Course nu	umber	U-I	U-LAS10 10025 LE55									
Course title (and course title in English)	Phenomena-E2 Mathematical Description of Natural					name and d	Instructor's name, job title, and department of affiliation		Graduate School of Engineering Senior Lecturer, ISLAM, A K M Mahfuzul			
Group N	Natural Sciences Field(l(Classifi	cation)	Mat	Mathematics(Foundations)			
Language of instruction	f Engli	English			Old	Old group Group B			Number of credits 2		2	
Number of weekly time blocks	1		Class sty		Lecture (Face-to	-face cou	ırse)	Ye	ar/semesters	2024 •	First semester	
Days and periods	Tue.2			Tarç	get year	Mainly 1st	year students	Eli	gible students	For sci	ence students	

[Overview and purpose of the course]

Mathematics is a powerful tool to understand the nature. Generally, only problem-solving techniques are taught till high school. However, the beauty of mathematics lies in creating abstractions. Abstraction is creating new names for some values, processes or understandings. We understand a particular phenomenon first and then we name that phenomenon so that we can use that name in further calculation to help our understanding. For example, we have named PI as a particular value that requires some explanation. But, when we use PI in calculations we do not break down that concept every time. This course aims at developing a solid understanding of several mathematical concepts. Through this course, students will learn how various physical phenomena such as vibration of a structure, wave propagation, fluid dynamics and so on - can be described in differential equations. They will also learn how to solve those physical problems using different techniques.

[Course objectives]

- To understand the relationship between scientific observation and mathematics
- To learn why and how most physical phenomena can be expressed using differential equations
- To learn how to formulate differential equations from physical problems
- To learn how to solve the differential equations

[Course schedule and contents)]

- 1. Introduction [2 weeks]
- a) Types of natural phenomena
- b) Different types of problems and relationship with differential equations
- 2. Basics of Calculus [6 weeks]
- a) Review of calculus: derivatives, basic rules, chain rule, implicit differentiation, inverse functions, and their derivatives, etc.
- b) Exponential and logarithmic functions, their derivatives, characterizations of exponential functions, etc.
- 3. Complex number [2 weeks]
- 4. Differential equations and partial differential equations [2 weeks]
- 5. Modeling of natural phenomena using differential equations [2 weeks]
- 6. Examinations [1 week]
- 7. Feedback [1 week]

[Course requirements] None [Evaluation methods and policy] Quizzes and exercises (50%) and final examination (50%) [Textbooks] Instructed during class [References, etc.] (References, etc.) Introduced during class [Study outside of class (preparation and review)] Preparation and review are required. Handouts will be provided beforehand. Sample programs (Mercourse) Python) will also be provided to deepen the understanding and grow a feeling of several mathema concepts. Students are encouraged to run the programs, visualize how differential equations evolve [Other information (office hours, etc.)] Diffice hour after class.	
Evaluation methods and policy] uizzes and exercises (50%) and final examination (50%) Textbooks] astructed during class References, etc.] (References, etc.) atroduced during class Study outside of class (preparation and review)] reparation and review are required. Handouts will be provided beforehand. Sample programs (Mython) will also be provided to deepen the understanding and grow a feeling of several mathema oncepts. Students are encouraged to run the programs, visualize how differential equations evolve Other information (office hours, etc.)]	
Evaluation methods and policy] Quizzes and exercises (50%) and final examination (50%) Textbooks] Instructed during class References, etc.] (References, etc.) Introduced during class Study outside of class (preparation and review)] Introduced and review are required. Handouts will be provided beforehand. Sample programs (Maython) will also be provided to deepen the understanding and grow a feeling of several mathematoncepts. Students are encouraged to run the programs, visualize how differential equations evolve (Other information (office hours, etc.)]	
Puizzes and exercises (50%) and final examination (50%) Textbooks] Instructed during class References, etc.] (References, etc.) Introduced during class Study outside of class (preparation and review)] Introduced and review are required. Handouts will be provided beforehand. Sample programs (Maython) will also be provided to deepen the understanding and grow a feeling of several mathema concepts. Students are encouraged to run the programs, visualize how differential equations evolve Other information (office hours, etc.)]	
Textbooks] Instructed during class References, etc.] (References, etc.) Introduced during class Study outside of class (preparation and review)] Interparation and review are required. Handouts will be provided beforehand. Sample programs (Maython) will also be provided to deepen the understanding and grow a feeling of several mathemation oncepts. Students are encouraged to run the programs, visualize how differential equations evolve Other information (office hours, etc.)]	
References, etc.] (References, etc.) troduced during class Study outside of class (preparation and review)] reparation and review are required. Handouts will be provided beforehand. Sample programs (Month) will also be provided to deepen the understanding and grow a feeling of several mathema oncepts. Students are encouraged to run the programs, visualize how differential equations evolved the information (office hours, etc.)]	
References, etc.] (References, etc.) troduced during class Study outside of class (preparation and review)] reparation and review are required. Handouts will be provided beforehand. Sample programs (Mython) will also be provided to deepen the understanding and grow a feeling of several mathemation oncepts. Students are encouraged to run the programs, visualize how differential equations evolve Other information (office hours, etc.)]	
(References, etc.) stroduced during class Study outside of class (preparation and review)] reparation and review are required. Handouts will be provided beforehand. Sample programs (Maython) will also be provided to deepen the understanding and grow a feeling of several mathema bencepts. Students are encouraged to run the programs, visualize how differential equations evolve. Other information (office hours, etc.)]	
Study outside of class (preparation and review)] reparation and review are required. Handouts will be provided beforehand. Sample programs (Mython) will also be provided to deepen the understanding and grow a feeling of several mathemationcepts. Students are encouraged to run the programs, visualize how differential equations evolve Other information (office hours, etc.)]	
reparation and review are required. Handouts will be provided beforehand. Sample programs (Nathon) will also be provided to deepen the understanding and grow a feeling of several mathema oncepts. Students are encouraged to run the programs, visualize how differential equations evolved the information (office hours, etc.)]	
ython) will also be provided to deepen the understanding and grow a feeling of several mathematical oncepts. Students are encouraged to run the programs, visualize how differential equations evolved the other information (office hours, etc.)]	
	ıtical
office hour after class.	