Course number U-LAS10 2000					06 LE55								
Course title (and course title in English) Advanced Linear Algebra Advanced Linear Algebra					name and d	Instructor's name, job title, and department of affiliation			Graduate School of Engineering Associate Professor, Chang, Kai-Chun				
Group Natural Sciences				Field	Field(Classification)			Mathematics(Development)					
Language of instruction English					Old	Old group Group B			Number of credits 2			2	
Number of weekly time blocks			I CIGOS SEVIC		ecture Face-to-	cture Face-to-face course)			Year/semesters		2024 • First semester		
Days and periods	Fri.2	·		Targ		2nd year stu	d year students or above		Eligible students		For science students		

[Overview and purpose of the course]

Linear Algebra is an important tool commonly used in many fields, in not only mathematics but also natural sciences, engineering, etc. This course extends the contents in "Linear Algebra A/B" courses (provided majorly for 1st year students) and discusses advanced concepts of linear algebra, such as orthogonality, diagonalization, Singular Value Decomposition (SVD) of a matrix, Jordan canonical form, and their applications to real-world problems, etc.

[Course objectives]

- To acquire the advanced concepts of linear algebra, such as orthogonality, diagonalization, SVD of matrix.
- To understand the applications of linear algebra to real-world problems.

[Course schedule and contents)]

- 1. Review of linear algebra [2 weeks]
- Big picture, rank, dimension, LU/LDU factorization, Gauss-Jordan elimination, etc.
- vector spaces, subspaces, nullspace, complete solutions, four subspaces and their dimensions and orthogonality, etc.
- 2. Orthogonality and its applications [3 weeks]
- Orthogonality and orthogonality complement, projections, least square approximations, orthogonal bases, Gram-Schumidt process, etc.
- 3. Eigenvalues, eigenvectors, and their applications [4 weeks]
- Eigenvalues and eigenvectors, diagonalization, matrix power, singular value decomposition (SVD) and their application to difference equations, differential equations and Markov process, etc.
- 4. Jordan canonical form [3 weeks]
- minimal polynomials, generalized eigenvectors, Jordan canonical form, and their applications.
- 5. Optional topics [2 weeks]
- numerical solutions, complex vectors and matrices, other applications, etc.
- 6. Feedback [1 week]

Advanced Linear Algebra(2)
[Course requirements]
Suggested prerequisites: Calculus A/B and Linear Algebra A/B or Calculus with Exercises A/B and Linear Algebra with Exercises A/B.
[Evaluation methods and policy]
Quizzes or assignments (50%); final examination (50%)
[Textbooks]
Not used
[References, etc.]
(References, etc.) Strang, G. (2009) Introduction to Linear Algebra. 5th ed. (Wellesley-Cambridge Press) Lipschutz, S. and Lipson, M. (2012) Linear Algebra, 6th ed. (McGraw-Hill)
[Study outside of class (preparation and review)]
Students are expected to spend at least 2 hours per week on preview and review. More than half of that time is spent preparing for class and doing assignments.
[Other information (office hours, etc.)]