Course nur	U-LAS12 10019 LE57											
Course title (and course title in English)			_		2 name 2 and d	nstructor's name, job title, and department of affiliation			Graduate School of Engineering Program-Specific Associate Professor, BEAUCAMP, Anthony Tadeus Herve			
Group Na	tural Sciences F					Field(Classification)			Physics(Foundations)			
Language of instruction English				Old	group	Group B	Number of c		redits	2		
Number of weekly time blocks			I CIGOS SIVIC		ecture Face-to-	face cou	ırse)	Ye	Year/semesters		2024 • First semester	
Days and periods	Tue.1		6.41			Mainly 2nd	ainly 2nd year students		Eligible students		For science students	

[Overview and purpose of the course]

Based on the knowledge you gained from the Fundamental Physics B course, this course will expand your understanding of electromagnetic theory. After a review of the basics of classical electromagnetism up-to Maxwell's equations, we will explore the subjects of electromagnetic wave propagation, interference and diffraction, as well as the derivation of electric and magnetic properties in substances and their boundaries.

[Course objectives]

- Follow the historical progression in our understanding of electromagnetic laws.
- Understand the meaning of physical properties in electromagnetism.
- Apply the laws electromagnetism to solve practical problems.

[Course schedule and contents)]

- 1. Mathematics review: Coordinate systems, fields, gradient, divergence, curl [2 weeks].
- 2. Electrics review: Coulomb's force, dipoles, electric potential, Gauss's law [2 weeks].
- 3. Magnetics review: Ampere's law, Faraday's law [2 weeks].
- 4. AC circuits: Resistive, inductive, and capacitive load [1 week].
- 5. Maxwell's equations: Electromagnetic radiation, interference, diffraction [4 weeks].
- 6. Electromagnetic properties in substances and at boundaries [2 weeks].
- 7. Metamaterials, Cherenkov radiation [1 week].

Final examination [1 week].

Feedback session [1 week].

[Course requirements]

Fundamental Physics B course.

[Evaluation methods and policy]

Evaluation will be based on:

- Class Participation (10%): Student participation will be asked in solving problems and discussing theories and their application.
- Homework (20%): Typical problems will be assigned, which you can solve by applying the laws and methods learnt during lectures (every 2 weeks).
- Quizzes (20%): Mini-exams, to check that you remember important laws and principles from previous lectures and study guides (every 4 weeks).
- Final examination (50%): You will be tested with a series of problems that combine previously studied

Continue to Advanced Course of Electromagnetism-E2(2)

Advanced Course of Electromagnetism-E2(2)
cases and original cases.
[Textbooks]
Study guides will be provided every week (~20 pages per week), to help you expand your knowledge. The study guides closely match the week's topic, providing in-depth explanations, problem solving strategies, and summaries of key points.
[References, etc.]
(References, etc.) David Griffiths Introduction to Electrodynamics (Pearson) ISBN:129-202-142-X (Amazon link: http://www.amazon.co.jp/Introduction-Electrodynamics-4th-David-Griffiths-ebook/dp/B00HR7MXAY)
[Study outside of class (preparation and review)]
Study guides will be provided every week (~20 pages per week), to help you expand your knowledge. The study guides closely match the week's topic, providing in-depth explanations, problem solving strategies, and summaries of key points.
[Other information (office hours, etc.)]
Questions can be sent by email, and will be answered either electronically or by appointment (depending on the case).