Course nur	nber	G-L	G-LAS12 80004 LB87											
	統計的学習II Statistical Learning II						Instructor's name, job title, and department of affiliation			Graduate School of Medicine Professor, YAMADA RYO				
Group Interdisciplinary Graduate Courses Field(Classification) Statistics, Informatics and Data Science												Data Science		
Language of instruction	Japane	anese and English			Ol	Old group				Number of credits 2		2		
Number of weekly time blocks			Ulass style		Lecture (Face-t	cture ace-to-face course)			Ye	Year/semesters		2024 • Second semester		
Days and periods				Target year Gr			raduate students		Eli	Eligible students		For science students		

(Students of Graduate School of Medicine cannot take this course as liberal arts and general education course. Please register the course with your department.)

[Overview and purpose of the course]

ライフサイエンス分野におけるデータ解析は、いわゆる統計学手法である検定・推定と、機械学習と呼ばれるものに2大別できるが、取得データの大規模化・複雑化に伴い、両者の境界は曖昧となり、両者が融合しつつある。統計的学習I、IIでは、従来から機械学習として扱われてきた手法の理論と実践を学ぶ。さまざまな手法があるので、4つのモジュールに分け、半年に1モジュールを扱う。

統計的学習基礎A

|統計的学習基礎B

統計的学習応用A

|統計的学習応用B

基礎A・基礎Bでは学習手法の概念を学ぶ。

応用A・応用Bでは、コンピュータ言語Pythonの使用法を習得する。その習得にあたり、機械学習手 法を用いる。

統計的学習I、IIはそれぞれ前期、後期に開講するが、年度ごとにその提供内容は変わる。 2018年度からの提供予定は以下のとおりとする。

2018 前期 基礎A、後期 応用B

2019 前期 基礎B、後期 応用A

2020 前期 基礎A、後期 応用B

2021 前期 基礎B、後期 応用A

[Course objectives]

各モジュールが扱う内容に即して、以下ができるようになる。

統計的学習とは何かが説明できる。教師あり/なし学習がわかる、モデル選択がわかる、正則化がわかる、木・ニューラルネットワーク・サポートベクタマシンの基礎がわかる。統計的学習による回 帰・分類・予測がわかる。

Pythonの既存ライブラリを用いて機械学習の基礎的な処理ができる。

[Course schedule and contents)]

【基礎A・基礎Bでは、オリエンテーション、に引き続き、それぞれ以下の内容を扱う。

基礎Aでは、教師あり学習の概要、回帰のための線形手法、分類のための線形手法、基底展開と正

Continue to 統計的学習II(2)

統計的学習II(2)

則化、カーネル平滑化法を扱う。

基礎Bでは、木・ニューラルネットワーク・サポートベクタマシンの基礎を扱う。

応用A・BともにPythonの導入に引き続き、以下の内容を扱う。

応用Aでは、教師あり学習(分類と回帰)、教師なし学習(次元削減と特徴量抽出、クラスタリング)を 扱う。

応用Bでは、決定木、クロスバリデーションを扱う。

[Course requirements]

前期・後期併せての受講が望ましいが、必須ではない。

[Evaluation methods and policy]

授業中の質疑応答の発言を評価する。

宿題の提出内容を評価する。

最終日に試験を実施する。

[Textbooks]

『統計的学習の基礎 データマイニング・推論・予測 』ISBN:9784320123625(基礎A、B)

『The Elements of Statistical Learning』ISBN:978-0387848570 (基礎A、B)

『Pythonではじめる機械学習 scikit-learnで学ぶ特徴量エンジニアリングと機械学習の基礎 』 ISBN:978-4873117980(応用A、B)

『Introduction to Machine Learning With Python: A Guide for Data Scientists』 ISBN:978-1449369415(応用A、B)

[Study outside of class (preparation and review)]

予習・復習の宿題が出る。順番に講義内で発表を担当する。

[Other information (office hours, etc.)]

特になし