科目ナン	バリング	j U-	U-LAS10 20001 LJ55									
授業科目名 (当者所属 名・氏名	工学研究科 情報学研究科 人間·環境学研究科 情報学研究科 国際高等教育院 理学研究科 理学研究科 理学研究科		教授 足立 教授 藤原		陽允匡宏亮隆尚雅圭介瑠義志吉弥武名介	
群	自然科学	科目群	É	分野(分類)	数学(発	凭 展)		使用言語		日本語		
旧群	B群	単位数	2単位	週コマ数	1コマ	マ 授業形態 講義(対面授業科目)						
開講年度・ 開講期			曜時限	月5/火2/火4/7 K4/木3/金4	K2/7K3/	配当学	年 主とし	て2回	対象学	生	理系向	
「短業の	町車・日	651										

[授業の概要・目的]

多変数関数の微分積分学は,数学の諸分野のみならず,物理学,工学等の広い領域の共通の基礎である.

この授業では,「微分積分学(講義・演義)A・B」および「線形代数学(講義・演義)A・B」または「微分積分学A・B」および「線形代数学A・B」を前提として,多変数微分積分学の理解を深めると同時に,ベクトル解析の基本的概念を具体的な例と共に解説する.

[到達目標]

多変数関数の微分積分の理解を深める.また平面および空間のベクトル場の演算や線積分・面積分 の意味を理解する.さらに,これらを活用する能力を身につける.

[授業計画と内容]

以下の各項目について講述する.各項目には,受講者の理解の程度を確認しながら,【】で指示した週数を充てる.各項目・小項目の講義の順序は固定したものではなく,担当者の講義方針と受講者の背景や理解の状況に応じて,講義担当者が適切に決める.講義の進め方については適宜,指示をして,受講者が予習をできるように十分に配慮する.

以下の内容を,フィードバック回を含め(試験週を除く)全15回にて行う.

- 1. ユークリッド空間のベクトル場とポテンシャル【4~5週】:
- ベクトルの演算(内積,外積)
- ベクトル場
- ベクトル場の演算(勾配,回転,発散など)
- |スカラーポテンシャル、ベクトルポテンシャル
- 2.線積分と面積分【6~7週】:

曲線の長さ,曲面積

線積分,面積分

積分定理(ガウスの発散定理,グリーンの公式,ストークスの定理)

なお上記の項目を学習する際には、

3.多変数関数の微積分【3~5週】:

|陰関数定理 , 逆関数定理 |

微分積分学続論 I - ベクトル解析(2)へ続く

微分積分学続論 I - ベクトル解析(2)

について,必要な箇所で適宜説明を加えるものとする.

[履修要件]

「微分積分学(講義・演義)A・B」および「線形代数学(講義・演義)A・B」,または「微分積分学A・B」および「線形代数学A・B」の履修を前提とする。

[成績評価の方法・観点]

主として定期試験による(詳しくは担当教員毎に授業中に指示する)。

[教科書]

担当教員ごとに指示する。

[参考書等]

(参考書)

授業中に紹介する

[授業外学修(予習・復習)等]

予習・復習とともに,演習問題を積極的に解いてみることが必要である.

[その他(オフィスアワー等)]

[主要授業科目(学部・学科名)]

理学部、総合人間学部