommended to have some knowledge of biology or biochemistry or take the lecture [Introduction to biochemistry] at the same time. The content of the seminar is the same as that of the lecture. The difference is that, here we will take time to review and discuss the contents of the lecture. I will answer questions to make sure every student could understand everything they wanted to understand. This means that this seminar is a tutorial to the lecture. The Japanese subtitle 生化学の勉 強 emphasizes this.

Students are welcome to ask any question at any time. We will also solve textbook problems to deepen our understanding of the matter.

This seminar is given in English and active student participation is highly encouraged.

[Course Goals]
As all matter is composed of atoms, modern life science aims to explain all aspects of life comprehensively from the atomic level to that of the entire organism. In this seminar, students will attain a profound understanding of the atomic design of life, that is how biomolecules work and join forces to fulfill virtually all actions exerted by living beings.

[Course Schedule and Contents]
1. Introduction to biochemistry
2. DNA, genes, and genomes
3. DNA replication and gene expression
4. Proteins
5. Protein structure
6. DNA isolation and analysis
7. DNA cloning and PCR
8. Protein methods
9. Enzymes
10. Enzyme kinetics
11. Carbohydrates
12. Lipids
13. Metabolism
14. Citric acid cycle and oxidative phosphorylation

[Regarding studies out of class (preparation and review)]
Biochemical textbook problems will be given as homework. In addition, students are invited to prepare their own questions to the instructor in advance.

[Others (office hour, etc.)]
Office hour: any time.
This course presents an introduction to the theory and practice of communication skills necessary for undergraduate students for the academic and scientific scholarship. The course will adopt the format of a short-term research project where students will be required to generate ideas around a topic of their choice through self-directed learning and in-class discussion. This unique approach will help students to build knowledge, vocabulary and critical thinking skills that will enable them to develop ideas effectively communicate in English. Students will then have the opportunity to write short articles, provide peer feedback and present their paper in the classroom. The course will include lectures on presentation skills, organizing scientific information, principles of good writing, strategies for writing faster and with less anxiety, types, and format of biomedical articles, and other skills necessary to effectively communicate with different audiences.

[Outline and Purpose of the Course]

This course presents an introduction to the theory and practice of communication skills necessary for undergraduate students for the academic and scientific scholarship. The course will adopt the format of a short-term research project where students will be required to generate ideas around a topic of their choice through self-directed learning and in-class discussion. This unique approach will help students to build knowledge, vocabulary and critical thinking skills that will enable them to develop ideas effectively communicate in English. Students will then have the opportunity to write short articles, provide peer feedback and present their paper in the classroom.

The course will include lectures on presentation skills, organizing scientific information, principles of good writing, strategies for writing faster and with less anxiety, types, and format of biomedical articles, and other skills necessary to effectively communicate with different audiences.

[Course Goals]

1. To define and describe the process of academic communication
2. To familiarize with the process of simple scientific inquiry, reasoning, and critical thinking
3. To comprehend and adapt styles of written and oral communication including a systematic approach to drafting, revising and editing, and the development of logical, clear, concise, balanced arguments
4. To develop cultural literacy skills by exploring principles of non-verbal communication and a range of strategies designed to overcome barriers to communication

[Course Schedule and Contents]

In principle, the course will be offered as the following plan. However, it may change the order or the number of times for each theme depending on the progressive of the course or handling on current topics.

1. Course introduction
2. Organising thoughts and ideas
3. Scientific methods, reasoning and hypothesis formation
4. Critical thinking: Developing inferences skills
5. Critical thinking: Examining opinions and beliefs
6. Evaluating and assessing scientific evidence
7. The communication process and cultural literacy
8. Writing academic communications
9. Academic speaking strategies
10. One-to-one talk
11. Small group talk
12. Large group talk-Making academic presentations
13. Verbal & nonverbal communication skills

[Class requirement]

None

[Method, Point of view, and Attainment levels of Evaluation]

Active classroom participation: 30%
Written report: 35%
Presentation: 35%

[Textbook]

Not used

[Reference book, etc.]

Reference materials will be provided during the class.

[Regarding studies out of class (preparation and review)]

Students are required to conduct a simple internet-based research activity for the duration of the course and present their findings.

[Others (office hour, etc.)]

You may contact the instructor by email if you have any questions. The instructor will also be available for course-related consultation out of seminar hours is requested by the students. Please make an appointment by email (medsocio.kyodai@gmail.com).
[Outline and Purpose of the Course]

We are going to read scientific papers related to a topic that is important both scientifically and socially. Is it possible to predict the occurrence of large earthquakes and volcanic eruptions? What are the current scientific advances in this field? We will also learn about earthquake and volcano hazard and discuss ways to reduce the risk of associated disasters.

[Course Goals]

The course aims to show students the importance of studying about natural disasters caused by earthquakes and volcanoes, which may help finding better ways to reduce their risk. To facilitate understanding, some materials/vocabulary in Japanese will be provided during the seminar.

[Course Schedule and Contents]

Each student is going to choose a paper and prepare a short report (few PowerPoint slides), summarizing the main ideas of the study. The paper can be chosen freely; some broad suggestions include:

- The physics of great earthquakes (e.g., Tohoku-oki earthquake): any clues for predicting them?
- Large volcanic eruptions and possibilities of prediction;
- Earthquake and volcano hazard.

The first class will give students some broad options of topics/papers. During the second class we will decide the paper that each student is going to present. I will exemplify with a research presentation during the third class. Starting with the fourth class, each student is going to present the chosen paper and get feedback for improving his report. In the examination day, each student should present briefly his updated/revised report.

Depending on the number of students and available time, we are going to visit the underground seismic base isolation at the "Kyoto University Clock Tower", the nearby Hanaore Fault and/or the Disaster Prevention Research Institute (DPRI), Kyoto University, to discuss with earthquake/volcano scientists.

[Class requirement]

None

[Method, Point of view, and Attainment levels of Evaluation]

Grading will be based on attendance and participation (60%) and presentation of chosen paper (40%).

[Textbook]

Not used

[Regarding studies out of class (preparation and review)]

The student will have to prepare the assigned paper.

[Others (office hour, etc.)]

Students can meet me during office hours with prior appointment.
Course title: ILAS Seminar-E2: Geo-Disaster Risk Reduction and Prevention
Affiliated department, Job title, Name: Graduate School of Agriculture, Assistant Professor, VILAYVONG, Khonesavanh

Group: Seminars in Liberal Arts and Sciences
Number of credits: 2
Number of weekly time blocks: 1

Class style: Seminar
Course offered year/period: 2019, Second semester
Quota (Freshman): 15 (15)

Target year: Mainly 1st year students
Eligible students: For all majors
Day/period: Thu. 5

Classroom: W302, Faculty of Agriculture Main Bldg. (North Campus)
Language: English

Keyword: geodisaster / assessment / analysis / natural disaster / forest disaster

[Outline and Purpose of the Course]
This course introduces students to the basic principles that address mechanism, solution and management of hazards and disasters using basic science and engineering of water, soil and ecosystem. The course covers basic theories and methods useful to equip and enhance students' ability in analysis, prediction, assessment, and monitoring of geo-disasters. For example, disasters from earthquake and heavy rain such as landslide, slope failure, debris flow, ground subsidence, and liquefaction. Roles of forests and relevant information communication technology (ICT) tools and risk reduction methods are discussed.

[Course Goals]
1. To introduce students with knowledge, concept and terminology on hazard and disaster in general
2. To encourage students’ technical discussion and presentation on risk reduction assessment
3. To facilitate students in finding innovation and solution for geo-disasters prevention and risk reduction

[Course Schedule and Contents]
1. Introduction to earth science and disaster science
 - Geo-hazard in the environment
 - Landslide, rockfall, debris flow, soil erosion
 - Ground subsidence, liquefaction, tsunami, volcano
 - Dimension of hazard
 - Complexity, sustainability and vulnerability
 - Risk assessment
 - Reduction methods for earthquake and tsunami hazards
 - Reduction methods for volcano hazards
 - Student presentation (1) - Group Work
 - Reduction methods for mass movement hazards
 - Reduction methods for severe storm hazards
 - Reduction methods for hazards - weather extremes, diseases and wildfires
 - Reduction method for flood, drought, and technological hazard
 - Modelling hazards and disasters
 - Student Presentation (2) - Individual
 - Examination
 - Feedback

[Class requirement]
None

[Method, Point of view, and Attainment levels of Evaluation]
- Class performance (25%)
- Assignment report (25%)
- Oral presentation (25%)
- Examination (25%)

[Textbook]
Keith Smith Environmental Hazards (Sixth Edition) (Routledge)
Additional study materials and handouts will be distributed.

[Reference book, etc.]
(Reference book) Introduced during class

[Regarding studies out of class (preparation and review)]
Students are expected to be independent in finding online resources to attain relevant issues of discussion during seminar to enhance student interaction and understanding during classes.

[Others (office hour, etc.)]
After class, student consultation will be arranged with prior notice.
Lecture code: Z002035

Course numbering

| Lecture code | U-LAS70 10002 SE50 |

Course title

Course title
ILAS Seminar-E2: Insect and ecosystem sustainability (昆虫と持続可能な生態系)

<table>
<thead>
<tr>
<th>Affiliated department, Job title, Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>Research Institute for Sustainable Humanosphere</td>
</tr>
<tr>
<td>Senior Lecturer, YANG, Chin-Cheng</td>
</tr>
</tbody>
</table>

Group

| Group | Seminars in Liberal Arts and Sciences |

Number of credits

| Number of credits | 2 |

Number of weekly time blocks

| Number of weekly time blocks | 1 |

Class style

| Class style | Seminar |

Course offered year/period

| Course offered year/period | 2019 • Second semester |

Target year

| Target year | Mainly 1st year students |

Eligible students

| Eligible students | For all majors |

Day/period

| Day/period | Thu.5 |

Classroom

| Classroom | Seminar room 22, ILAS Bldg. |

Language

| Language | English |

Keyword

| Insect biodiversity / Ecosystem / Edible insect / Field trip / Biology |

[Outline and Purpose of the Course]

This is a small-sized seminar-type class for students anticipating to learn how insects work to maintain our Earth’s sustainability.

Most of the course content is case-driven, so students shall not worry about not having a relevant academic background, especially for those from the non-biology departments.

This course comprises lecture/class discussion (8 weeks), field trip (5 weeks) and hands-on session (1 week). Students will be exposed to various live insects during the class and the field trips.

[Course Goals]

The course will help the student understand how important insects are in the ecosystem, and how much insects contribute to maintain sustainability of the ecosystems.

[Course Schedule and Contents]

In principal, the course will be offered as the following plan. However, the order or time for each theme may change depending on the progressive of the course or handling on current topics. Note that students may have to pay their own transportation fee for the proposed field trips.

<table>
<thead>
<tr>
<th>Week 01</th>
<th>Course introduction</th>
</tr>
</thead>
<tbody>
<tr>
<td>Week 02</td>
<td>Intro to insect diversity - Introduce the diversity of insect in our ecosystem</td>
</tr>
<tr>
<td>Week 03</td>
<td>Insect hunting @ Yoshida campus - Collect insect at Yoshida campus, especially for pollinator</td>
</tr>
<tr>
<td>Week 04</td>
<td>The role of insect in ecosystem - Introduce diverse roles that insect play in our ecosystem</td>
</tr>
<tr>
<td>Week 05</td>
<td>Insects as pollinators - Examine pollinator specimens collected from Week 03, and introduce the role of pollinator in maintaining ecosystem sustainability</td>
</tr>
<tr>
<td>Week 06</td>
<td>Field trip @ Yoshida Mountain Trail (吉田山) - Collect insect at Yoshida Mountain Trail, especially for decomposers</td>
</tr>
<tr>
<td>Week 07</td>
<td>Insects as decomposers - Examine decomposer specimens collected from Week 06, and introduce the role of decomposer in maintaining ecosystem sustainability</td>
</tr>
<tr>
<td>Week 08</td>
<td>Field trip @ Kamogawa River (川川河) - Collect insect at Kamogawa River, especially for biological control agents</td>
</tr>
<tr>
<td>Week 09</td>
<td>Insects as biological control agents - Examine decomposer specimens collected from Week 08, and introduce the role of biological agent in maintaining ecosystem sustainability</td>
</tr>
<tr>
<td>Week 10</td>
<td>Edible insects - how eating insects saves our ecosystem</td>
</tr>
<tr>
<td>Week 11</td>
<td>Field trip @ Nishiki Market (錦市場) - Visit edible insect shops @ Nishiki Market</td>
</tr>
<tr>
<td>Week 12</td>
<td>Threats to insect biodiversity and ecosystem sustainability - Introduce various threats to insect biodiversity and ecosystem sustainability</td>
</tr>
<tr>
<td>Week 13</td>
<td>Hands-on session - Behavioral experiments on aggressiveness of invasive ants</td>
</tr>
<tr>
<td>Week 14</td>
<td>Field trip @ Minoo Park Insectarium (箕面公園昆虫館) - Introduce various insect species that provide ecosystem services and hands-on</td>
</tr>
<tr>
<td>Week 15</td>
<td>Finals</td>
</tr>
<tr>
<td>Week 16</td>
<td>Feedback</td>
</tr>
</tbody>
</table>

[Class requirement]

None

[Method, Point of view, and Attainment levels of Evaluation]

| 40% in - class discussion, 40% final, 20% presentation |

[Textbook]

[Reference book, etc.]

(Reference book)

Introduced during class to be announced according to the content of a given class each week
Students are encouraged to express their ideas in class based on the readings the instructor assigns ahead of the class.

Others (office hour, etc.)

Lecturer: Chin Cheng Yang (ccyang@rish.kyoto-u.ac.jp)
Office: HW 412, Research Building No. 1, Uji Campus
Office hours: to be announced
Note: There is a possibility that the instructor may organize a field trip that normally is a one-day event on the weekend, instead of the regular slot of this lecture. The lecturer will discuss date and time with students for the field trip at the beginning of the semester. Students are advised to pay the travel expense. Also be advised to obtain the insurance for study and research “Personal Accident Insurance for Students Pursuing Ed. & Rsch.” if you decide to take the class.
Course title
ILAS Seminar-E2 : Introductory Bioinformatics

Affiliated department, Job title, Name
Institute for Frontier Life and Medical Sciences
Program-Specific Senior Lecturer, VANDENBON, Alexis

Group
Seminars in Liberal Arts and Sciences

Number of credits
2

Number of weekly time blocks
1

Class style
Seminar

Course offered year/period
2019 • Second semester

Quota
10 (10)

Target year
Mainly 1st year students

Eligible students
For all majors

Day/period
Thu. 5

Classroom
26, Yoshida-South Campus Bldg. No. 1

Language
English

Keyword
Bioinformatics / Computational biology / Sequence alignment / Evolution / Genomics

[Outline and Purpose of the Course]
Bioinformatics is an interdisciplinary field in which statistics, machine learning and computer programming are applied to biological data. Recently, computational approaches such as bioinformatics have become an essential part of biological research. This course will offer an overview of bioinformatics techniques, including sequence alignment, comparative and evolutionary genomics, protein structure prediction, analysis of sequencing data, systems biology, and widely used biological databases.

[Course Goals]
Students will gain insight into a variety of topics within the field of bioinformatics. By taking this course, students will acquire knowledge about fundamental bioinformatics analyses, and will gain understanding about how bioinformatics can contribute to studies in biology.

[Course Schedule and Contents]
In principle, the course will be offered according to the following plan. However, depending on the progress of the course the order or the number of lectures for each topic may change.

Lectures 1 and 2. Introduction to Bioinformatics: What is bioinformatics? We will introduce various topics in bioinformatics, from the use of sequence alignments in making phylogenetic trees, prediction of protein structure, to the modelling of a simple regulatory network.

Lectures 3 and 4. Genome organization and evolution. We will introduce the genomes of prokaryotes and eukaryotes and their content. Genome sequencing projects and metagenomics will be covered.

Lecture 5. Scientific literature and Databases: Databases form the basis for most applications in bioinformatics, containing sequences, structures, annotations, pathways, and literature. We will go through the most widely used biological databases, and look at the types of data and tools they contain.

Lecture 6. Alignments: Aligning sequences is one of the fundamental tasks in bioinformatics. We will start with an introduction to alignment, from dotplots to a dynamic programming algorithm. The usage and interpretation of pairwise sequence alignments will be covered.

Lecture 7. Phylogenetics: We will extend pairwise alignments to alignments of multiple sequences. We will introduce methods for turning multiple alignments into phylogenetic trees. We will discuss different types of phylogenetic trees, their properties and interpretation.

Lecture 8: Mid-term exam.

