Course nu	mber	G-L	AS01 800	005 LJ5	5							
Course title (and course title in English) データ科学:理論から実用へData Science :From Theory to P					. I Practica	Instructor's name, job title, and department of affiliation			Institute for Liberal Arts and Sciences Professor, Hayashi Kazunori			
Group Co	Common Graduate Courses Field(Classification) Computer Science and Information									tion Technology		
Language of instruction	Japane	Japanese			Old group			Number of c		redits	1	
Hours	Hours 15		Class style		eture ace-to-face course)			Ye	Year/semesters		2024 • Intensive, First semester	
		ive th periods on nber 9-11, and 14			t year (Graduate	raduate students		Eligible students		For all majors	

[Overview and purpose of the course]

データ解析の基本的な問題であり,かつ現場で最も直面することが多いと考えられる観測データから未知ベクトルを推定する問題を中心に、線形観測モデルの逆問題を考えるアプローチとベイズ統計学に基づく確率推論のアプローチの両方について、その理論的な背景から実際のアルゴリズムまで解説する。具体的には、最小二乗法や最小平均二乗誤差推定、圧縮センシング、カルマンフィルタ、粒子フィルタ、確率伝播法、マルコフ連鎖モンテカルロ法などのテーマについて関連事項を解説する。

[Course objectives]

各手法の理論的な基礎事項を十分に理解し、実際の問題に応用するための能力を身につける。

[Course schedule and contents)]

- 1.線形逆問題の基礎:確率変数、確率過程、相関行列,線形観測モデルと逆問題
- 2.線形逆問題:最小二乗法,最小平均二乗誤差推定、マッチドフィルタ、最大比合成
- |3.線形逆問題:圧縮センシング|
- 4.確率推論の基礎:条件付き独立性、グラフィカルモデル、確率推論問題、最尤推定、最大事後確 率推定
- |5.確率推論の基礎:サンプリング法:逆関数法,棄却サンプリング、重点サンプリング
- 6.確率推論:状態空間モデル、状態推定、粒子フィルタ、カルマンフィルタ
- 7.確率推論:確率伝播法
- 8.確率推論:マルコフ連鎖モンテカルロ法

[Course requirements]

「微分積分学(講義・演義)A,B」および「線形代数学(講義・演義)A,B」、または「微分積分学 A,B」および「線形代数学A,B」、および確率論基礎の内容を理解していることが望ましい。

[Evaluation methods and policy]

観測データから未知ベクトルを推定する問題に関するレポート課題により到達目標の達成度を評価する。

Continue to データ科学: 理論から実用へ I (2)

データ科学:理論から実用へ I (2)
[Textbooks]
講義において必要な資料(電子ファイル)を配布する。
[References, etc.]