複葉和目名 (次取) 数学探訪II (Quest for Mathematics II 超報・氏 理学研究科 准教授 高村 茂 群 自然科学科目群 分野(分類) 数学(基礎) 使用言語 日本語 旧群 単位数 2単位 週コマ数 1コマ 授業形態 講義(対面授業科目) 2025・前期 曜時限 水5 配当学年 主して1・2四 対象学生 全学向 [授業の概要・目的] 正多面体や曲面を題材に、素朴な概念(「向き」や「対称性」)がいかに数学的に定式化されてい くかを図形を交えて説明する。直線の向きは、プラスとマイナス方向により区別されるが、一般の 空間では「向き」はどのように定義されるだろうか?また、空間の対称性は(一見すると抽象的な 時(くん)という脱念により定式化される。これらを正多面体や曲面の場合に具体的に説明する。 10 [7] 理目費] 日常用語として使われている幾何的な概念(向きや対称性)が、いかに数学的に定式化されてい い説のに支払くのたると定義される るかを、素朴な図形を通して理解する。 11	科目ナンバリング U-LAS10 10027 LJ55											
旧群 単位数 2単位 週ママ数 1コマ 授業形態 講義(対面授業科目) 講講 ³ : 2025・前期 曜時限 水5 配当学年 注してい221 対象学生 全学向 [[援業の概要・目的]] 正多面体や曲面を題材に、素朴な概念(「向き」や「対称性」)がいかに数学的に定式化されてい くかを図形を交えて説明する。 直線の向きは、プラスとマイナス方向により区別されるが、一般の 空間では「向き」はどのように定義されるだろうか?また、空間の対称性は(一見すると抽象的な) 群(ぐん)という概念により定式化される。 こちらを正多面体や曲面の場合に具体的に説明する。 [3]運目標] 日常用語として使われている幾何的な概念(向きや対称性)が、いかに数学的にきちんと定義され るかを、素朴な図形を通して理解する。 [[2]業計画と内容] [2] 愛謝書と内容] 日常用語として使われている幾何的な概念(向きや対称性)が、いかに数学的にきちんと定義され るかを、素朴な図形を通して理解する。 [[2] 素計画と内容] [1] 常用語として使われている幾何的な概念(向きや対称性)が、いかに数学的にきちんと定義され るかを、素朴な図形を通して理解する。 [[2] 素計画と内容] [[2] 業計画と内容] 日 日常用語として使われている幾何的な概念(向きや対称性)が、いかに数学的にきちんと定義され るかを、素朴な図形を通して理解する。 [[3] 運目標] 日常語として使われている幾何的な概念(向きや対称性)が、いかに数学的にきちんと定義され るかを、素朴な図形を通して理解する。 [[3] 運目標] 日常語をして使われていの通り(ただし、受講者の背景や理解の状況に応じて、詳細は変更される可能 をいの内容 [[3] ごののう 10 回から3 回 「向き」や「対称性」とはなんだろうか?という疑問から背景を説明(平面の向き や正多面体の対称性) (編 回の向き 、メビウスの構造)(1 回のから1 2 回 対称性を捉えるための代数(群の概念)の解説) 1 3 回から1 4 回 曲面や正多面体の対称性を群の作用として捉え、具体例で詳しく説明 1 5 回 フィードバック [[[] [] [] [] [] [] [] [] [] [] [] [] [123百万禹,伊之神金科。 化初增 乌杖 光											
職業者 2025・前期 曜時限 水5 配当学年 主じて1・2回生 対象学生 全学向 [[援業の概要・目的] 正多面体や曲面を題材に、素朴な概念(「向き」や「対称性」)がいかに数学的に定式化されてい 〈かを図形を交えて説明する。直線の向きは、プラスとマイナス方向により区別されるが、一般の 空間では「向き」はどのように定義されるだろうか?また、空間の対称性は(一見すると抽象的な) 群(ぐん)という概念により定式化される。これらを正多面体や曲面の場合に具体的に説明する。 [1]運車構] 日常用語として使われている幾何的な概念(向きや対称性)が、いかに数学的にきちんと定義され るかを、素朴な図形を通して理解する。 [1]運業計画と内容] [1]愛業計画と内容] 1 [2]愛罪計画と内容] 1 [2]愛求計画の内容] 1 [2]愛求計画を売りの通り(ただし、受講者の背景や理解の状況に応じて、詳細は変更される可能 してどうる。請義担当者が適切に決める。請義の進め方については適定、指示をして、受講者の予留 ができるように十分に配慮する)。 1 10回から6回 線形代数からの必要事項の解説(線形写像、基底、行列式など) 7 7回から9回 曲面や正多面体の対称性を捉えるための代数(群の概念)の解説 1 13回から14回 曲面や正多面体の対称性を群の作用として捉え、具体例で詳しく説明 1 15回 フィードバック 1 [2]優響推動の法: 観点 1 2]同から14回 曲面や正多ので、高校の数学の知識があれば十分。 1 [2]確年 1 2]のから14回 曲面や正多ので、高校の数学の知	群	自然科学科目群 分野(分類) 数				数学(基	学(基礎) 使用言語 日本語					に語