Lectures 9 and 10: Structural bioinformatics. Starting from a review of the properties of amino acids, we will introduce protein structural alignments and approaches for predicting secondary, tertiary and quaternary structure from amino acid sequences. In addition, we will briefly cover methods for predicting protein function.

Lecture 11: Systems biology: Complex systems have properties that cannot easily be inferred from their individual components. In this lecture, we will introduce holistic approaches to the study of biology. Especially, we will focus on biological networks and their properties.

Lecture 12 and 13: Practical NGS data analysis: Introduction to so-called “next generation sequencing” (NGS) approaches, and its applications. The information contained in a typical NGS dataset will be introduced, as well as practical steps in its processing, mapping, and interpretation.

Lecture 14: Metabolic pathways and Review of course material. We will introduce classification systems for enzymes, and popular databases of metabolic pathways.

Lecture 15: Final examination

Lecture 16: Feedback

[Class requirement]
Students are expected to have basic knowledge about molecular biology.

[Method, Point of view, and Attainment levels of Evaluation]
Grading: attendance and active participation (20%), mid-term exam (20%), assignments (20%), and final exam (40%)

[Textbook]

The course lectures will follow the content of this textbook. Sections of the book to read in preparation of each class will be announced.

[Regarding studies out of class (preparation and review)]
The course will follow a textbook. At the end of each lecture I will specify the sections to read before the next lecture.

[Others (office hour, etc.)]
No fixed office hours. Students are requested to make appointments directly or by email.
ILAS Seminar-E2 : What is light?

Graduate School of Engineering
Senior Lecturer, DE ZOYSA, Menaka

Group: Seminars in Liberal Arts and Sciences
Number of credits: 2
Number of weekly time blocks: 1

Class style: Seminar
Course offered year/period: 2019 • Second semester
Quota (Freshman): 10 (10)

Target year: Mainly 1st year students
Eligible students: For all majors
Day/period: Thu. 5

Classroom: 34, Yoshida-South Campus Academic Center Bldg. North Wing
Language: English

Keyword: Light / Optics

[Outline and Purpose of the Course]
This seminar is for students to learn about the basic properties of light such as reflection, transmittance, interference, diffraction, emission, and absorption with the help of experimental demonstrations. Students will be asked to join laboratory tours, which help to understand the front-line technologies related to light-control.

[Course Goals]
• Understand the properties of light with the help of experiments.
• Learn about front-line technologies related to light-control.

[Course Schedule and Contents]
1. Overview of the course, introduction to light waves (1 week)
2. Introduction to vector calculus (1 week)
3. Fundamentals of light, wave equations (3 weeks)
4. Reflection, transmittance, total internal reflection (2 weeks)
5. Laboratory tour and experiments (2 weeks)
6. Interference and diffraction theories (2 weeks)
7. Light emission and absorption (1 week)
8. Laboratory tour and introduction of front-line technologies (2 weeks)

[Class requirement]
None

[Method, Point of view, and Attainment levels of Evaluation]
Evaluation will be based on participation (30%), discussion (30%), and homework (40%).

[Textbook]
Not used

[Reference book, etc.]
(Reference book)
Introduced during class

[Regarding studies out of class (preparation and review)]
Students are required to do their homework.

[Others (office hour, etc.)]
Office hour: Anytime by email and appointments should be made via email or during the seminars.
Outline and Purpose of the Course

In order to take this seminar, it is recommended to have some knowledge of biology or biochemistry or take the lecture [Introduction to biochemistry] at the same time.

The content of the seminar is the same as that of the lecture. The difference is that, here we will take time to review and discuss the contents of the lecture. I will answer questions to make sure every student could understand everything they wanted to understand. This means that this seminar is a tutorial to the lecture. The Japanese subtitle 生化学の概要 emphasizes this.

Students are welcome to ask any question at any time. We will also solve textbook problems to deepen our understanding of the matter.

This seminar is given in English and active student participation is highly encouraged.

Course Goals

As all matter is composed of atoms, modern life science aims to explain all aspects of life comprehensively from the atomic level to that of the entire organism. In this seminar, students will attain a profound understanding of the atomic design of life, that is how biomolecules work and join forces to fulfill virtually all actions exerted by living beings.

Course Schedule and Contents

1. Introduction to biochemistry
2. DNA, genes, and genomes
3. DNA replication and gene expression
4. Proteins
5. Protein structure
6. DNA isolation and analysis
7. DNA cloning and PCR
8. Protein methods
9. Enzymes
10. Enzyme kinetics
11. Carbohydrates
12. Lipids
13. Metabolism
14. Citric acid cycle and oxidative phosphorylation

Method, Point of view, and Attainment levels of Evaluation

Attendance and active participation [60%]
Homework assignments [40%]

Textbook

Regarding studies out of class (preparation and review)

Biochemical textbook problems will be given as homework. In addition, students are invited to prepare their own questions to the instructor in advance.

Others (office hour, etc.)

Office hour: any time.
ILAS Seminar-E2 : Let's simulate human movement

Affiliated department, Job title, Name
Graduate School of Medicine
Associate Professor, PATAKY, Todd

Group

Seminars in Liberal Arts and Sciences

Number of credits
2

Number of weekly time blocks
1

Class style
Seminar

Course offered year/period
2019, Second semester

Quota (Freshman)
6 (6)

Target year
Mainly 1st year students

Eligible students
For all majors

Day/period
Fri., 5

Classroom
Seminar room 2, 2F, School of Human Health Sciences, Faculty of Medicine (Faculty of Medicine/Pharmaceutical Science Campus/University Hospital Campus)

Language
English

Outline and Purpose of the Course

Computer simulations of human movement help (a) clinicians understand movement disorders, (b) doctors make corrective surgery decisions, and (c) engineers design artificial limbs. This course will introduce you to human movement simulation, ranging from simple 1D motion to 3D, multi-segment muscle-driven motion. We will use the free physics simulators “OpenSim” and “Blender” to explore simulation possibilities and the various factors which affect simulation results. Computer programming experience is useful but not required.

Course Goals

Students will become familiar with the main concepts of human motion simulation. They will learn how to reproduce and modify example models and animations. Last, as a final project they will work to create their own human movement simulation.

Course Schedule and Contents

Over this 14-week lecture the following topics will be covered in each class:

1) Introduction to Blender and OpenSim
2) Simulation 1: Projectiles
3) Simulation 2: Walking
4) Experiment 1: Knee extension
5) Analysis 1-1: inverse kinematics in Blender
6) Analysis 1-2: inverse kinematics in OpenSim
7) Experiment 2: Maximum vertical jumping
8) Analysis 2-1: Inverse kinematics in Blender
9) Analysis 2-2: Inverse dynamics in OpenSim
10) Simulation 3: Muscle force estimation
11) Analysis 3: Experimental muscle force estimation
12) Final Project: Experiment day (kinematics and forces)
13) Final Project: Analysis & simulation (Blender, OpenSim or both)
14) Final Project presentations & Simulation optimization lesson

Class requirement
None

Method, Point of view, and Attainment levels of Evaluation

Students are expected to actively participate in class, to reproduce all examples discussed in class, and also to produce all simulations independently. Evaluation will be based on the following criteria: class participation (10%), assignments (60%; 10 assignments @ 6% each), final project (30%).

Textbook
None. All necessary materials will be distributed electronically and will be discussed in class.

Reference book, etc.

Introduced during class

Related URL

http://www.blender.org (The Blender software package will be used in some lectures.)
http://opensim.stanford.edu (The OpenSim software package will be used in many lectures.)
https://simtk-confluence.stanford.edu/display/OpenSim/OpenSim+Documentation (OpenSim documentation)

Regarding studies out of class (preparation and review)

There will be a small assignment most weeks based on lecture content; students should submit these assignments more than one day before the next lecture.

Others (office hour, etc.)
Course title
ILAS Seminar-E2: Technology and Modern Society - A Historical Perspective

Affiliated department, Job title, Name
Graduate School of Engineering, Senior Lecturer, ISLAM, A K M Mahfuzul

Group
Seminars in Liberal Arts and Sciences

Number of credits
2

Number of weekly time blocks
1

Class style
Seminar

Course offered year/period
2019 Second semester

Quota
(Freshman) 10 (10)

Target year
Mainly 1st year students

Eligible students
For all majors

Day/period
Fri. 5

Classroom
Seminar room 21, ILAS Bldg.

Language
English

Keyword
Technology / Semiconductor industry / Modern society

[Outline and Purpose of the Course]
The human history can be well described in terms of the evolution of technology and how it shaped the society around the world. The course will show that historical perspective on the evaluation of a technology gives a better understanding of the present society. We will also discuss how the historical knowledge can be used in taking better decisions. The aim of this course is to develop analyzing ability by surveying on a particular technology in terms of the relationship with society. To achieve that, an in-depth historical survey on semiconductor technology will be discussed as an example in the class. The students will submit their own survey results. The course will be tailored aiming at having the students to learn from each other, by presenting, commenting and discussing each others research results.

[Course Goals]
1. To develop ability to identify how arts, technologies, and other factors contributed to modern society.
2. To nurture ability to connect the values, and actions of past generations to modern society.
3. To be able to describe Japan's interactions with other parts of the world and how technological evolution can impact the economy largely.

[Course Schedule and Contents]
1. Technology and Society
2. Interaction between technology and society
3. What is modern society?
4. Technological evolution: a historical study on semiconductor technology
 a) History of semiconductor industry
 b) Impact on modern society
 c) Japan's role in semiconductor technology evolution
 d) Impact on Japan's economy
5. AI, robotics and future society

[Class requirement]
None

[Method, Point of view, and Attainment levels of Evaluation]
Assignments (50%) and term-end report (50%)

[Textbook]
Not fixed
Handouts will be given and online materials will announced in the class.

[Reference book, etc.]
Introduced during class

[Regarding studies out of class (preparation and review)]
The students are encouraged to actively participate in the discussion, share their opinions and analyze other views.

[Others (office hour, etc.)]
Office hour will be announced in the class. Questions are always welcome by email.
Lecture code: Z003006

Course numbering | U-LAS70 10003 SB50
Course title <English> | ILAS Seminar (Overseas) : Conflict Management [Global Water Issues]
Affiliated department, Job title, Name | Disaster Prevention Research Institute Professor, SUMI TETSUYA, Disaster Prevention Research Institute Associate Professor, Sameh Kantoush

Group | Seminars in Liberal Arts and Sciences
Number of credits | 2
Hours | 30

Class style | Seminar
Course offered year/period | 2019 - Intensive, First semester
Quota (Freshman) | 8 (5)

Target year | Mainly 1st year students
Eligible students | For all majors
Day/period | Intensive

Classroom | Vietnam
Language | English

Keyword | ベトナム（Vietnam）/ 国際間（Transboundary river basins）/ 水資源（Water Resources）/ コンフリクトマネジメント（Conflict Management）/ ダム（Dam）

[Outline and Purpose of the Course]

The Mekong River Basin is a transboundary river basin that has been affected by upstream/downstream and environmental changes. This course aims to enable students to understand the social and cultural values of water resources by introducing them to modern and traditional aspects of various cultures.

[Course Goals]

Objectives of this course include:
1. To help students develop an understanding of the social and cultural values of water resources.
2. To enable students to develop an understanding of the role of water resources in various cultures.
3. To enable students to develop an understanding of the role of water resources in various environments.

[Course Schedule and Contents]

1. Introduction to Water Diplomacy
2. State of the Mekong River Basin
3. Water management in the Mekong Delta and the Development Projects

[Regarding studies out of class (preparation and review)]

Students are expected to read relevant texts and prepare for class discussions.

[Reference book, etc.]

Reference book:

Related URL:
http://en.tlu.edu.vn/Home.aspx (Thuy Loi 大学（ベトナム水資源大学）)

Not used

Method, Point of view, and Attainment levels of Evaluation

This course is designed to cover the topics of water management in the Mekong Delta and the Development Projects.

Participants are expected to understand the social and cultural values of water resources by reading relevant texts and preparing for class discussions.

Textbook

Not used

Thuy Loi 大学（ベトナム水資源大学）
1回生のみならず、2回生以上の歴史のある学生の参加を大いに歓迎する。
採点報告日（8月中旬）以降に実施するため、成績報告が遅れる場合があります。
<table>
<thead>
<tr>
<th>Mon</th>
<th>Tue</th>
<th>Wed</th>
<th>Thu</th>
<th>Fri</th>
</tr>
</thead>
<tbody>
<tr>
<td>H708001</td>
<td>N251001 Advanced Course of</td>
<td>H155001 Logic I-E2:Sentential Logic and</td>
<td>H937001 Economy and Society II-E2</td>
<td>N162001 Function Theory of a Complex</td>
</tr>
<tr>
<td></td>
<td>Electromagnetism-E2</td>
<td>Deductions</td>
<td></td>
<td>Variable-E2</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>H381001 Introduction to Linguistic</td>
<td>W231001 Digesting Scientific English-E3</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Science-E2</td>
<td></td>
</tr>
<tr>
<td>N371001</td>
<td>H281001 Japanese History I-E2</td>
<td>H149001 The History of Eastern Thought I-</td>
<td>H598003 Cultural Anthropology I-E2</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Japanese History I-E2</td>
<td>E2</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>H275002 Western History I-E2</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Architecture-E2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>N174001 Quest for Mathematics I-E2</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>N261001</td>
<td>N248001 Introduction to Modern</td>
<td>N157001 Calculus with Exercises A</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Optics-E2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>N917001</td>
<td>H272001 Introduction to World</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Religions-E2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Japanese Politics-E2</td>
<td>I-E2</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>N178001</td>
<td>N935001 Principles of Economics-E2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Mathematical Description of Natural</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Phenomena-E2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>N365001</td>
<td>N260002 Physics for All-E2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Analytic Dynamics-E2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>H598001</td>
<td>U148001 Structures and Mechanisms</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Cultural Anthropology I-E2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>H721001 Sociology I-E2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>N911001</td>
<td>N157001 Linear Algebra with</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Exercises A</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>N930001</td>
<td>U149001 Introduction to Basic</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Concepts of Health Psychology-E2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Communication Issues and Decision-</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>making in Patient Care</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
First semester of the 2019 academic year

<table>
<thead>
<tr>
<th>Mon</th>
<th>Tue</th>
<th>Wed</th>
<th>Thu</th>
<th>Fri</th>
</tr>
</thead>
<tbody>
<tr>
<td>U155001 Psychopathology I-E2</td>
<td>H722001 Introduction to Comparative Psychology-E2</td>
<td>H943001 International History 1900 to the Present-E2</td>
<td>H814001 Introduction to Urban Geography-E2</td>
<td>H927001 Law and Culture in Japan-E2</td>
</tr>
<tr>
<td>N559001 Introduction to Hydrology-E2</td>
<td>N374003 Fundamental Chemical Experiments-E2</td>
<td>N207001 Physics of Wave and Oscillation</td>
<td></td>
<td></td>
</tr>
<tr>
<td>T008001 Practice of Basic Informatics</td>
<td>W230001 Negotiation-E3</td>
<td>N378001 Revisiting Basic Organic Chemistry II-E2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>T018001 Information and Society-E2</td>
<td>N904001 Chromosome Biology-E2</td>
<td>T051001 Basic Informatics-E2</td>
<td>N931001 Introduction to Biological Rhythms-E2</td>
<td>T056002 Practice of Basic Informatics-E2</td>
</tr>
<tr>
<td>N925001 Biological Sciences through Scientific Articles I-E2</td>
<td>T057002 Fundamentals of Artificial Intelligence-E2</td>
<td>T02001 Programming Practice (Matlab)-E2</td>
<td>T02001 Programming Practice (Matlab)-E2</td>
<td>U145001 Biology and Sociology of Chronic Diseases-E2</td>
</tr>
</tbody>
</table>
Second semester of the 2019 academic year

Courses with codes highlighted in red meet two periods a week for a total of 2 units.

