Course nu	G-I	G-LAS01 80006 LJ55											
Course title (and course title in English) Course title データ科学:理論から実用へII Data Science :From Theory to Pra Use II						name and d	Instructor's name, job title, and department of affiliation			Part-time Lecturer, NAKANO SHINYA			
Group C	Common Graduate Courses					Field(Classification) Co.			omputer Science and Information Technology				
Language of instruction	Japan	nese			Old group			Number of o		redits	1		
Hours	15		Class sty		cture ace-to-face cou		ırse)	Year/semes		r/semesters	2024 • Intensive, Second semester		
		ary 14, 15, 21, 22 Tar		Targe	t year (Graduate	raduate students		Eligible students		For all majors		
•	(2-3 periods)						ic stadents						

[Overview and purpose of the course]

大量データの解析方法を扱うデータ科学は、科学研究のみならず高度情報化社会を支える基礎となりつつある。最近では、コンピュータ上で複雑な現象を再現する数値シミュレーションの分野でもデータ科学の有用性が高まっている。例えば、気象予測においては、観測から得られる情報を数値シミュレーションに取り入れる「データ同化」と呼ばれる統計科学的な手法が用いられており、予測の精度向上に威力を発揮している。また、数値シミュレーションを用いた不確実性の評価、リスク評価などにおいてもデータ科学の手法が有効である。本講義では、気象予測・予報で用いられるデータ同化を中心に、数値シミュレーションによる現象の再現・予測・不確実性評価などに利用されている統計的手法を取り上げ、その基本的な考え方や実装方法を基礎から解説する。

[Course objectives]

データ同化などの基礎となる空間データ解析、時系列データ解析手法の基本的な考え方を理解し、 それらが数値シミュレーションの分野でどのように活用されているかを理解する。

[Course schedule and contents)]

(1) 導入と数学的準備

背景,行列の計算,確率分布,乱数

|(2) 最小二乗法とその拡張

|最小二乗法,拘束付き最小二乗法,ベイズ推定の基礎

(3) カルマンフィルタ

カルマンフィルタ,その実装

|(4) アンサンブルカルマンフィルタ

粒子フィルタ,アンサンブルカルマンフィルタ,その実装

(5) アンサンブル変換カルマンフィルタ

アンサンブル変換カルマンフィルタ、局所化、その実装

(6) 4次元変分法の基礎

アンサンブル4次元変分法,アジョイント法

(7) エミュレータの基礎

ガウス過程,エミュレータ

(8) まとめ

Continue to データ科学: 理論から実用へII(2)

データ科学:理論から実用へII(2)

[Course requirements]

共通教育における微積分学・線形代数学・統計学入門程度の内容を理解していることが望ましい。 また、プログラミング(言語は問わない)や数値計算の入門程度の知識があることが望ましい。

[Evaluation methods and policy]

講義中に課すレポートの内容により、到達目標への到達度を評価する。

[Textbooks]

資料を配布する。

[References, etc.]

(References, etc.)

樋口知之編著 『データ同化入門』(朝倉書店 2011)ISBN:978-4254127867

淡路敏之他編著 『データ同化 - 観測・実験とモデルを融合するイノベーション』(京都大学学術出 版会 2009)ISBN:978-4876987979

[Study outside of class (preparation and review)]

予習の必要はないが、「データ科学:理論から実用へ演習II」を受講するなどして復習を行うことが望ましい。

[Other information (office hours, etc.)]

講義中に教員との連絡方法について指示する。