【授業の概要・目的] 正多面体や曲面を題材に、素朴な概念(「向き」や「対称性」)がいかに数学的に定式化されていくかを図形を交えて説明する。直線の向きは、プラスとマイナス方向により区別されるが、一般の空間では「向き」はどのように定義されるだろうか?また、空間の対称性は(一見すると抽象的な 群(ぐん)という概念により定式化される。これらを正多面体や曲面の場合に具体的に説明する。 【到達目標] 日常用語として使われている幾何的な概念(向きや対称性)が、いかに数学的にきちんと定義されるかを、素朴な図形を通して理解する。 【授業計画と内容] [授業はあちむね以下の通り(ただし、受講者の背景や理解の状況に応じて、詳細は変更される可能性がある。講義担当者が通切に決める。講義の進め方については適宜、指示をして、受講者の予習ができるように十分に配慮する)。 1回から3回 「向き」や「対称性」とはなんだろうか?という疑問から背景を説明(平面の向きや正多面体の対称性) 4回から6回 線形代数からの必要事項の解説(線形写像、基底、行列式など) 7回から9回 曲面や正多面体の向きについて。また、向きが付けられない曲面(クラインの壺、メビウスの帯など)について 10回から12回 対称性を捉えるための代数(群の概念)の解説 13回から14回 曲面や正多面体の対称性を群の作用として捉え、具体例で詳しく説明 15回 フィードパック [履修要件] self-containedな授業にするので、高校の数学の知識があれば十分。 [成績評価の方法・観点] 課題レポートにより評価する。独自の工夫が見られるものについては、高い点を与える。	旧群	B群	単位数	2単位	週コマ数	174		授業形態講		義(対面授業科目)		
正多面体や曲面を題材に、素朴な概念(「向き」や「対称性」)がいかに数学的に定式化されてい くかを図形を交えて説明する。直線の向きは、プラスとマイナス方向により区別されるが、一般の 空間では「向き」はどのように定義されるだろうか?また、空間の対称性は(一見すると抽象的な 群(ぐん)という概念により定式化される。これらを正多面体や曲面の場合に具体的に説明する。 [J]達目標] 日常用語として使われている幾何的な概念(向きや対称性)が、いかに数学的にきちんと定義され るかを、素朴な図形を通して理解する。 [J]菱計画と内容] [授業はあちむね以下の通り(ただし、受講者の背景や理解の状況に応じて、詳細は変更される可能 性がある。講義担当者が適切に決める。講義の進め方については適宜、指示をして、受講者の予習 ができるように十分に配慮する)。 1回から3回 「向き」や「対称性」とはなんだろうか?という疑問から背景を説明(平面の向き や正多面体の対称性) 4回から6回 線形代数からの必要事項の解説(線形写像、基底、行列式など) 7回から9回 曲面や正多面体の向きについて。また、向きが付けられない曲面(クラインの壺、 メビウスの帯など)について 10回から12回 対称性を捉えるための代数(群の概念)の解説 13回から14回 曲面や正多面体の対称性を群の作用として捉え、具体例で詳しく説明 15回 フィードパック [履修要件] self-containedな授業にするので、高校の数学の知識があれば十分。 [J[繊評価の方法・観点] 課題レポートにより評価する。独自の工夫が見られるものについては、高い点を与える。 [数4書] (使用しない	開講年度・ 開講期	2025 ·	2025・前期 曜時限 水5			配当学年 主として1				2 四性 対象学生 全学向		
	 【授業の概要・目的】 正多面体や曲面を題材に、素朴な概念(「向き」や「対称性」)がいかに数学的に定式化されていくかを図形を交えて説明する。直線の向きは、プラスとマイナス方向により区別されるが、一般の空間では「向き」はどのように定義されるだろうか?また、空間の対称性は(一見すると抽象的な、 群(ぐん)という概念により定式化される。これらを正多面体や曲面の場合に具体的に説明する。 【到達目標】 日常用語として使われている幾何的な概念(向きや対称性)が、いかに数学的にきちんと定義されるかを、素朴な図形を通して理解する。 【授業計画と内容】 [授業計画と内容] [授業はおおむね以下の通り(ただし、受講者の背景や理解の状況に応じて、詳細は変更される可能性がある。講義担当者が適切に決める。講義の進め方については適宜、指示をして、受講者の予習ができるように十分に配慮する)。 1回から3回 「向き」や「対称性」とはなんだろうか?という疑問から背景を説明(平面の向きや正多面体の対称性) 4回から6回 線形代数からの必要事項の解説(線形写像、基底、行列式など) 7回から9回 曲面や正多面体の向きについて。また、向きが付けられない曲面(クラインの壺、メビウスの帯など)について 10回から12回 対称性を捉えるための代数(群の概念)の解説 13回から14回 曲面や正多面体の対称性を群の作用として捉え、具体例で詳しく説明 15回 フィードバック [履修要件] self-containedな授業にするので、高校の数学の知識があれば十分。 [成績評価の方法・観点] 課題レポートにより評価する。独自の工夫が見られるものについては、高い点を与える。 											
								 数学	 探訪I	 II(2)へ続	<u>-</u>	

数学探訪II(2)

[参考書等]

(参考書)

授業中に紹介する

[授業外学修(予習・復習)等]

予習は必ずしも必要ないが、毎回の復習(1時間程度)が望ましい。 とくに、授業の前日に復習して おくことは、授業内容の理解に役立つ。

[その他(オフィスアワー等)]

[主要授業科目 (学部・学科名)]