<table>
<thead>
<tr>
<th>Mon</th>
<th>Tue</th>
<th>Wed</th>
<th>Thu</th>
<th>Fri</th>
</tr>
</thead>
<tbody>
<tr>
<td>H711001 Introduction to Educational Studies II-E2</td>
<td>H156001 Logic II-E2: Quantificational Logic and Deductions</td>
<td>H162001 Japanese Philosophy II-E2</td>
<td>W232001 Scientific Writing and Presenting in English-E3</td>
<td></td>
</tr>
<tr>
<td>N918001 Introduction to Human Physiology-E2</td>
<td>H274001 Western History II-E2</td>
<td>H282003 Japanese History II-E2</td>
<td>N384001 Outline of Chemistry (Its History and Fundamentals)-E2</td>
<td></td>
</tr>
<tr>
<td>H733001 Disaster and Culture-E2</td>
<td>H716001 Advanced Lecture for Pedagogy II-E2</td>
<td></td>
<td>N558001 Introduction to Mineral Resources-E2</td>
<td></td>
</tr>
<tr>
<td>H928001 Japan’s Political Economy-E2</td>
<td>H718001 Introduction to Society and Community Studies-E2</td>
<td></td>
<td>Y212001 Introduction to Food Sustainability-E2</td>
<td></td>
</tr>
<tr>
<td>H944001 An International History of East Asia 1839-1945-E2</td>
<td>H809001 Food and Globalization II-E2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>N271001 Elementary Course of Physics B-E2</td>
<td>H294001 Theory of Special Relativity-E2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>N490001 Introduction to Biochemistry-E2</td>
<td>N912001 Basic Genetic Engineering-E2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>N490002 Introduction to Biochemistry-E2</td>
<td>N562001 Field Earth Science-E2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>N804002 Introductory Statistics-E2</td>
<td>N158001 Calculus with Exercises B</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>N158001 Calculus with Exercises B</td>
<td></td>
<td>T048001 Fundamentals of Discrete Optimization-E2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>N160001 Linear Algebra with Exercises B</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T052002 Introduction to Algorithms-E2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>H710001 Introduction to Educational Psychology II-E2</td>
<td>H154001 Philosophy of Modern Science-E2</td>
<td>H164001 Philosophy of Nature II-E2</td>
<td>H815001 Topics in Cultural Anthropology I-E2</td>
<td>H801001 Environmental Histories of South Asia-E2</td>
</tr>
<tr>
<td>N372001 Introduction to Surface Chemistry-E2</td>
<td>H592001 Introduction to Globalization II-E2</td>
<td>N495001 Principles of Horticulture-E2</td>
<td>N365002 Basic Physical Chemistry (thermodynamics)-E2</td>
<td></td>
</tr>
<tr>
<td>N901001 Introduction to Genetics and Evolution-E2</td>
<td>H161001 Honors Mathematics A-E2</td>
<td>N256001 Elementary Experimental Physics-E2</td>
<td>N927001 Introduction to Computational Molecular Biology-E2</td>
<td></td>
</tr>
<tr>
<td>N929001 Introduction to Plant Physiology-E2</td>
<td>N211001 Advanced Dynamics</td>
<td>N374002 Fundamental Chemical Experiments-E2</td>
<td>N370001 Introduction to Engineering Geology</td>
<td></td>
</tr>
<tr>
<td>N160001 Linear Algebra with Exercises B</td>
<td>N260001 Physics for All-E2</td>
<td>N374004</td>
<td></td>
<td></td>
</tr>
<tr>
<td>U106001 Introduction to Lifestyle Related Diseases-E2</td>
<td>N269001 Introduction to Plasma Science-E2</td>
<td>N158001 Calculus with Exercises B</td>
<td></td>
<td></td>
</tr>
<tr>
<td>N364001 Introduction to Inorganic Chemistry II-E2</td>
<td>N490003 Introduction to Biochemistry-E2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>N490004 Introduction to Biochemistry-E2</td>
<td>U154001 Cultural Aspects of Health Care-E2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>W228002 Business English-E3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Second semester of the 2019 academic year

Courses with codes highlighted in red meet two periods a week for a total of 2 units.

<table>
<thead>
<tr>
<th>Mon</th>
<th>Tue</th>
<th>Wed</th>
<th>Thu</th>
<th>Fri</th>
</tr>
</thead>
<tbody>
<tr>
<td>H723001 Introduction to Primate Behavior and Cognition-E2</td>
<td>N256001 Elementary Experimental Physics-E2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>H734001 Introduction to Ritual Studies-E2</td>
<td>N374002 Fundamental Chemical Experiments-E2</td>
<td>N209001 Fundamental Physics II</td>
<td></td>
<td></td>
</tr>
<tr>
<td>N270001 Introduction to Quantum Physics-E2</td>
<td>N374004 Fundamental Chemical Experiments-E2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T015001 Basic Informatics</td>
<td>N380001 Chemical Kinetics and Molecular Reaction Dynamics-E2</td>
<td>N377001 Revisiting Basic Organic Chemistry I-E2</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>N382001 Revisiting Basic Physical Chemistry (quantum theory)-E2</td>
<td></td>
</tr>
<tr>
<td>Y214001 Natural Disaster Science-E2</td>
<td></td>
<td>N380001 Chemical Kinetics and Molecular Reaction Dynamics-E2</td>
<td>N813002 Data Analysis Practice I-E2</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>T019001 Information Network-E2</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Y213002 Introduction to Sustainable Development-E2</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Y211001 Introduction to Biological Invasion-E2</td>
<td></td>
</tr>
<tr>
<td>T058001 Programming Practice (R)-E2</td>
<td>N926001 Biological Sciences through Scientific Articles II-E2</td>
<td></td>
<td>T056001 Practice of Basic Informatics-E2</td>
<td></td>
</tr>
<tr>
<td>N499001 Zoo Biology-E2</td>
<td>N561001 Advanced Practice of Earth Science-E2</td>
<td></td>
<td></td>
<td>U144001 Nutrition and Health-E2</td>
</tr>
</tbody>
</table>

Intensive lecture

- N499001 Zoo Biology-E2
- N561001 Advanced Practice of Earth Science-E2
<table>
<thead>
<tr>
<th>Mon</th>
<th>Tue</th>
<th>Wed</th>
<th>Thu</th>
<th>Fri</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mon</td>
<td>Tue</td>
<td>Wed</td>
<td>Thu</td>
<td>Fri</td>
</tr>
<tr>
<td>-----</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
</tr>
<tr>
<td>Z002049</td>
<td>ILAS Seminar-E2:Discussions in Biomechanics and Biophysics (バイオメカニクス・生物物理セミナー)</td>
<td>Z002030</td>
<td>ILAS Seminar-E2:Socio-epidemiology in health research (ヘルスリサーチにおける社会疫学)</td>
<td>Z002065</td>
</tr>
<tr>
<td>Z002032</td>
<td>ILAS Seminar-E2:Understanding and critical appraisal of qualitative research methods in health care (ヘルスケアにおける質的研究)</td>
<td>Z002045</td>
<td>ILAS Seminar-E2:Critical thinking and Communication skills (批判的思考とコミュニケーション・スキル)</td>
<td>Z002047</td>
</tr>
<tr>
<td>Z002037</td>
<td>ILAS Seminar-E2:Earthquakes & Volcanoes - Prediction and Hazards (地震・火山噴火の予知及び防災)</td>
<td>Z002057</td>
<td>ILAS Seminar-E2:Geo-Disaster Risk Reduction and Prevention (地質災害の防災・減灾)</td>
<td>Z002035</td>
</tr>
<tr>
<td>Instructors</td>
<td>教員紹介</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-------------</td>
<td>---------</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
| **ALCANTARA AVILA, Jesus Rafael**
Senior Lecturer
Graduate School of Engineering | - Revisiting Basic Physical Chemistry (thermodynamics)-E2 (page 171)
- Revisiting Basic Physical Chemistry (quantum theory)-E2 (page 172)
- Fundamental Chemical Experiments-E2 (page 164,165) |
|
I was born in Leon (Mexico). I did a BSc. and MSc. in Chemical Engineering in Mexico. When I was in 4th year University, I joined in an exchange program, and I studied at West Virginia University (USA) for one semester. At that time, I made many friends from Japan, so I became very interested in Japan. I came to Japan to pursue a Ph.D. degree in Chemical Engineer. After getting my degree, I started to work at Kyoto University as a fellow researcher; then I worked at Tokushima University as an assistant professor for five years. I came back to Kyoto University in 2018. My research interests include the enhancement of chemical processes by using optimization tools targeting sustainable manufacturing and mass transfer in multiphase systems with or without chemical reactions. I am very passionate about chemistry, mathematics, and making things. I also like cycling and outdoor activities. I hope to see you soon in my classes or around campus! |
| **ANAGNOSTOU, Despoina**
Associate professor
Graduate School of Medicine | - Introduction to Basic Concepts of Health Psychology-E2:Communication Issues and Decision-making in Patient Care (page 248)
- ILAS Seminar-E2:Clinical and ethical issues within palliative care- the European Context（ヨーロッパにおける緩和ケア） (page 280)
- Cultural Aspects of Health Care-E2 (page 252)
- ILAS Seminar-E2:Understanding and critical appraisal of qualitative research methods in health care（ヘルスケアにおける質的研究） (page 328) |
|
I recently joined Kyoto University as an associate professor at the Graduate School of Medicine. With a first degree in Nursing and clinical experience in various settings in Athens, Greece, I moved to the UK to enhance my knowledge. I completed an MSc in Advanced Nursing Practice form the University of Edinburgh, before obtaining my PhD from King’s College London. I then worked as a researcher in the UK academia in the field of palliative care. My research interests include decision-making in palliative care, measuring quality of care, support systems for families and patients, and transcultural aspects of end-of-life care.
Courses: Introduction to Health Psychology introduces concepts of integration of psychosocial and biomedial models of care and explores the impact of health psychology on the treatment of chronic illness, pain management and palliative care. Cultural Aspects of Health Care will enhance students’ knowledge about the interplay between culture and health care and will examine concepts of medical authority, treatment compliance, decision-making, and communication styles in different cultural contexts. Palliative care within the European context will enable students to develop awareness of international approaches to palliative care and the European attitudes to current ethical challenges. Critical appraisal of qualitative research will provide students with critical understanding of a range of qualitative research methodologies and of their application in health care.
The courses are designed to be interactive with short lectures, class discussion, student-led sessions and a variety of material, so that students are can engage actively in the class. |
| **ANDERSON, James R.**
Professor
Graduate School of Letters | - Introduction to Comparative Psychology-E2 (page 62)
- Digesting Scientific English-E3 (page 260)
- Introduction to Primate Behavior and Cognition-E2 (page 61)
- Scientific Writing and Presenting in English-E3 (page 261) |
|
As a comparative psychologist, I am interested in various aspects of social behavior, learning and cognition in humans and other species, especially nonhuman primates. In the social domain, topics I have studied include the influence of dominance status in the context of competitive feeding tests, and the effects of brief separations and social tension on social and self-grooming.
My studies in cognition have examined self-recognition and mirror-image reactions in various primate species including humans, and tool-use by macaques and capuchin monkeys. Other work involved training primates to control and memorize the expression of natural behaviors such as scratching, yawning, and facial expressions. I have also studied nonhuman primates’ and human children’s processing of nonverbal communicative signals; this work developed into studies of intentional communication (including deception) and understanding of third-party interactions.
I am also interested in behavioral adaptations in natural environments, having conducted fieldwork on macaques, baboons, and chimpanzees. I also have a long-standing interest in environmental enrichment for zoo and laboratory-housed animals, having conducted and supervised studies of abnormal behaviors and the effects of providing inanimate objects, foraging substrates, and small swimming pools as enrichment for primates in captivity. |
<table>
<thead>
<tr>
<th>ARSENIY Aleksandrovich, Kuzmin</th>
<th>Senior Lecturer</th>
<th>Graduate School of Engineering</th>
</tr>
</thead>
<tbody>
<tr>
<td>Originally from Russia, I received my Ph.D. from Moscow Engineering and Physics University. There I studied plasma-material interactions. In Japan I worked as a researcher on two big experimental devices: spherical tokamak QUEST in Kyushu University and Large Helical Device in Gifu prefecture. These devices are devoted to the development of the electrical powerplants based on the thermonuclear fusion. In my introductory lectures for all majors, “Quest for Mathematics” and “Introduction to Plasma Science”, there will be no need for complicated computations and any students are welcome. I will explain main concepts of complex numbers and how to understand and to use them. In the “Introduction to Plasma Science” you will learn about various types of plasma and I will share some of my experiences. The lecture “Elementary Course of Physics B” is oriented for those who did not learn physics at high school. This course covers Electrostatics and Thermodynamics. The course “Introduction to Quantum Physics” covers development of quantum mechanics and will introduce essential concepts and tools, such as wave functions and Schrodinger equation.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>BAARS, Roger C.</th>
<th>Senior Lecturer</th>
<th>Graduate School of Global Environmental Studies</th>
</tr>
</thead>
<tbody>
<tr>
<td>I am a Senior Lecturer at the Graduate School of Global Environmental Studies, Kyoto University. Originally from Hamburg (Germany), I have received my PhD in Human Geography from The University of Auckland, New Zealand. Before coming to Kyoto, I have held academic appointments at Goethe University Frankfurt (Germany) and The University of Auckland (New Zealand). I am interested in the relationships between social change and governance particularly as they relate to politically desired social orders, values and practices. My research agenda is organised along the three interrelated themes of spatial identity and belonging, social change and reproduction and new forms of affective environmental governance. My courses on Human and Urban Geography are concerned with the spatial organisation and transformation of human life. We will examine how most global phenomena are intrinsically spatial and how a geographical lens allows us to understand these global processes in a more comprehensive way.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>BABER, William</th>
<th>Associate professor</th>
<th>Graduate School of Management</th>
</tr>
</thead>
<tbody>
<tr>
<td>Will Baber has combined education with business throughout his career. His work has included economic development in the State of Maryland, language services in the Washington, DC area, supporting businessstarters in Japan, and teaching business students in Japan and Europe. Currently he is at Kyoto University teaching and researching negotiation and other topics as an Associate Professor in the Graduate School of Management. He is lead author of the 2015 textbook “Practical Business Negotiation”.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Barnett, Craig Antony

Associate Professor

Graduate School of Science

Dr. Barnett is an Australian of Filipino descent, Associate Professor at the Center for Southeast Asian Studies, Kyoto University. He has been teaching courses on world religion and Asian culture since 2005, and has also published several books and journal articles that focus on the political and cultural dynamics or religious beliefs, rituals and institutions.

Message to Students:

I believe that our understanding of some of the world's most crucial political and social problems is enhanced by a comparative examination of the world's religions. This is the basic premise that guides my teaching. I invite you to join me in studying the fundamental principles of religion through its artistic depictions, the stories of its main protagonists and its ritual expressions, among other aspects of faith. We shall also explore some of the scientific and philosophical theories that have characterized the attempt to makes sense of the human relationship with the divine, particularly in the Asian region. No prior knowledge of any religion or belief is required -- just an open mind and a willingness to discuss religion-related issues without fear or prejudice.

Courses Taught:

- Introduction to Ecology-E2 (page 206)
- ILAS Seminar-E2: Methods in Ecology and Natural History (生態学・自然史学の手法) (page 277)
- Introduction to Evolution-E2 (page 207)
- ILAS Seminar-E2: Introduction to Bird Study - Ornithology (鳥類研究のすすめ) (page 324)

Bautista, Julius

Associate Professor

Center for Southeast Asian Studies

Dr. Bautista is an Australian of Filipino descent, Associate Professor at the Center for Southeast Asian Studies, Kyoto University. He has been teaching courses on world religion and Asian culture since 2005, and has also published several books and journal articles that focus on the political and cultural dynamics or religious beliefs, rituals and institutions.

Message to Students:

I obtained my first degree in Zoology from Victoria University of Wellington and my M.Sc. degree also in Zoology from the University of Canterbury in Christchurch, which are both in New Zealand. I then completed a Ph.D. in the United Kingdom at Newcastle University. Since completing my Ph.D., I have worked as a researcher and professor in many countries including the United States, Japan, New Zealand, and China. My current research interests include the evolution of aposematism and cheating, the adaptive significance of animal personalities, animal communication, the relations between animal’s behaviour and their physiology, and life history evolution.

I teach four courses for the Institute of Liberal Arts and Sciences: (1) Introduction to Ecology, (2) Introduction to Evolution, (3) Methods in Ecology and Natural History (MENH), and (4) Introduction to Bird Study (Ornithology). I emphasize the importance of critical thinking, problem-solving, and team-work in my courses and many class exercises may incorporate these aspects. My overall aim is to design courses that are interesting and topical and also provide students with an opportunity to learn new skills.

Courses Taught:

- Theories of Religion in the Social Sciences-E2 (page 25)
- Introduction to World Religions-E2 (page 38)
- Religion in Contemporary Society-E2 (page 40)
- Introduction to Asian Societies-E2 (page 39)

Baucamp, Anthony Tadeus Herve

Senior Lecturer

Graduate School of Engineering

I am an optical scientist working for the department of micro-engineering, with a background in theoretical and applied physics from top institutions in France, England and Japan. I have spent my career at the edge of optics fabrication, in particular X-ray imaging optics for astrophysics (such as the ASTRO-H space-mission).

My lectures cover electromagnetics, optics, and experimental physics. Having worked 10 years in industry and 5 years in academia, I can give my students a strong theoretical foundation together with a practical approach to problem solving. I will share with you many experiences of applying scientific theories to solve engineering problems, and help you get ready for the “real-world” that awaits after graduation.

Courses Taught:

- Advanced Course of Electromagnetism (page 141)
- Introduction to Modern Optics (page 145)
- Elementary Experimental Physics (page 136)
Dr. Pallavi Bhatte is a lecturer in Western and Contemporary History at the Graduate School of Human and Environmental Studies of Kyoto University. She graduated from the Faculty of Commerce, University of Bombay and arrived in Japan in the year 2000. She received a Bachelor of Arts in Japanese Language at the Department of Asian Studies, Faculty of International Culture, Tenri University. Thereafter, she obtained her Master and Doctoral degrees from the Department of Cultural Coexistence, Graduate School of Human and Environmental Studies, Kyoto University.

Current teaching duties include: Western History I; Western History II for the Liberal Arts & Science Courses under the Humanities and Social Sciences Group. ILAS Seminar: Contemporary History under the Seminar in Liberal Arts & Sciences Group. Introductory Seminar: Contemporary History for the Faculty of Integrated Human Studies Course.

Research Interests: Contemporary History; Transnational History; South Asian History; Modern Indian History; British History; Empire; Imperialism; Colonialism; Nationalism; Nationalist Resistance Movements; Political History; Postcolonial Studies; 19th and 20th Century British Imperial and Commonwealth History; Diaspora Studies; Migration; Subaltern Studies; Colonial Discourse; South Asian Literature; World War I; Second World War; Interwar Years; Pan-Asianism; Japanese Studies

Message to Students: Learning and teaching is reciprocal. Motivation comes from willingness to do something. Learning history is not about memorizing dates. These courses are aimed at instilling the ability to think critically, develop a historical consciousness to gain a better understanding of humanity, society, and contemporary politics. Students from diverse disciplines are encouraged to join.

Marco grew up in Portugal and DR Congo and did his graduate studies in France, where he obtained his PhD from the University of Paris 7, under the supervision of Robin Fahraeus who first described the human p53 isoform p53/47 (also known as delta40p53). Marco’s PhD research led to the discoveries of the Internal Ribosome Entry Site (IRES) and the RNA non-coding functions in p53 mRNA. During his postdoctoral training and in collaboration between France’s INSERM and Kyoto University, Marco further strengthened this new concept of mRNAs with non-coding trans-acting functions by showing that the p53 mRNA can sequesterate p53 protein's negative regulator MDM2 in the nucleolus. Marco is now a Junior Associate Professor in Kyoto University where he teaches Human Genetics and Genetic Disease, Developmental Biology and iPS Cells and Biochemistry. His most recent research interests include investigating the role of hotspot synonymous mutations and mRNA non-coding functions in cancer formation and development. For more information on Marco’s research and educational activities please visit: areap53.com

Message to the students: In the Human Genetics and Genetic Disease classes the students will learn about genetics from examples of human genetic diseases. In Developmental Biology and iPS Cells the students will learn the basics of human development in order to understand the principles and functionalities of Stem and iPS Cells. For both courses we will choose diseases of interest to the students and discuss and present, in group, their genetic bases or therapeutic strategies, respectively.
I grew up in rural Arkansas in the heart of the Ozark mountains. While this was a great place to spend my childhood, it wasn't until I was a freshman in college that I came into contact with people from other cultures and linguistic backgrounds. This experience prompted me to learn more about other languages, cultures, and religions. After spending three years in a Zen temple in Kyoto, I received my MA degree at Otani University in the field of Buddhist Studies. Most of my work involved Sanskrit, an important Indo-European language of India, and I became interested in how Sanskrit fit into the larger historical context of the Indo-European language family. I later received my MA and PhD in Indo-European historical linguistics from Kyoto University. My current research focuses on the history of the Indo-European languages, in particular the old languages of India and Iran, and how an understanding of these languages can help us interpret religious texts from ancient cultures.

Languages are curious entities. As children, we have no choice about what language(s) we will speak, and even though we learn to speak our native tongue with fluency, we often have little or no conscious awareness of what we are doing. Linguistics seeks to shed light on this area to reveal what it is we know when we say we "know" a language. I hope that students who come to my classes leave with a greater sense of wonder and curiosity about language and an understanding of how central language is for interpreting texts from other cultures and times.

Originally from the United States, I received my Ph.D. from the University of California at Berkeley, where I studied chromosomes and meiosis. I continued my studies as a researcher at UC San Francisco, where I began using advanced microscopy and image analysis tools that I still use daily in my own research. I came to Kyoto University in 2010 as a principal investigator in the Institute for Integrated Cell-Material Sciences, and now am located in the Graduate School of Biostudies.

The combination of biological and computational experimentation has become an essential part of modern research. My classes will introduce you to fascinating questions in diverse areas of biology, from both the "wet" side (how does a worm grow from an egg? how do our cells divide?) and the "dry" side (how can we use computers to design changes in DNA, or see objects smaller than light itself?). Hands-on experience and opportunities to observe biology in action will be provided as much as possible.

Dr. Kai-Chun Chang is a Junior Associate Professor in the Department of Civil Engineering and Earth Resources Engineering, Kyoto University (KU). His main research interests are in bridge structural health monitoring, bridge dynamics and vibrations, and data analysis techniques.

Chang received his Ph.D. degree from National Taiwan University (NTU) and worked at the same university as a postdoctoral researcher for two years. During his research career at NTU, he worked mainly on the vehicle-bridge interaction problems, especially on their application to extracting bridge dynamic characteristics. Currently he is working in the Lab of International Management of Civil Infrastructures, KU, and focusing on developing bridge structural health monitoring techniques and systems, solving bridge dynamics and vibrations problems, and many data-analyzing techniques that support the above tasks. He also worked in the Lab of Innovative Techniques for Infrastructures, KU, where his research interest expanded to elastic wave-based nondestructive inspections, especially for concrete structures.

Chang’s lectures aim to bridge the gap between the courses in high school and university. In our classes, we have no complicated computations, but illustrative examples provided to link the high school mathematics with natural phenomena; no difficult vocabularies and grammars, but logical rules helpful to read and write scientific papers, and many others awaiting your discoveries.
I have always been fascinated by the human mind, and curious about the possibility of a machine with human-like intelligence and consciousness. After graduating from college in Taiwan with degrees in Life Science and Chemistry, I went to Georgia Institute of Technology in the United States to study Biomedical Engineering. During my PhD, I grew neurons in a petri dish and connected them to a robot, and demonstrated that a robot with an artificial organic brain can learn purposeful behavior. After graduation, I came to Japan and joined RIKEN Brain Science Institute, then National Institute for Physiological Sciences, and now Kyoto University to study how to read minds of humans and monkeys and how to enable the controls of a robot or a computer by thoughts.

The courses I teach mostly surround the topics of the mind and the brain, such as “Minds and Machines- Can a Machine Think?”, “Introduction to Computational Neuroscience”, and “Fundamentals of Neuroscience”. During my time working in different disciplines (biology, chemistry, and engineering) and with different approaches (in vitro, in vivo, and in silico), I have learned that you can always learn new things if you are curious and passionate. So, I want to create an active learning environment where students from any background can enjoy my classes. Particularly, I will de-emphasize materials that have little connection to big picture ideas (those will be forgotten soon anyway!) and emphasize real-world assignments, where students learn by doing things relevant to the world outside the classroom.

I am a cultural anthropologist specializing in dance anthropology as well as theories concerning human bodies and physical experience. Until now, my research has mainly focused on butō performers in Japan, specifically the performers who developed butō in the 1960s and 70s. Along with writing about butō, I am currently in a period of surveying cabaret-style shows and pole dance in Japan for my next research project. My research interest is in how dance is made and what that process suggests regarding our physical experience as bodies.

I teach two classes at this university: one is a general introduction to Cultural Anthropology and the other is a class specific to how the body, namely bodily experience, has been presented and theorized in Anthropology. The main objective of both classes is for the student to become able to consider phenomena from a multi-faceted and open-ended Anthropological way of thinking. I believe this skill will become a valuable tool for the student when considering the lives and perspectives of many different people.

Profile: I studied mathematics at ENS Paris and got my PhD degree from Universite Paris 6 in France. Before arriving in Kyoto, I held postdoctoral positions and visiting positions in Japan, and permanent academic positions in France and Canada.

Message: For mathematicians, English has become the standard communication language. In my experience, many students from non-English speaking countries get their first exposure to mathematical English by the time they actually need to start research. A sudden dive into a new world of research and into a new language simultaneously is definitely double challenge. Fortunately, most students overcome it, but difficulties to communicate appropriately one’s research at an international level sometimes remain.

One main purpose of my courses is to address this point by giving the chance to the students to get used to mathematics in English at an early stage, so that they can focus better on research in due time, without linguistic worries.

Excellent English skills are not a preliminary to join my class; I am not evaluating English skills, just mathematical skills — the contents and marking scheme are the same as the Japanese counterpart of my class. However, I expect that taking a mathematics class in English will be like killing two birds with one stone...
CROMIERES, Fabien
Program-Specific Associate Professor
Graduate School of Informatics
- Practice of Basic Informatics-E2 (page 228)
- Fundamentals of Artificial Intelligence-E2 (page 240, 241)
- Information Literacy for Academic Study-E2 (page 242)

I graduated from Kyoto University with a PhD in Computer Sciences in 2011. Since then, I have been working on various research projects related to NLP (Natural Language Processing). What is Natural Language Processing? It is an area of study concerned with processing human language with computers (for applications, think “Google Translate” or “Apple Siri”). One could say its ultimate goal is to make machines that “understand” human language, which is why it is considered a sub-domain of Artificial Intelligence. Like many other fields, Natural Language Processing has been recently revolutionized by new Neural Networks techniques commonly referred to as “Deep Learning”. The goal of the “Fundamentals of Artificial Intelligence” class will be to explain what is Deep Learning and how it is used to make computers that can recognize a cat in a picture or predict your mood given a tweet, for example. This class will try to cover a lot of content in a relatively short time, therefore you might need to review each lesson on your personal time as well. The goal will be that you get a concrete understanding of what is “Deep Learning” and not just a rough overview. Still, I will only assume knowledge of High-School mathematics from the students so that it is accessible to any motivated student.

CROYDON, David
Associate Professor
Research Institute for Mathematical Sciences
- Mathematical Statistics-E2 (page 125, 126)
- ILAS Seminar-E2: Introduction to Probability (確率入門) (page 298)
- Second Course in Statistics-E2 (page 128)
- Function Theory of a Complex Variable-E2 (page 120)
- Quest for Mathematics I-E2 (page 111)

Profile: I am a mathematician specialising in probability theory. Having completed my undergraduate studies at the University of Cambridge and doctorate at the University of Oxford, I spent twelve years at the University of Warwick. During this time, I enjoyed a number of academic visits to Japan, and am very happy to have recently joined the Kyoto University faculty.

Message: As mathematicians, we revel in the beauty of our subject matter. Just as a gifted musician gains satisfaction from turning the technical notation written on the page into something that is a delight to listen to, it can be similarly rewarding for a mathematician to see a flow of ideas lead to its conclusion in the proof of a theorem. Unlike music, however, where even a non-expert can appreciate the end result, the output of a mathematician is not always so accessible. Thus, to help students understand the motivation for the fundamental mathematical techniques that will be introduced in my courses, I plan to include links between these and illustrative applications from the natural sciences, engineering, and also social science.

DANIELLL, Thomas
Professor
Graduate School of Engineering
- Contemporary Japanese Architecture-E2 (page 81)
- ILAS Seminar-E2: Robots in Japanese Popular Culture (日本の大衆文化のなかのロボット) (page 286)
- Theory of Landscape Design-E2: House and Gardens of Kyoto (page 82)
- ILAS Seminar-E2: Radical Art and Politics in Japan 1960-70 (1960年から70年の日本における前衛芸術と政治) (page 327)

DE BRECHT, Matthew
Senior Lecturer
Graduate School of Human and Environmental Studies

My research interests span several fields, including computer science, artificial intelligence, cognitive neuroscience, mathematical logic, and general topology. The underlying theme of my research has been to better understand information and computation from various perspectives, from mathematically rigorous formulations to its realization in computers and the human brain.

My first visit to Japan was in 2000, but I have been living here continuously since 2003. I received my bachelor’s degree from the University of Texas at Austin in 2002, where I studied computer science and Japanese. From 2003 to 2005, I was employed in a research project to develop a neural network model to explain parts of the human visual attention system. I was a graduate student from 2005 to 2010 in the Informatics department of Kyoto University, where I studied formal models of inductive inference and its connections with universal algebra and topology. After receiving my PhD, I worked as a researcher to develop machine learning methods to analyze human brain activity measured non-invasively by MEG and fMRI. Meanwhile, I have also been continuing research on the relationships between computation, logic, and topology, with a particular interest in descriptive set theory and domain theory.

DE FELICE, Antonio
Associate Professor
Yukawa Institute for Theoretical Physics

My profile: My name is Antonio De Felice. I am a cosmologist, who has worked in several countries: USA, UK, Belgium, Japan, Thailand, and now, once more in Japan. I have learned many things by knowing so many different cultures. By meeting so many nice people in my work and life. In my free time, I like cooking Southern Italian bread, and making cheese.

My message: Cosmology is one of the most fascinating branch of theoretical physics. It tries to give a reason for the astonishing beauty of the cosmos, that we can already see by our own naked eyes, and an explanation for the evident majestic structure the universe endows. It studies the evolution of our universe, from its origins up to our time. In this course, I will give an introduction to this fascinating topic. We will study the big-bang model, its success and the most recent controversies in today's cosmological theories. I think that any student who is interested in understanding the beauty of our universe should attend this class. I will try to make it as exciting as it deserves to be, with your appreciated help.

I came to Japan after my high school. Finishing one year course of Japanese language at Tokyo University of Foreign Studies, I entered to the Kyoto University. I received the BSc., MSc. and Ph.D. degrees in Electronic Science and Engineering from the Kyoto University. After spending two years as a post-doctoral fellow, I joined the faculty of Kyoto University in 2014. My research focuses on light control to develop next generation optoelectronic devices such as high-power and high-quality lasers, high-efficiency solar cells and narrow-band thermal emission sources.

To the students: During my lectures, I will introduce the fundamentals of light. To obtain a better understanding of the concepts, some experiments will also be carried out during the lectures. I will also share my knowledge with the students about the cutting-edge technologies of light control. Students who would like to learn the basics of light, optoelectronic devices (LEDs, lasers, solar cells etc.) and cutting-edge technologies of light, are welcome.

DE ZOYSA, Menaka
Senior Lecturer
Graduate School of Engineering

I came to Japan after my high school. Finishing one year course of Japanese language at Tokyo University of Foreign Studies, I entered to the Kyoto University. I received the BSc., MSc. and Ph.D. degrees in Electronic Science and Engineering from the Kyoto University. After spending two years as a post-doctoral fellow, I joined the faculty of Kyoto University in 2014. My research focuses on light control to develop next generation optoelectronic devices such as high-power and high-quality lasers, high-efficiency solar cells and narrow-band thermal emission sources.

To the students: During my lectures, I will introduce the fundamentals of light. To obtain a better understanding of the concepts, some experiments will also be carried out during the lectures. I will also share my knowledge with the students about the cutting-edge technologies of light control. Students who would like to learn the basics of light, optoelectronic devices (LEDs, lasers, solar cells etc.) and cutting-edge technologies of light, are welcome.
As an environmental historian, my early research and publications were devoted to discussing the emergence of modern flood control and water management in South Asia. At heart, most of my early efforts were aimed at debating the political and environmental consequences of large dams in the Asian sub-continent. In our contemporary globalized world, riven as it is by anxieties about global warming and abrupt climate change, scholarship today is drawn towards an interdisciplinary mood. The “two cultures” of science and the humanities are no more than ever required to find a shared vocabulary with which to debate political solutions and explore imaginations for sustainability at the planetary level.

The courses in the History of Modern Science, Philosophy of Modern Science, Environmental Anthropology, and Environmental Histories of South Asia are intended to explore these big questions of our time by reviewing cutting edge perspectives in history, philosophy, ecology and anthropology.
<table>
<thead>
<tr>
<th>FEUER, Hart Nadav</th>
</tr>
</thead>
<tbody>
<tr>
<td>Program-Specific Senior Lecturer</td>
</tr>
<tr>
<td>Graduate School of Agriculture</td>
</tr>
<tr>
<td>Food and Globalization I-E2 (page 89)</td>
</tr>
<tr>
<td>ILAS Seminar-E2: Food Systems in Asia （アジアにおける食農システム） (page 282, 283)</td>
</tr>
<tr>
<td>Food and Globalization II-E2 (page 90)</td>
</tr>
</tbody>
</table>

When I grew up in Portland, Oregon (USA), I met many immigrant families that encouraged me to learn languages, travel, and be a thoughtful person. This led me to study and live in many places, but especially in East Asia. Now as a specialist of Southeast Asian agriculture and food, I hope I can share with you how beautiful, healthy, and tasty the cuisines of this region are, and how important it is to understand and support the farmers who have made it possible.

The lessons I teach, 'Food Systems in Asia' and 'Food and Globalization', explore history, economics, nature, and culture and will help students learn the skills to understand their own country's and other countries' food systems. My classes include interactive experiences tasting, smelling, and analyzing food and give students many chances to explore the exciting food movements such as organic, Fairtrade, local, artisanal, and hipster. My teaching draws on my background as a student and researcher in the USA, England, Germany, Israel, Cambodia and here in Kyoto. I hope this worldwide view brings students a unique and fun learning experience, and will also make you a bit hungry!

<table>
<thead>
<tr>
<th>FLORES, Giancarlo</th>
</tr>
</thead>
<tbody>
<tr>
<td>Associate Professor</td>
</tr>
<tr>
<td>Graduate School of Engineering</td>
</tr>
<tr>
<td>Scientific English II-E3(Presentation & Discussion) (page 254)</td>
</tr>
<tr>
<td>Introduction to Earth Science A (page 213)</td>
</tr>
<tr>
<td>Practice of Basic Informatics (page 224)</td>
</tr>
<tr>
<td>Introduction to Engineering Geology (page 220)</td>
</tr>
</tbody>
</table>

If you were to drill a borehole in Asia through the other side of the world, and jumped in a-la-Mario-Bros, you’d end up in South America, where I’m from. The world is not really upside-down over there, and all physical forces work (basically) the same way. But, hopefully, my antipodean perspective will help you see the world in a different and—I wish—a more interesting way.

Besides being an antipodean, I’m a Civil Engineer with practical construction and operational experience in the petroleum industry—having worked at Shell Oil for nearly a decade in Peru—and with research and academic experience in the geoenvironmental engineering area—having worked at Kyoto University for the last decade in Japan.

While I teach several classes aimed at students of sciences and civil engineering, four of them are open to all students as part of the Liberal Arts curricula: “Introduction to Earth Science A”, “Introduction to Engineering Geology”, “Practice of Basic Informatics”, and “Scientific English II-E3”.

In “Introduction to Earth Science A” and “Introduction to Engineering Geology” classes, you’ll gain a basic understanding on how our planet behaves. In “Practice of Basic Informatics” class, you’ll learn the basics on computer programming. And in “Scientific English II”, you’ll learn how to present ideas in a powerful and convincing way. All of these classes, hopefully, will make of you a better professional, whatever your field. And if you learn to think in an antipodean way, even better yet!

<table>
<thead>
<tr>
<th>FUSTIN, Jean Michel</th>
</tr>
</thead>
<tbody>
<tr>
<td>Associate Professor</td>
</tr>
<tr>
<td>Graduate School of Pharmaceutical Sciences</td>
</tr>
<tr>
<td>Basic Biology and Metabolism-E2 (page 253)</td>
</tr>
<tr>
<td>Introduction to Biological Rhythms-E2 (page 199)</td>
</tr>
<tr>
<td>Introduction to Molecular Cell Biology -E2 (page 200)</td>
</tr>
</tbody>
</table>

Dr. Fustin graduated from The University of Namur (Belgium), then moved to Aberdeen (Scotland) where he obtained his PhD on seasonal rhythms in mammals. In 2008, he started a postdoc at the Graduate School of Pharmaceutical Sciences in Kyoto University. With the support of mentors of the faculty, he started his own independent Laboratory of Molecular Metabolism in 2018.

Dr. Fustin has been active in circadian research since 2008 and has published 27 papers, 24 on circadian and seasonal rhythms in mammals. His breakthrough came in 2013, when he established a landmark in molecular biology by demonstrating the role mRNA methylation for the function of the biological clock, which became a highly-cited publication in Cell. Since then Dr. Fustin and his team have continued their productive investigations on the link between methyl metabolism and the biological clock, in collaboration with intercontinental laboratories. Through his lectures, Dr Fustin wants to communicate his passion for research to the new generation or researchers.

The aim of the “Basic Biology and Metabolism” and “Introduction to Molecular Cell Biology” lectures is to give basic knowledge in how living beings function by looking at the most fundamental unit of Life: the cell. These two courses are especially tailored for students not familiar with biology, and students who are familiar with the subject but want to brush up their English.

“Introduction to Biological Rhythms” will be taught assuming solid background knowledge in biology and physiology. It is tailored to students who wish to know more about the intimate relationship that exists between LIFE and TIME.
I received my PhD degree in Sociology at Strasbourg University (France) in 2011, and I am currently Associate Professor at the Faculty of Letters, Department of Sociology (since March 2015). Previously, I was Research Engineer at GERPISA (http://gerpisa.org/en), the international network of social scientists on the automotive industry hosted by Paris-Saclay University, ENS Cachan, France. I am, among others, member of the GERPISA’s international steering committee, of the International Journal of Automotive Technology and Management’s Editorial Board (http://www.inderscience.com/jhome.php?jcode=ijatm), and my current main research interests cover the development of Asian automotive industries, the Japanese higher education system, and the Japanese welfare regime.

In the lecture Sociology I, we will explore the social construction of reality and society. In the lecture Introduction to Globalization Studies, we will focus on the economic, social and political dimensions of globalization. In the lecture Introduction to Social Research, students will learn the basic knowledge to become social scientists. In the lecture Sociology of Work and Organizations, we will put the emphasis on work as a central institution of our contemporary societies. In my courses, I aim at providing students with basic knowledge on each field, while enabling them to express themselves freely in English on each topic. I am looking forward to teaching these topics and learning from students in Japan.

I received my Bachelor degree in materials physics from Lanzhou University, China in 2009, master and PhD degree in material science and engineering from Kyoto University in 2013 and 2016. Since 2016, I started working as a post-doctoral researcher in the department of materials science and engineering, Kyoto University. My research work has been focusing on understanding the relationship between microstructures and mechanical properties of the structural metallic materials such as steels and aluminum alloys, in order to design stronger and tougher metallic materials that are important to our social infrastructure.

My lecture <Fundamental of Materials I & II> is a two-semester introductory course that gives concise but comprehensive knowledge of all main classes of materials: metals, polymers, ceramics and composites. The ILAS seminar <Nanostructured materials> aims to introduce the frontier research of the nanostructured metallic materials having various unexpected physical properties that the conventional metallic materials do not. <Elements, Matter and Materials> intends to introduce the chemical elements and matter in the natural world, as well as the man-made materials composed of those elements. I hope these courses will satisfy your curiosity and interests in materials science!

Profile: James Hejna received his PhD in Biological Sciences at the University of California, Irvine. He is primarily interested in how cells maintain their genomes, and the diseases that result when these critical maintenance pathways are defective, but his interests are actually quite broad. He is active in teaching graduate students to effectively communicate their results in English. He joined Kyoto University in 2010.

Message to students: My courses cover the basics of molecular and cellular biology, genetics, and an introduction to genetic engineering techniques and scientific literature. When I was an undergraduate student, many years ago, the power of genetic engineering was just beginning to revolutionize biology, and it is even more powerful and amazing now. I aim to convey the sense of excitement in a field where every week there is a novel discovery.

Undergraduate students just entering Kyoto University may have better English skills than first-year graduate students! I hope to capitalize on your proficiency to build a strong foundation of basic biology with an English vocabulary. Even for students who don’t continue in biology, I hope that the courses will train you to be good “followers” of biology, if not “practitioners”, and that the courses will be valuable experiences.
I am a researcher at the Research Institute for Mathematical Sciences. When I was a high school student, I thought I want to become a physicist with some strong interest in mathematics. But when I actually studied physics, I found out that my interests in mathematics were overwhelming, and so I became a mathematician with some strong interest in physics instead.

In particular, Einstein's theory of General Relativity always fascinated me. Unfortunately, the subject is usually only presented to some more advanced science students with the necessary background in mathematics and physics, while it should be also of great interest to other students. I hope that my class, which is much less ambitious than a standard course in General Relativity, focusing more on the developments of geometry in the 19th century and the outer circumstances of Einstein's life, will fill this gap and make this beautiful theory more accessible to a wider audience.

Lecturer profile: I am a political scientist with an MPhil and PhD in Japanese Studies from Cambridge University (UK) and a BA in East Asian history from Wesleyan University (USA) with a short career as Tokyo correspondent for the Financial Times of London. My current research interests are the organization of political parties, local government, and the ideas of legitimacy in political reform in Japan and elsewhere. My father is Japanese and my mother is Swedish. I have lived in numerous countries including Japan, Sweden, UK, USA, France, Taiwan, and China. I like walking, talking, thinking and eating, but usually not all at once.

Japan’s Political Economy in The Post-war Period: The following are clichés, but need to be repeated: To understand the present, you must understand the past. To avoid failures, you must analyze those already made. To move forward, you must know where you came from. This applies not only to our own personal lives, but in the lives of nations. This course tries to understand Japan’s political economy today by investigating its post-war history since 1945. It looks at how Japan’s politics, economy, society, and foreign relations have evolved over the last seven decades. How did Japan recover from its post-war rubble and emerge as an economic superpower by the 1990s? Why did it drift into a deep economic and political crisis during the “Lost Decades”? How should Japan move out of this morass? If you are interested in these issues, this class may be for you.

Japanese Politics in Comparative Perspective: Why do Japanese prime ministers change so often? Why are there so few female politicians in Japan? Why does Japan not have an influential environmental (Green) party, as in many other European countries? Why has the Liberal Democratic Party (LDP) been so strong throughout Japan’s post-war history? Why is voting turnout so low for Japanese youth? Why is Tokyo becoming more crowded and wealthier as many rural areas are becoming more depopulated and poorer? These are all questions about Japanese politics that are best answered by comparing Japan’s situation with those of other countries. If you are interested in the general process of politics in Japan and elsewhere, and the specific answers to the above questions, this class may be for you.

Modern Classics in Japanese Politics: Reading an academic essay or book in a foreign language is challenging and frustrating at times. But an engaged and critical reading is highly rewarding, particularly if the work is one that has survived and been identified as a “classic” in its field. This small seminar-type class will guide you in how to read and question classic texts about politics and democracy. What is democracy? Why does it seem to fail so often? How can we make it work better? The books we will read are some of the most ambitious responses to these difficult questions. By analyzing and discussing these texts, you will have a chance to improve your English reading, writing, and presentation abilities.

My research field is in large-scale integrated circuit. My research interest is in exploring new circuit theories for low-power operation, understanding the noise behavior of MOS transistors and how to design with the noisy transistors for high reliability. We design analog and digital circuits, do statistical analysis, analyze electromagnetic interference, and measure fabricated chips.

I came to Japan in 2003 after my high school. Since then, I have been living in Japan. I went through Japanese language school, Oita national college of technology, Kyoto University and the University of Tokyo. I obtained by bachelor, masters and PhD all from Kyoto University. From 2015 to 2018, I have been a research associate at the department of Informatics and Electronics. I have a Junior Associate Professor since October, 2018.

I am passionate about philosophy. In my courses, I will try to visually present the concepts. I will always ask why and then try to show the paths that lead to a particular solution. Students are encouraged to explore different paths and think from outside the box. Students are also encouraged to learn a programming tool and play with the mathematical models to develop a feel. Seeing is believing is my motto of teaching.
I have joined Kyoto University at the capacity of an Associate Professor at Disaster Prevention Research Institute. I received my BSc degree in Civil Engineering from Alexandria University in Egypt. I pursued my MS in civil engineering and PhD in environmental engineering at Saga University in Japan and EPFL in Switzerland, respectively. Prior to joining Kyoto, I worked at The German University in Cairo in the Civil Engineering Program. My research interests span dam impacts, and water resources management.

My teaching style is centered around grooming my students with solid knowledge and broad background in multidisciplinary areas - primarily environment, human health and engineering. In the classroom, I am generally energetic and prefer interactive teaching style especially during my seminar course on Dams and Reservoirs. I am also teaching Introduction to Hydrology course, where students learn and understand how elementary concepts and interdisciplinary subjects are related to their lives. Natural Disaster Science and Conflict Management in Global Water Issues courses are designed to promote independent reading and critical analysis for case studies. This is believed to sharpen students’ soft skills including presentation, writing reports, leadership, innovation and critical thinking. I encourage students to openly discuss and formulate water- and environmental-related problems either of local or global nature. In delivering such curriculum, I balance between theory and practice via interactive learning, hands-on experimentation, field trips, and project-based learning.

In conclusion, I strive to equip my students for the competitive job market through practical assignments that build on the fundamental concepts. This will require promoting their soft skills and practice leadership, and innovation. My research in the area of integrated river basin and sediment management is pivotal for maintaining sustainable reservoir and river basin environment. Such challenges shall be bravely taken to endure changing water supply storage, flood control, irrigation and power generation. It is hoped that my academic expertise and potential contribution encourage the university body to engage and collaborate in areas of common interest.
<table>
<thead>
<tr>
<th>KNAUDT, Till</th>
<th>Institute for Research in Humanities</th>
</tr>
</thead>
<tbody>
<tr>
<td>Associate Professor</td>
<td>Japanese History I-E2 (page 31)</td>
</tr>
<tr>
<td></td>
<td>Japanese History II-E2 (page 33)</td>
</tr>
</tbody>
</table>

Till Knaudt specializes in Modern Japanese History with focus on twentieth-century history of ideas, social history, and history of technology. He took his PhD in 2014 at Heidelberg University (Germany), writing on the history of the Japanese New Left from the 1960s and to early the 1970s. While continuing to work on this topic, he is also interested into the social history of post-war Hokkaidō, the socialist Left in the 1920s and 1930s, and the history of home-computerization in 1980s Japan. Since March 2019 he is an Associate Professor at the Institute for Research in Humanities (Inbun kagaku kenkyūjo) at Kyōto University.

In the Class "Japanese History I" the participants will engage into learning about the history of modern Japan, from the last years of the Tokugawa-era to the end of the Second World War. Special emphasis will be put on analyzing key texts from English-language research literature, discussing methodology and the logic of the argument, as well as on analyzing primary sources. By doing so the participants will work on questions of Meiji-era nation building and political representation, post-World War I industrialization and its social impact, and politics and culture in Japanese Empire in times of peace and total war.

<table>
<thead>
<tr>
<th>LAHOURNAT, Florence</th>
<th>Disaster Prevention Research Institute</th>
</tr>
</thead>
<tbody>
<tr>
<td>Junior Associate Professor</td>
<td>Introduction to Ritual Studies-E2 (page 69)</td>
</tr>
<tr>
<td></td>
<td>ILAS Seminar-E2:Topics in social anthropology (社会人類学各論) (page 320)</td>
</tr>
<tr>
<td></td>
<td>Disaster and Culture-E2 (page 70)</td>
</tr>
<tr>
<td></td>
<td>ILAS Seminar-E2:Introduction to cross-cultural communication (異文化コミュニケーション入門) (page 321)</td>
</tr>
</tbody>
</table>

Florence Lahournat is a junior associate professor at the Disaster Prevention Research Institute. Her research interest is in cultural anthropology and material culture studies, with a special focus on Japan. She holds a PhD from the National Institute of Oriental Languages and Civilizations (Paris, France). As a cultural anthropologist, she is interested in the mechanisms of culture, particularly the adaptive nature of cultural practices: how human rituals – from habits to local traditional practices, adapt to changing circumstances. Part of her current research focuses on the link between local traditions and disaster-affected communities. Message to the students: I have designed these courses as interactive spaces where students are expected to engage actively with the content and take an active part in the class experience. We will use class discussion, readings, student-led sessions and a variety of materials and activities to make the most of our time together. The objective of this interactive approach is for you to master new knowledge, as well as develop your communication skills. While no prior knowledge is required for these courses, an open-mind and the willingness to participate are expected.

<table>
<thead>
<tr>
<th>LANDENBERGER, Kira Beth</th>
<th>Graduate School of Engineering</th>
</tr>
</thead>
<tbody>
<tr>
<td>Senior Lecturer</td>
<td>Revisiting Basic Organic Chemistry II-E2 (page 170)</td>
</tr>
<tr>
<td></td>
<td>Fundamental Chemical Experiments-E2 (page 164,165)</td>
</tr>
<tr>
<td></td>
<td>ILAS Seminar-E2:Smart Materials (Innovations in Materials Chemistry) (スマートマテリアル-材料化学の革新) (page 311)</td>
</tr>
<tr>
<td></td>
<td>Revisiting Basic Organic Chemistry I-E2 (page 169)</td>
</tr>
</tbody>
</table>

Profile: Kira Landenberger is currently pursuing research as well as teaching at Kyoto University in the Graduate School of Engineering in the Department of Polymer Chemistry as a Lecturer. She was born and raised in Michigan in the United States and earned her Ph.D. in Materials Chemistry at the University of Michigan studying the co-crystallization of small molecules under Professor Matzger. After completing her doctorate, she started post-doctoral research at Osaka University under Professor Aoshima studying the precision synthesis of stimuli-responsive polymers using living cationic polymerization. Her research interests include the synthesis, self-assembly and application of stimuli-responsive, functional polymer systems.

To the students: Revisiting Basic Organic Chemistry I and II are intended to follow the courses as provided one semester earlier and to give students a chance to review the information again in English. The seminar entitled “Introduction to Environmentally Friendly Chemistry” introduces the concept of environmentally friendly chemistry and the basic principles for achieving cleaner and safer methods in research for students at an early stage with the intention that they can apply these principles in their research from the beginning. The seminar entitled “Smart Materials: Innovations in Materials Chemistry” is intended to equip students with a basic understanding of what might be defined as a smart material and how these materials are present in current research and applications and to inspire students to pursue creativity in future research or studies.
<table>
<thead>
<tr>
<th>Name</th>
<th>Position</th>
<th>Courses offered</th>
</tr>
</thead>
<tbody>
<tr>
<td>LE GALL, Francois</td>
<td>Program-Specific Associate Professor</td>
<td>- Introduction to Coding Theory and Cryptography-E2 (page 238)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- Introduction to Algorithms-E2 (page 235,236)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- Fundamentals of Discrete Optimization-E2 (page 237)</td>
</tr>
<tr>
<td>LEE, Shiu Hang</td>
<td>Junior Associate Professor</td>
<td>- Introduction to General Astronomy-E2 (page 217)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- ILAS Seminar-E2: The Invisible Universe（不可視の宇宙） (page 312)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- Elementary Experimental Physics-E2 (page 136)</td>
</tr>
<tr>
<td>LIN, Donghui</td>
<td>Program-Specific Associate Professor</td>
<td>- Information and Society-E2 (page 231,232)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- Basic Informatics-E2 (page 230)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- Practice of Basic Informatics-E2 (page 227)</td>
</tr>
</tbody>
</table>

I am an associate professor working at Kyoto University in the Department of Communications and Computer Engineering. I received a Ph.D. in computer science from the University of Tokyo in 2006. My research interests include algorithms, computational complexity and quantum computation, a new and exciting computation paradigm based on the laws of quantum mechanics.

Message to students:

- Algorithms are not only useful and important, they are also beautiful and fun to learn! My lecture “Introduction to Algorithms” provides a broad introduction to the subject, while my other lecture “Fundamentals to Discrete Optimization” gives an accessible presentation of methods for solving hard problems in practice. The lecture “Introduction to Coding Theory & Cryptography” focuses on other related fascinating aspects in computer science, such as techniques to compress and protect (against noise or malicious third parties) information, which are essential to today’s communications.

I am an astrophysicist and a brand new staff member at the Department of Astronomy. Born in Hong Kong, I obtained my Bachelor degree from the Hong Kong University of Science and Technology (HKUST), and my PhD in Physics from Stanford University in the sunny California. I mainly study exploded stars (supernova!) and the beautiful nebulae they leave behind, among other cool things like cosmic-rays.

Message to students: My introductory lecture will bring you to the fascinating world of modern astronomy and astrophysics. We will start from our Solar neighborhood, and gradually depart into the vast interstellar space, seeing many awesome astrophysical objects en route through our Milky Way galaxy. We will then charge forward to encounter other galaxies and ultimately have an outlook over the Universe itself. Let’s enjoy the cosmic journey together!

I have been an associate professor in Graduate School of Informatics, Kyoto University since April 2018. I received my M.E. degree in computer science and engineering at Shanghai Jiao Tong University in 2005, and Ph.D. degree in social informatics at Kyoto University in 2008. During 2008 to 2011, I was a researcher of National Institute of Information and Communications Technology, Japan. After that, I have worked as an assistant professor in Graduate School of Informatics at Kyoto University until March 2018. My research interests include services computing, multiagent systems, and intercultural collaboration.

I am highly motivated to teach English courses in Institute for Liberal Arts and Sciences because I have conducted the research on computer-mediated intercultural collaboration and multilingual communication for more than ten years. For the education of informatics, I aim to create a network among students with different backgrounds by stimulating the students who major in informatics to be interested in real problems in the society, and the students who do not specialize in informatics to get interested in informatics as much as possible. I believe that the cultivated network will become important as the students’ grade increases.
<table>
<thead>
<tr>
<th>Name</th>
<th>Department</th>
<th>Courses</th>
</tr>
</thead>
<tbody>
<tr>
<td>MACINTOSH, Andrew</td>
<td>Primate Research Institute</td>
<td>Conservation Biology-E2 (page 183)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Animal Behavior-E2 (page 184)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Zoo Biology-E2 (page 185)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Comparative Cognition-E2 (page 182)</td>
</tr>
<tr>
<td>LINTULUOTO, Juha</td>
<td>Graduate School of Engineering</td>
<td>Basic Organic Chemistry I-E2 (page 160)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Basic Organic Chemistry II-E2 (page 162)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Fundamental Chemical Experiments-E2 (page 165)</td>
</tr>
<tr>
<td>LOPEZ, Mario Ivan</td>
<td>Center for Southeast Asian Studies</td>
<td>Cultural Anthropology I-E2 (page 71,72)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Introduction to Globalization I-E2 (page 83)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Introduction to Globalization II-E2 (page 84)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Conservation Biology-E2 (page 183)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Animal Behavior-E2 (page 184)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Zoo Biology-E2 (page 185)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Comparative Cognition-E2 (page 182)</td>
</tr>
</tbody>
</table>

I studied organic chemistry at The University of Helsinki in Finland to obtain M.Sc. After working for a while in petrochemical industry, in 1993 I entered Kyoto University Graduate School of Engineering and later obtained PhD in Synthetic and Biological Chemistry. The above listed courses are taught for undergraduate students on 2019-2020. I also teach Supramolecular Chemistry, Advanced Engineering Economy, Presentation Skills and Engineering Project Management for Graduate School of Engineering Students.

I am a cultural anthropologist who works on transnational migration, care for ageing societies and sustainability issues in Southeast Asia and the Asian pacific region. My introduction to globalization courses offer students the chance to engage and discuss core processes that underlie present day human movement and also learn about issues that impact contemporary societies. A series of themes act as stepping-stones for students to learn and explore the different aspects of globalization that play out in Asia-pacific, Southeast Asia, and other regions in the world. Students will look at themes such as modern-day migration, prosperity and growth, ageing, global consumption and our core values as a species. My cultural anthropology courses offer students a chance to see how anthropology can have practical relevance in understanding modern day societies and cultures. Students will be introduced to the discipline’s basic core concepts and all classes engage with real life examples to place the study of cultures and societies and issues in identifiable contexts with the aim of deepening student’s knowledge and interest of other societies and cultures. One course will focus specifically on the broad diversity of gender experiences available in contemporary societies. It hopes to provide students with an analytical framework to contextualize gender diversity and its continual transformation over the past couple of centuries to situate our own experiences.

I am an Associate Professor at Kyoto University’s Primate Research Institute, where I work in the Center for International Collaboration and Advanced Studies in Primatology and the Department of Ecology and Social Behavior. I graduated with a PhD degree from the Division of Biological Sciences of Kyoto University in 2010, after studying biological anthropology at the University of Calgary during my undergraduate and Master’s degree programs in my home country of Canada. I have studied primate behavioral ecology on 3 continents over the last 20 years. My current work links primate behavior with infectious disease ecology, both in Japan and in tropical forest ecosystems such as in Borneo. I also work with various penguin species to understand links between foraging behavior, resource distributions and ecological challenges like infectious disease and climate change. My courses are about the scientific study of animals, their behavior and ecology, their conservation, and the mechanisms underlying their activities, right from their genes to their minds. As a long-time student of animal behavior myself, I really look forward to embarking on these journeys with students enrolled in the courses. Watching animals in nature, at zoos or aquariums, at wildlife parks or sanctuaries, or even at farms is always a rewarding experience, but understanding the roots of what we see, discovering why animals do what they do and even think what they think, can bring our animal encounters to new heights. Join these courses if you want to learn more about the science of animal behavior, about the threats pushing animals across the planet towards the brink of extinction, and about how zoos and conservationists are using science to protect natural areas and endangered species before they are lost, so that we can all enjoy the natural world for generations to come.
MANALO, Emmanuel

Professor
Graduate School of Education

I am a New Zealander and a professor at the Graduate School of Education of Kyoto University. I completed a PhD in psychology at Massey University in New Zealand, and have previously held academic appointments at the University of Auckland in New Zealand and Waseda University in Tokyo. My research area is educational psychology: much of my research has focused on student use of learning strategies, like critical thinking, mnemonics, and diagrams in problem solving and communication. I have over a hundred research publications – including, recently, articles in journals like Quarterly Journal of Experimental Psychology; Thinking Skills and Creativity; and Mind, Brain and Education.

I have designed the courses I teach so that students will not only learn content about the education-related topics covered in those courses, but also develop their thinking and communication skills. Thus, in those courses, students do not just listen to me talking – they also have to complete various tasks, work collaboratively with other students, and report back on what they have achieved and opinions they have formed. I provide detailed information about the requirements and expectations of each course, and how exactly students will be assessed and graded.

MCLELLAN, Benjamin

Associate Professor
Graduate School of Energy Science

The courses I teach are described briefly below, but in general aim to bridge the natural and social sciences – hopefully providing useful alternative perspectives for students of both areas.

Introduction to Sustainable Development: Sustainability is a globally important, locally relevant, concept covering a broad range of academic disciplines and reflecting various aspects of society, environment and economy; and a critical issue of our time. This course encourages students to start the journey of understanding sustainability in context.

Chemistry, Society and Environment: This class will introduce some of the important chemical processes and products that shape modern society, as well as examining the influence that they have on the environment. Students will understand the importance of chemistry and its role in the modern world.

Logic, critical thinking and argument: It is important to be able to process information that is presented to us with an understanding of the implications of certain arguments – both the stated and the unstated. Moreover, it is important to be able to present our own information clearly, with justifiable conclusions. Students will participate in extracting themes, understanding bias in documents and in their own work, and in critically analysing documents to develop their writing skills.

Introduction to Minerals Resources: Many of the products and services that we use today rely heavily on minerals extracted from the Earth’s crust. This subject will help students understand how these minerals are geologically accumulated and industrially extracted, so that they can understand the limitations and potential of these resources. It will also address the social, economic and environmental implications of these resources and processes.

MURPHY, Mahon

Program-Specific Associate Professor
Graduate School of Law

Originally from Ireland, I completed my PhD in International History at the London School of Economics and Political Science (LSE). I am a global historian focused on the First World War with a particular interest in international law and the changing nature of imperialism during warfare. Before joining ILAS I was a research fellow here at Kyoto University focusing on Japan’s political and cultural interactions with the wider world during the Taisho period (1912-1926).

The first course I teach an International History of the modern world from the beginning of the twentieth century to the present focusing on the main developments that have shaped the present such as the rise and fall of Communism, decolonization in Africa, Europe’s trajectory from Fascism to integration, the current ‘war on terror’ and of course the two World Wars.

Second, I teach on the international history of East Asia from 1839-1945. This traces the global entanglements that shaped East Asian history from the first ‘Opium War’ in 1839 to Japan’s defeat in the Second World War. It will look at Empire building and the resistance to it from the perspectives of the main geographical players.

Lastly, I lecture on the development of Japanese popular culture in the modern period. The course investigates how Japanese pop culture was and indeed remains a site for struggle over personal and collective identities, interaction with other countries, the control of public memory, gender values, standards of decency, and how Japan’s international image constantly shifted throughout the modern period.
NEWTON, Jonathan Charles Scott
Associate Professor
Institute of Economic Research

I am a game theorist specializing in evolutionary game theory in the social sciences, particularly in economics. Much of my work has been on incorporating ideas of collective agency - making decisions together with others, into evolutionary game theory. This involves tackling questions of how the inclusion of such agency affects economic outcomes and in what circumstances we can expect collective agency and jointly intentional decision making to emerge in populations. An example of such jointly intentional decision making is the organization of a hunt that requires several people to collaborate. Another example is found in matching problems, such as marriage, in which decisions on partnerships have to be agreed by more than one person. Aside from its relevance to economic decision making, my work has also been influenced by and bears some relation to certain subfields of philosophy, computer science and psychology.

I shall be teaching courses in introductory economics and principles of economics, as well as specialist seminars related to the emergence of norms and conventions, topics that can be studied using the tools of game theory.

I was born in Scotland, but have lived in a few places and completed my doctorate at the University of Cambridge.

<table>
<thead>
<tr>
<th>OKEYO, Kennedy Omondi</th>
</tr>
</thead>
</table>
| Senior Lecturer
Institute for Frontier Life and Medical Sciences |
Fundamental Physics A-E2 (page 133)
ILAS Seminar-E2: Introduction to Engineering in Biology and Medicine（医工学の基礎） (page 276)
Physics for All-E2 (page 144)
ILAS Seminar-E2: Discussions in Biomechanics and Biophysics（バイオメカニクス・生物物理セミナー） (page 323) |

Hello and nice to meet you. My name is Kennedy Okeyo. I was born and raised in Kenya until after high school when I came to Japan for further studies. So it’s been over 17 great years living in Japan, both as a student and, now, as a working adult. Throughout these years, I have enjoyed the wonderfulness of nature and the subtleness of the Japanese culture. Additionally, my life has been touched and enriched by the many wonderful persons I have had the opportunity to interact with.

As a young and aspiring professor, one of my priorities is to listen attentively to my students and grow up together with them intellectually through research as well as discussions on various scientific topics. Given my background in mechanical engineering and research interest in biotechnology—a multidisciplinary field encompassing biology, engineering and physics—I place emphasis on multidisciplinary discussions with my students and tries to impact upon them the ability to integrate knowledge acquired from different courses toward solution of complex problems.

As an alumni of Kyoto University, I am excited to be back and contribute to the advancement of research and intellectual growth at this great institution. Nothing can be more rewarding than to get an opportunity to live again in the beautiful city of Kyoto. I’m a soccer and marathon enthusiast. So please invite me for a run along Kamogawa river. I look forward to great years ahead working together with both colleagues and students at Kyoto University.

<table>
<thead>
<tr>
<th>PARK, Jaehong</th>
</tr>
</thead>
</table>
| Senior Lecturer
Graduate School of Engineering |
Basic Physical Chemistry (quantum theory)-E2 (page 158)
Chemistry in Solar Energy Conversion-E2 (page 178)
Basic Physical Chemistry (thermodynamics)-E2 (page 156)
Chemical Kinetics and Molecular Reaction Dynamics-E2 (page 179) |

Profile: Dr. Jaehong Park received his bachelor’s degree in chemistry and earth system sciences from Yonsei University (South Korea). After his experience in the industrial sector (Samsung Electronics), Dr. Park pursued his doctorate in physical chemistry from the University of Pennsylvania, under the supervision of Professor Michael J. Thiem. Following his graduate studies, Dr. Park joined the Chemistry and Nanoscience Center at National Renewable Energy Laboratory (NREL) as a postdoctoral researcher in Dr. Garry Rumbles’s group. In 2017, he joined the Department of Molecular Engineering in Kyoto University as a lecturer. His current research interest spans fundamental understanding of charged carrier and exciton dynamics in nano-sized structures, including organic/inorganic hybrid perovskites, organic-based architectures, and semiconducting single-walled carbon nanotubes, using experimental physical chemistry methods.

Message to students: In my classes, I aim to help students become independent learners and thinkers regardless of their scientific goals. In general, my focus is on arousing students’ ability of identifying chemical problems around them, and to guide students in establishing the skills and habits of logical thinking so that they can further address solutions using scientific knowledge. Especially, in my physical chemistry courses, I hope to introduce basic principles that govern the behaviors of molecules.
PASCA, Roman
Associate Professor
Graduate School of Letters

Originally from Romania, I got my PhD from the University of Bucharest with a thesis in comparative philosophy. My main area of interest is the philosophy of nature, with a particular focus on Japanese premodern philosophy. In my research, I look at the ways in which we as human beings understand, interact with, and represent nature in all its shapes and forms. In my classes, I try to learn as much as possible with my students and from my students. Questions are always welcome, and discussions take up a big chunk of the time.

PATAKY, Todd
Associate Professor
Graduate School of Medicine

Profile: I am from Toronto, Canada’s largest city and only 14 hours from Japan. I studied Kinesiology (Human Movement Science) and Mathematics as an undergraduate student at the University of Western Ontario from 1995 to 1999. I obtained a Ph.D. in Kinesiology and Mechanical Engineering from the Pennsylvania State University, USA in 2004. I then held postdoctoral research positions in functional neuroimaging and biomechanical simulation in Japan and the UK. At Kyoto University I am developing techniques to simulate, quantify, and objectively analyze complex three-dimensional human joint motion.

Lecture content: My lectures will cover a variety of topics related to my research including: human functional anatomy, computer modeling, numerical simulation, applied statistics and data science. Most of the skills you will learn can be applied to other courses, and also to a variety of real-world problems.

Message to students: In my lectures I aim to create an open environment, where students interactively work to solve problems based on fundamental concepts from lectures. Let’s learn together, and let’s build skills together! I’ll do my best to give you a challenging but also enjoyable and memorable experience. I look forward to seeing you in class!

PERRON, Amelie
Senior Lecturer
Institute for Chemical Research

I am a Senior Lecturer at the Institute for Chemical Research of Kyoto University. After completing a Ph.D. in Neuroscience at McGill University (Canada), I have spent over ten years in Japan conducting research on fluorescent probes and transcription factor inhibitors at the Institute for Cell-Material Sciences (iCeMS) and RIKEN Brain Science Institute. My current research focuses on small chemical tools to better understand biology and control cell behavior.

My courses are intended for Japanese and international students interested in learning chemistry in English. “Basic Organic Chemistry I” and “Basic Organic Chemistry II” cover the fundamental concepts of organic chemistry, while “Organic Chemistry of Life” highlights revolutionizing ideas at the interface between chemistry and biology to spark off your creative power and make you generate your own ideas. Last but not least, “Everyday Life Chemistry” will explain the chemistry behind coffee, bacon, chocolate, shampoo and much more!
PETERS, Robert
Senior Lecturer
Graduate School of Science
Elementary Course of Physics A-E2 (page 137)
Analytic Dynamics-E2 (page 151)
ILAS Seminar-E2: The wonderful world of quantum physics (素暦らしき量子物理の世界) (page 278)
Introduction to Statistical Physics-E2 (page 149)

I am a Lecturer at the Kyoto University in the Graduate School of Science. I studied physics at the University of Göttingen, which became famous as one of the birthplaces of quantum mechanics 100 years ago. After my time in Göttingen, I worked in Kyoto and at RIKEN as a researcher. In my research I am interested in quantum theory, especially in quantum many-body phenomena. Bringing together many quantum particles at one place, fascinating and unimaginable things can occur. If you cool certain materials and put them above a magnet, the electrons in the material will arrange themselves, and the material begins to levitate. In other materials, the electrons align when being cooled, and the material becomes a magnet.

In my courses I will explain how to understand such phenomena. While in the courses of "Elementary Physics", "Analytic Dynamics", and "Introduction to statistical Physics" we will use mathematics to understand and predict the behavior of classical objects, in the seminar "The wonderful world of quantum physics" we will forget (nearly) all mathematics and learn about the fascinating phenomena possible in the quantum world.

PHILAMORE, Hemma
Senior Lecturer
Graduate School of Engineering
ILAS Seminar-E2: An introduction to programming for engineers (エンジニア向けのプログラミング入門) (page 329)
ILAS Seminar-E2: An introduction to programming for everyone (一般向けのプログラミング入門) (page 333)
ILAS Seminar-E2: Introduction to robotics - a practical approach (ロボット工学入門−実践編) (page 308)
ILAS Seminar-E2: Wearable technology (ウェアラブル技術入門) (page 296)

My research within the Mechatronics Lab at the Graduate School of Engineering, Kyoto University, is about energy-autonomous, bio-hybrid and soft robots. I studied Mechanical Engineering at Queen Mary, University of London, UK before obtaining my PhD within the Bristol Robotics Lab at the University of Bristol, UK.

My courses about robotics, programming (Python), and wearable technology combine taught theory with weekly in-class practical activities. I aim to provide students with opportunities to develop applied engineering skills that are relevant to their broader studies in other subject areas and to current and exciting areas within industry.

PILLER, Garry John
Associate Professor
Graduate School of Agriculture
Basic Plant Science-E2 (page 203)
Introductory Plant Ecology-E2 (page 204)
Principles of Horticulture-E2 (page 205)
Introduction to Food Sustainability-E2 (page 262)

I joined the Graduate School of Agriculture in April 2012, with teaching responsibilities in sustainable agriculture and scientific communication.

Prior to this, my career spanned from horticultural research in a research institute to agricultural extension in both the public and private sector. The latter was mainly undertaken in a developing country context. This extensive field experience brought home to me the value of mastering basic concepts, as well as the adaptability to quickly self-learn new skill sets, when and where needed. These two values underline my passion for my role (as I see it) here at Kyoto University as a "facilitator for capacity building" in the field of plant science.

My personal philosophy on education: "Education is not about content delivery, or teaching students "everything they need to know", but about capacity building: enabling students to become skilled, flexible, self-propelled learners, capable of taking on the next unknown challenge around the corner."
POUDYAL, Hemant
Assistant Professor
Graduate School of Medicine

Biology and Sociology of Chronic Diseases-E2 (page 247)
ILAS Seminar-E2: Ethical issues in Health sciences (健康科学における倫理的課題) (page 300)
Nutrition and Health-E2 (page 246)
ILAS Seminar-E2: Critical thinking and Communication skills (批判的思考とコミュニケーション・スキル) (page 335)

RAJENDRAN, Arivazhagan
Associate Professor
Graduate School of Engineering

Advanced Calculus I-Vector Calculus (page 117)
Fundamental Physics A (page 132)
Advanced Calculus II-Differential Equations (page 118)
Fundamental Physics B (page 134)

Profile: Arivazhagan Rajendran received his Master degree with specialization in Inorganic Chemistry from University of Madras, India. After completing his Master degree, he participated in many short-term research trainings at various institutes such as Tohoku University, Japan, Max Planck Institute for Bioinorganic Chemistry, Germany, and Central Leather Research Institute, India. He then began doctoral research in Bioanalytical Chemistry working with Prof. Norio Teranaka at Tohoku University. After earning Ph.D. in 2008, he joined at Frontier Institute for Biomolecular Engineering Research, Konan University as a Postdoctoral Researcher. Then, he moved to Institute for Integrated Cell-Material Sciences, Kyoto University and worked on scaffolded DNA origami based Nano-Biotechnology. After working at Life Science Center of Tsukuba Advanced Research Alliance, University of Tsukuba as an Assistant Professor, in 2015 he joined at Institute of Advanced Energy, Kyoto University as a Junior Associate Professor.

Message to the students: The aim of the courses mentioned above is to teach the advanced energy science through fundamental physical chemistry starting from the structure and electronic properties of atoms. These basic courses will help the students to understand the chemistries involved in sustainable energy, energy production, storage, environmental issues, and so on. Besides the technical aspects, I can speak little Japanese which will greatly help me to communicate with the students.

QURESHI, Ali Gul
Associate Professor
Graduate School of Engineering

Advanced Calculus I-Vector Calculus (page 117)
Fundamental Physics A (page 132)
Advanced Calculus II-Differential Equations (page 118)
Fundamental Physics B (page 134)

Profile: Dr. Qureshi has earned a doctoral degree in Engineering from Department of Urban Management, Kyoto University. He has also got a Master of Engineering degree from the Asian Institute of Technology, Thailand, and a Bachelor of Engineering degree from Mehran university of Engineering and Technology, Pakistan.

Message and Courses Specialization (Liberal Arts and Sciences): A sound knowledge of advanced mathematics and basic sciences such as physics, are vital to be successful in a wide range of fields of studies in science including many fields of engineering. The courses on Advanced Calculus A and Advanced Calculus B introduce many basic and advanced topics, such as vector fields, line and surface integrals, differential equations and their solutions with some applications. Fundamental physics A covers the concepts of classical physics such as laws of motion, conservation laws of energy, momentum etc. A variety of topics related to electricity and magnetism are covered in the course on Fundamental Physics B. I believe teaching is also a form of learning, therefore, let’s join to learn and explore together.

Other Subjects at Faculty of Engineering: Transport Policy, Urban and Regional Planning, City Logistics, Probabilistic and Statistical Analysis and Exercise, Planning and Management of Social Systems, Engineering Mathematics B1
What are you doing here at Kyoto University? How will you spend your short time here? At the center of any university is the interaction between students and teachers that we call ‘teaching and learn’. This exchange seems easy and straightforward, but arguably nothing is more complex or more important. Strangely, however, most of us have never stopped to think deeply about how real learning occurs. What is learning? What is the best way to teach? What assumptions underpin common ways of teaching/learning in modern schools and universities? Is there any better way?

My classes will introduce students to the wonderfully complex world of education, specifically teacher-student relations, an interaction we simply call ‘pedagogy’. Most of us think we know about pedagogy because we have attended school all our lives. You might ask: What could be so complicated? Come to my class and you will find out.

I grew up in California, attending Yale as an undergraduate and Oxford for my PhD. I have researched and/or taught at Japan’s leading universities, including Tokyo University, Osaka University, and ICU. Now I am an Associate Professor at the Graduate School of Education at Kyoto University. For students aiming to become global leaders and escape a parochial outlook, I strongly recommend this course: differences in cultures and thought begin with the way we are taught in school. After taking my class, you will be able to think critically about how you are being taught in all your Kyoto University courses. I hope this will help you make the most of your short time here.

Profile: I studied biochemistry and biomedicine in Germany and obtained a PhD in computational pharmaceutical sciences from the Freie Universitat Berlin. Before coming to Kyoto, I pursued postdoctoral studies at Nagoya University. My interests are computational molecular design, medicinal chemistry, chemo- & bioinformatics, and data science.

Message to the students: The purpose of my courses is not the sole memorisation of facts, but to provide a framework that helps students to develop their own questions and to find their way to potential answers. To quote Albert Einstein: “It is not that I’m so smart. But I stay with the questions much longer.”

I joined as an Associate Professor at Disaster Prevention Research Institute in Kyoto University. I have an interdisciplinary academic background including social anthropology, urban planning and disaster risk management. I did my PhD from Kyoto University, Japan, and Master of Urban Planning from School of Planning and Architecture, New Delhi, India.

My academic interest encompasses at knowing why different people perceive risk differently, what are their motivations to take preventive actions and how these local people can be more meaningfully involved in the risk management process. I had the opportunity to conduct in-depth field surveys in in different countries such as India, Bangladesh, and Japan and recently in Ghana (Africa) in different disaster risk contexts.

I believe the greatest source for human learning is to pursue their own individual motivations. So in my class I wish to encourage and stimulate students to pursue their own motivations, their own interests to learn the social system and explore the world around them. I wish that in my classes there will not be any hierarchy between teachers and students, but learning and teaching would be through reciprocal and interactive dialogues, exchanging ideas, learning mutually from real-life challenges and then to challenge the existing ideas and thoughts.
<table>
<thead>
<tr>
<th>SCHMÖCKER, Jan-Dirk</th>
<th>Advanced Scientific English-E3(Debate) (page 255)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Associate Professor</td>
<td></td>
</tr>
<tr>
<td>Graduate School of Engineering</td>
<td></td>
</tr>
</tbody>
</table>

My research interests are understanding people's travel behaviour and transport planning. This combines social psychology, operations research, economics as well as other disciplines. Exciting opportunities as well challenges arise in this research field nowadays through the availability of "big data" and key developments such as sharing economy, electromobility and autonomous driving.

Together with six other teachers I am teaching the "English Scientific Debate". I hope students will learn to better express and discuss the complexities of challenges engineers face nowadays. We see this as an important topic also because putting successful research into practice often requires difficult discussions with different stakeholders. We hope this class can contribute to equipping students for this.

<table>
<thead>
<tr>
<th>SINGER, Jane</th>
<th>Introduction to Sociological Observation-E2 (page 66)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Associate Professor</td>
<td></td>
</tr>
<tr>
<td>Graduate School of Global Environmental Studies</td>
<td></td>
</tr>
</tbody>
</table>

Professional background: Jane Singer is associate professor of the Graduate School of Global Environmental Studies. She has a master’s degree in international affairs from Columbia University and a Ph.D. in global environmental studies from Kyoto University. An American with 30 years' residence in Japan, she was formerly a professional magazine and newspaper journalist and editor. She specializes in development studies, focusing on human migration and community resilience, with a regional focus on Southeast Asia.

Message about my courses: I'm interested in how people are affected by the process of economic development and environmental change, and in my courses we will study human interactions, and those of people and the environment, using readings, videos, lectures, and classroom discussion. Students will also conduct their own research on topics that interest them, to share with others in the class. Even students without much background in the social sciences should find many topics that will relate to their studies and their interest in a rapidly changing world impacted by globalization, technological innovation and climate change. The English language is the communicative tool used for study and expression, but the objective of these courses is to master the content – development studies, environmental studies, human geography or sociology in an interactive, student-directed learning approach.

<table>
<thead>
<tr>
<th>SUGUIMOTO, S. Pilar</th>
<th>Basics of the Human Body-E2 (page 244)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Junior Associate Professor</td>
<td></td>
</tr>
<tr>
<td>Graduate School of Medicine</td>
<td></td>
</tr>
</tbody>
</table>

Self Introduction: S.Pilar Suguimoto is Junior Associate Professor at the Medical Education Center in the Graduate School of Medicine, Kyoto University. She is third generation Japanese Peruvian, born and raised in Lima, Peru. Dr. Suguimoto earned her medical degree from Universidad Peruana Cayetano Heredia in Peru and her PhD degree from Kyoto University. She collaborates with the Department of Global Health and Socio-epidemiology in the School of Public Health in several qualitative and quantitative socio-behavioral studies related to HIV and non-communicable diseases in Japan and abroad.

Message to students: These are basic courses prepared for all majors. You are expected to be motivated to learn, do your best, engage in class discussions, and enjoy every step of the way.
SVADLENKA, Karel

Associate Professor
Graduate School of Science

Calculus with Exercises A (page 105)
Calculus with Exercises B (page 106)
Honors Mathematics B-E2 (page 122)

Profile: Originally from Czech Republic, I got my PhD from Charles University in Prague and also from Kanazawa University, Japan. My research focuses on using mathematics (especially partial differential equations) to understand various natural phenomena, including modeling and numerical simulation.

Message: The calculus course provides the very basic knowledge necessary in any field of science and engineering, which has some connection to mathematics. This means mainly the differentiation and integration of functions of one real variable (first semester) and several variables (second semester). However, we will start from the fundamental concepts, such as “What is a real number?” or “How do we precisely define continuity?”. After finishing this course, you should be able, for example, to find maxima of a function, to compute volume of an object or to solve differential equation modeling some natural phenomenon. There are a lot of things to learn in order to master the basic calculus and everything has to be done precisely because it is mathematics. Nevertheless, I hope you will be brave enough to join the class and to learn math or maybe just to practice your scientific English.

TAN, Fucheng

Senior Lecturer
Research Institute for Mathematical Sciences

Quest for Mathematics II-E2 (page 113, 115)
ILAS Seminar-E2: Encounters with modern arithmetic (現代整数論との出会い） (page 299)

Fucheng Tan is a researcher from Research Institute for Mathematical Sciences. He obtained his PhD in Mathematics from MIT, and had taught in the US for 5 years before joining in Kyoto University in 2016. He works on Arithmetic Geometry, which can be understood as the study of arithmetic problems using the tools from algebra and geometry. For teaching, he believes in continuous communication between teachers and students, and encouragement. He likes to discuss mathematics with students who enjoy mathematics, not only math majors but also students in other fields.

The materials taught in both classes are rooted in the ancient problems in number theory, which at the most basic level can be regarded as the study of the set of integers. On the other hand, the first class is with emphasis on elementary number theory, and the second class will focus on modern algebra, the foundation of algebraic number theory. He intends to make the classes accessible to most undergraduate and graduate students. In these classes, he will try to explain the basic concepts and solutions in mathematics with minimal requirements for the student’s background. In the meantime, the classes will help the student improve their oral communication skill in English, via discussions and presentations.

TAKENAKA, Mizuki

Program-Specific Associate Professor
Graduate School of Science

Fundamentals of Cell and Molecular Biology-E2 (page 180)
Biological Sciences through Scientific Articles I-E2 (page 208)
Introduction to Plant Science-E2 (page 181)
Biological Sciences through Scientific Articles II-E2 (page 209)

My Profile: After receiving the PhD at the Kyoto University, I worked at the Ulm University (Germany) until 2017. I am currently working at the laboratory of plant molecular genetic in the Graduate School of Science in the Kyoto University. My research interest is molecular mechanism of C to U RNA editing, which is indispensable for proper expression of gene function in plant organelles. Recent data suggested different types of proteins form dynamic complexes to pursue the reaction. We are searching for missing components in the complexes and analyzing how the complexes assemble in plant organelles.

Message: Plant biology has been an important subject from the earliest study of life processes. Research on plant system will also tell us how to approach problems in agriculture, health, and the environment. In my lecture courses, I will teach basic of cell biology and plant biology with introduction of recent research topics. In the seminar courses, we will read recent scientific literatures especially on plant biology. You will be expected to learn basic skills for reading manuscripts, summarizing the contents, and giving presentations on them. You will be also encouraged to discuss the topics in English. However, you will not be expected to speak native-like English, therefore, don’t hesitate to express yourself at the course.
If you want to learn how to diagnose mental disorders (e.g., autism, schizophrenia, depression, bipolar disorder, PTSD), psychopathology class is the right place for you. Psychopathology is the interdisciplinary study of mental disorders, and my ILAS seminar introduces major disciplines contributing to the field. But wait a second. Why should we always think in terms of "disorders"? Are there other ways to approach human distress? Yes, there are; and one of them has a very specific status among scientific disciplines: psychoanalysis. My classes are a very rare and unique opportunity to learn from a psychoanalyst, in the academic setting, about Freudian and Lacanian theories and clinics.

Students sharing the ideal of an Enlightenment knotting East and West and willing to bring a renewed horizon for the next generations are warmly welcome to attend these classes. For their path to success in the global economy cannot be achieved without a genuine awareness of the burden, and the challenges of mental health issues.

In France, where I grew up, I had a clinical practice as a psychologist in hospitals, welfare services, guidance center, and I was trained as a psychoanalyst (2003-2011). Then I researched at Kyoto University Institute for Research in Humanities (2011-2017), Ritsumeikan University (2018), and I am now an Associate Professor at the Graduate School of Human and Environmental Studies, Kyoto University (2019-).

Although trained in political science and philosophy, I have since 2000 been conceptually situating my research at the intertwining relations of four notions: violence, difference, marginality, and temporality. It is thus crucial for my research to always blur different genres of various disciplines of the human sciences: political science, philosophy, anthropology, and history. My research fields lie at the nexus between migration studies and border studies, focusing especially on the Thai-Myanmar borderlands – a border region to where most of my publications on the following issues have devoted: death & atrocity; refugee; music & youth; ethnicity; marginal migrant workers; "cultural fluency"; community engagement; malaria elimination; and special economic zone. I approach my four courses – Political Science (I & II) and Intercultural Communication (I & II) – with such orientation and invite students to explore kaleidoscopic landscapes of "the political" and "the cultural" from their loci of enunciation.

Cédric Tassel is an Associate Professor in the Department of Energy and Hydrocarbon Chemistry. He was born in France where he obtained a Bachelor and Master Degree in Solid State Chemistry from the University of Rennes I. Cédric holds a PhD in Engineering from the Graduate School of Engineering, Kyoto University. In 2012, he became a Hakubi Assistant Professor with his research focusing on the synthesis of novel oxide materials via exotic synthetic techniques. More recently, his interests are in the preparation of mixed anionic structures oxide-hydride and oxide-nitride towards the realization of functional materials.

To the students: The “Introduction to Inorganic Chemistry A-B” lectures will introduce the basic concepts of chemistry from the structure of atoms and molecules to the study of their bonding, interactions and reactions. Chemistry surrounds us and I hope that this course will provide students with a better understanding of its impact on our daily lives and environment.
THUERMER, Stephan

Program-Specific Associate Professor
Graduate School of Science

- Equilibrium and Energy-E2: A Macroscopic Perspective of Chemistry (page 173)
- ILAS Seminar-E2: What are Liquids? Answers from Physics, Chemistry and Engineering（液体は何？液体の基礎物理学と化学） (page 288)
- Introduction to Surface Chemistry-E2 (page 177)
- ILAS Seminar-E2: How to Study Atoms and Molecules with the Help of Light（光を使って原子や分子を調べる） (page 325)

Before coming to Japan in 2013 my home was Berlin, Germany. I initially studied and graduated in physics, but over time my research was drifting more and more towards chemistry. In my days as graduate student I became interested in studying the phenomena underlying chemical reactions on the molecular level in liquid water and solutions. I am continuing this work here at the Department of Chemistry. I study molecular properties in liquids using spectroscopy, that is, utilizing the interaction of light with matter to learn about processes on the invisible atomic scale.

The quest in natural sciences is always to think about and find the underlying mechanisms for the observed effects or processes. I would like bring this philosophy of exploration and critical thinking to the lecture as an important skill of scientific research. In the courses we look at phenomena which are closer to our daily experiences than the dry theory and without getting lost in difficult details. We approach topics from physical chemistry by working our way down from the observation in nature or use in technology to the underlying processes and finally chemical and physical laws. I encourage everybody to come to the courses who is interested to learn about nature’s sometimes surprising laws and how these effect our lives from a physical chemistry viewpoint.

VAN STEENPAAL, Niels

Associate Professor
Graduate School of Education

- Japanese History I-E2 (page 30)
- Japanese Intellectual History I-E2 (page 41)
- Japanese History II-E2 (page 32)
- Japanese Intellectual History II-E2 (page 42)

Dr. Van Steenpaal is an intellectual historian with a primary research interest in “moral culture”, a term that he uses to describe the pathways, processes and media through which morality and material culture mutually influence each other. Since all history is forged from curiosity and skepticism, I strongly encourage these values in my classroom as well. Feel free to speak up at any time to ask questions or (kindly and respectfully!) challenge either me or your fellow students.

Vandenberg, Alexis

Program-Specific Senior Lecturer
Institute for Frontier Life and Medical Sciences

- Basic Data Analysis-E2 (page 127)
- ILAS Seminar-E2: Programming for data analysis（データ解析のためのプログラミング） (page 309)
- Introductory Statistics-E2 (page 124)
- ILAS Seminar-E2: Introductory Bioinformatics（バイオインフォマティクス入門） (page 340)

My self-introduction: After studying biochemistry in Belgium, I completed a PhD degree in the University of Tokyo, where I investigated the sequence and structure of regulatory DNA sequences using bioinformatics. After graduating, I conducted research in the fields of bioinformatics and immunology in Osaka University, and since 2017 in Kyoto University. My main research interest is the regulation of gene expression.

We are living in the age of “big data”, and research is increasingly data-driven. But data is not the same as knowledge. Our goal is to extract knowledge from data, and this process is the focus of my courses. My course on statistics introduces how to analyse and draw conclusions from observations. The course on data analysis explores machine learning techniques to find patterns in data, and in the programming course you can learn how to write scripts to easily perform data analysis. Finally, the course on bioinformatics gives a broad introduction to data-oriented research in biology, genomics and proteomics.
VEALE, Richard Edmund
Assistant Professor
Graduate School of Medicine

- Introduction to Behavioral Neuroscience A-E2 (page 195)
- Introductory Statistics-E2 (page 123)
- Introduction to Behavioral Neuroscience B-E2 (page 196)
- Introduction to Medical Psychology-E2 (page 251)

Born in the Land of Million Elephants or Laos, my first degree was from Nanyang Technological University in Singapore. My advanced degrees were conferred by Kyushu University in the field of civil and structural engineering. My academic and research interests are in the field of environment and climate-related disaster prevention. Besides, I actively participate in the field of environmental assessment. Most of my previous project experiences were from multi-national and multi-cultural international organizations (For example: UNDP, UNEP, JICA, SNV), where I served as a national advisor, a technical staff, a researcher, and a worker. Welcome to my courses. As a student of globalized, globally recognized and connected mind at Kyoto University, you are cordially invite to enroll to my courses. In the courses, you will learn about the basic elements of the environment: air, water, minerals and soils and their vital functions and roles in agriculture, forests, ecosystem systems, and environmental sustainability. In detail, what are the connections between the elements and natural systems, which enable favorable conditions for our existence, or otherwise adverse consequences such natural and man-made hazard and disaster (famine, deforestation, climate change, flood, earthquake, and tsunami)? What kind of basic sciences, measures and technologies available to deal with such calamity? Besides conventional method of learning science at a tertiary level, you will embark on skill building toward academic, practical and career-oriented perspective. Definitely, if you keep constant effort and commitment on acquiring new knowledge, you ought to make an educated progress in your endeavor.

VILAYVONG, Khonesavanh
Assistant Professor
Graduate School of Agriculture

- Sustainable Forest Environment-E2 (page 263)
- ILAS Seminar-E2:Regional Disaster Prevention（地域防災） (page 310)
- Science on Water, Soil and Ecosystems-E2 (page 218)
- ILAS Seminar-E2:Geo-Disaster Risk Reduction and Prevention（土砂災害の防災・減災学） (page 337)

WALINDA, Erik
Assistant Professor
Graduate School of Medicine

- ILAS Seminar-E2:Introduction to Biomedical Presentation and Debate (医学英語入門-プレゼンテーションとディベート) (page 304)
- ILAS Seminar-E2 :Introduction to life science and scientific conversation (生命科学へのいざない) (page 317)
- ILAS Seminar-E2:Biochemistry Principles (生化学の基礎) (page 334,342)

Research. After getting my degree in Biochemistry in Germany from the Free University of Berlin, I joined a PhD course at Kyoto University where I studied protein-protein interactions using biophysical methods such as calorimetry, fluorescence and nuclear magnetic resonance spectroscopy. I am particularly interested in a cellular pathway called macroautophagy, which is the degradation system of bulk matter such as the amorphous protein aggregates that are associated with all kinds of neurodegenerative diseases such as Huntington’s, Alzheimer’s and Parkinson’s diseases. I am also always interested in developing new biophysical tools to analyze and understand protein motion and function.

Education. In all of my classes, students get the chance to talk and discuss in English. To join the class, you need a tiny bit of courage, but afterwards your speaking and listening skills will definitely be improved. You also learn about science. Yay! This year I will teach three ILAS seminars Presentation and Debate on Biomedical Science, Biochemistry Principles and Introduction to Life Science and Scientific Discussion. The presentation and debate class is an introduction on how to present your ideas to an international audience (in English). We focus on simplicity. We do not make things complicated. We also discuss and debate about some specific topics. The biochemistry seminar Introduction to Biochemistry introduces the field of biochemistry. We also solve biochemical problems in class to check our understanding. Introduction to life science and scientific discussion is something like a mixture of them. It has both presentation and molecular biology in it. It is my hope that all students enjoy their time here at Kyoto University and in the time being here discover some aspect of science that they truly interested in.
<table>
<thead>
<tr>
<th>Name</th>
<th>Position</th>
<th>Courses</th>
</tr>
</thead>
<tbody>
<tr>
<td>WENDELL, Roger</td>
<td>Associate Professor</td>
<td>A Guide to Modern Physics A-E2 (page 142)</td>
</tr>
<tr>
<td></td>
<td>Graduate School of Science</td>
<td>ILAS Seminar-E2:Topics in Frontier Physics （現代物理学の最先端） (page 279)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Elementary Experimental Physics-E2 (page 136)</td>
</tr>
<tr>
<td>WERNER, Marcus Christian</td>
<td>Program-Specific Assistant Professor</td>
<td>ILAS Seminar-E2:Frontiers in Theoretical Physics II （理論物理学最前線 II） (page 292)</td>
</tr>
<tr>
<td></td>
<td>Yukawa Institute for Theoretical Physics</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>YANG, Chin-Cheng</td>
<td>Junior Associate Professor</td>
<td>Insect-human Interactions-E2 (page 271)</td>
</tr>
<tr>
<td></td>
<td>Research Institute for Sustainable Humanosphere</td>
<td>ILAS Seminar-E2:Urban Pest Management（都市害虫の管理） (page 313)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Introduction to Biological Invasion-E2 (page 269)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ILAS Seminar-E2:Insect and ecosystem sustainability (昆虫と持続可能な生態系) (page 338)</td>
</tr>
</tbody>
</table>

Physics is a powerful tool for understanding the natural world starting from sets of fundamental principles. This is true of all branches of physics, from the classical study of motion with Newtonian mechanics, to the quantum mechanical description of radioactivity and beyond. Moreover, our modern description of nature is built upon a foundation of experimentation and observation, which can be referenced or reproduced to reaffirm and propagate our understanding to others. Lecture material will accordingly be supported by concrete example and reference to relevant experiments.

While it may seem daunting to learn physics at any level in a foreign language, English is currently the primary language used to communicate ideas in the fields of science and technology, so training oneself early will provide access to a wide and wonderful world of scientific thought and inquiry.

Most of my research is dedicated to the study of neutrino oscillations and this pursuit brought me to Japan in 2008. Primarily I work on the Super-Kamiokande experiment, which was awarded the 2015 Nobel Prize in physics, and the T2K experiment. Prior to joining the faculty of Kyoto University I was a researcher at the University of Tokyo's Institute for Cosmic Ray Research. Far prior to that I was born in and later trained in science at various institutes in the United States.

Profile: After receiving the PhD in astrophysics at the University of Cambridge (UK), I worked at Duke University (USA) and Kavli IPMU (University of Tokyo) before joining Kyoto University as a Hakubi assistant professor. Based at the Yukawa Institute for Theoretical Physics, I study gravity theories and lensing tests.

Message: Now is an exciting time to do physics: the recent discoveries of the Higgs boson and gravitational waves have not only corroborated earlier theoretical predictions, but opened up new avenues for research. In this course, we will sample the current literature of theoretical physics, with a bias towards astrophysical topics. While the emphasis is on physical content, this will also be a good opportunity to practise English, which is indispensable in current research.

Profile: Chin-Cheng Scotty Yang is currently a Junior Associate Professor with Research Institute for Sustainable Humanosphere at Kyoto University (Uji campus). He completed his Ph.D. in Entomology from National Taiwan University (NTU) and received postdoctoral training at Biodiversity Research Center at Academia Sinica. Before joining Kyoto University, he was with NTU as an Assistant Professor for 5 years. Research activities in his lab “Laboratory of Urban Pestology” have been focused on pursuing a better understanding of urban pest arthropods, particularly studies of the ecology, behavior and genetics of invasive/urban pests such as ant.

Message: Keywords for my courses include “insect”, “invasive species”, “pest control” and “ecosystem”. Students who would like know more about insects and how important they are on this planet should not miss my courses. For students with biology background (or to some extent), you would be able to get more delicate taste of these six-legged animals from a totally different angle. Students with limited background in biology are as welcomed, and you certainly do not have to worry because my courses are mostly case-driven. For all students, you will learn new things in my class through field trip, hands-on and in-class activities in addition to regular lecture. More importantly, you are encouraged to express yourself whenever you have something to say in the class, and I believe this is how we start to jointly build a positive, interactive, pleasant classroom atmosphere.
Growing up I was always amazed how science could tell us about the past, present and future - dinosaurs, how our bodies work and next month’s weather. I was particularly excited about biology; especially how genes controlled our lives. After studying genetics/biochemistry at university, I traveled through Africa for several months and witnessed the tragic effects of hunger. I therefore returned to England, determined to help develop crops that could feed such people. After finishing my MPhil and PhD in plant genetics at Cambridge, I moved to Akita, where for the next 26 years I worked on plant molecular biology, developing novel resources for improving crop plants. Just recently, I have moved to Kyoto where I now hope to share my passion and wonder about our biological world. So, here I hope to show in my ‘Biochemistry’ course the common thread that runs throughout all life; in my ‘Genetics’ course, the intricate complexities of how genes function and are regulated, and finally through my ‘Molecular Biotechnology’ lectures how to exploit these resources for man’s benefit while preserving our environment. There are still many basic questions and puzzles about life that must be answered so that all humanity can benefit from our advances, and I am certain that you are the ones that will solve these!

ZWINGMANN, Horst Friedrich
August
Professor
Graduate School of Science
Geologist investigating earthquakes and timing of tectonic processes.
Horst Zwingmann joined Kyoto University in 2015 as a Professor for Geotectonics. His research involves investigation of surface tectonic processes and constraining the timing of deformation zones using isotopic dating methods.
Research introduction to students: The understanding of geological fault processes is important for numerous reasons such as regional correlation of shallow fault activity, of critical importance for the evaluation of earthquake hazards with applications for civil engineering and resources exploration (ore bodies, hydrocarbons) and in accessing suitability of waste storage sites including nuclear waste.
Liberal Arts and Sciences to learn in English 2019

Institute for Liberal Arts and Sciences, Kyoto University
Yoshida Nihonmatsu-cho Sakyo-ku Kyoto 606-8501

http://www.z.k.kyoto-u.ac.jp