科目ナン	バリン	グ U-I	LAS14 200	38 LE68								
授業科目 [:] <英訳>	名 E2 Introd) Molecula	r Biotechnolo r		当者所 名・氏	属医	学研究	科	講師 E	rik WALIN	DA
群	自然科学	学科目群		分野 (分類)	生物学	各論	i)		1	使用言語	英語	
旧群	B群	単位数	2単位	週コマ数	1コマ		授業	形態	講義	(対面授	業科目)	
開講年度・ 開講期	2025 ·	前期	曜時限 金	2		配当	当学 年	主として	1・2回生	生 対象学:	主 理系向]
[授業の	既要・目	的]										
the cuttin recombin	g edge of ant techr	f science. nologies t	We will e o the produ	e introductior xplore how n action of tran	nolecular sgenic of	: biot rgani	echnolo sms.	ogy sha	apes o	our world, t	rom	
-				uTube lecture rcises, studen	-						ures, in-cla	.SS
-		•	ou will hav ounding the	e a solid und m.	erstandii	ng of	these to	echniq	ues, t	heir applic	ations, and	the
Students application				learning exp	eriences	and	case stu	udies tł	nat rel	late to real-	world	
[到達目#	漂]											
By the en	d of the	course, st	udents sho	uld be able to):							
* Explain * Apply t * Analyze * Engage organism	key mol hese tech e the soc in inform s. p critical	lecular bi nniques in ial, ethica ned deba thinking	ology tech hypotheti ll, and bioe tes on the f	n of genomes niques such a cal scenarios ethical issues risks and bene em-solving sk	involvin involvin in molec efits of g	binan Ig mi cular Gene t	crobial biotech herapy	, plant, nology , regen	, and a 7. erativ	animal biot	echnology.	
[授業計]	画と内容	§]										
		-	olecular Bi	otechnology								
* History * Overvie	and role w of fiel	of molec ds and su	ular biotec bfields wi	nological inn chnology, add thin molecula nology (selea	lressing j ar biotecl	poten hnolc	itial issues		1			
Week 2: 1	Nucleic A	Acids and	Gene Exp	pression								
* Basic st * Central			nd RNA lar biology					Introduc	tion to N	Molecular Biotech	nology-E2(2)へ続	<

Introduction to Molecular Biotechnology-E2(2)
* Principles of gene expression
* Protein translation at the ribosome
Week 3: Genomes and DNA Replication
 * Genome organization within chromosomes * Prokaryotic vs. eukaryotic genomes, genome composition, and complexity * DNA replication, concluding the central dogma and exploring gene structure
Week 4: Epigenetics and Gene Regulation
 * Chromatin conformation and epigenetic modifications * Transcriptional regulation of gene expression * mRNA modifications, miRNA/siRNA, gene silencing, and siRNA-based drugs
Week 5: Cloning and Gene Expression Control
 * Translational and post-translational regulation of gene expression * Molecular cloning I: biotech methods for DNA analysis * Molecular cloning II: plasmid components and restriction enzymes
Week 6: Recombinant DNA and Library Construction
 * Sticky-end DNA cloning * Applications of recombinant DNA technology in transgenic animals and plants * Genomic and cDNA libraries, hybridization techniques (Southern Blotting, cDNA library screening) * PCR and its invention by Karry Mullis
Week 7: DNA Sequencing and Hybridization
 * DNA microarray and Yeast Two-Hybrid (Y2H) techniques * Importance of DNA sequencing * Sanger sequencing (di-deoxy NTPs) * Southern and Northern blotting, In-situ hybridization
Week 8: Genomics and Recombinant Proteins
 * RT-PCR and In-situ hybridization * Genomics, personalized medicine, bioinformatics, AI * Recombinant proteins * Expression of target genes in prokaryotic cells
Week 9: Microbial Biotechnology and Protein Purification
 * Overview of microbial biotechnology * Protein extraction and purification techniques * Chromatography methods (gel filtration, ion-exchange, affinity chromatography)
Introduction to Molecular Biotechnology-E2(3)へ続く

Introduction to Molecul	ar Biotechnology-E2(3)
-------------------------	------------------------

Introduction to molecular biotechnology-E2(3)
* Industrial applications: composting and other microbial biotechnology examples
Week 10: Microbial Applications and Diagnostics
 * Applications of bacteria and yeast in biotechnology * Microbial genomics and diagnostics, SDS-PAGE, Western blotting, antibodies * Microbial detection methods (ELISA, PCR, hybridization) * Production of therapeutic proteins and vaccines
Week 11: Microbial Enzymes and Biopolymers
 * Microbial enzymes and their engineering for biotechnological applications * Strategies for antibiotic development and studies * Commercial biopolymers
Week 12: Animal Biotechnology
 * Introduction to animal biotechnology and transgenic animals * Creating transgenic animals using retrovirus techniques * Cloning and applications of transgenic animals
Week 13: Transgenic Plants
 * Methods and applications of transgenic plants * Further exploration of transgenic plant technology
Week 14: CRISPR/Cas9 and the Future of Biotechnology
 * Basics of CRISPR/Cas9 technology * Applications: gene knockouts, base-editing, and current advances in CRISPR * Review of the semester's key concepts
Week 15: Examination
Week 16: Feedback and Review
* Course wrap-up, feedback session, and open discussion on examination results and final course insights.
[履修要件]
特になし
[成績評価の方法・観点]
Class Attendance and Participation (30%): Active participation in discussions, group work, and quick presentations.
Weekly Quizzes (30%): Quizzes conducted through (online) MS Forms serve as a reflection on the previou

Introduction to Molecular Biotechnology-E2(4)へ続く

Introduction to Molecular Biotechnology-E2(4)

week 's learning. While these quizzes are not scored directly, student participation and the insights shared during discussions about the quiz will be evaluated.

Final Exam (40%): A comprehensive examination covering all course content.

[教科書]

Full handouts and videos will be distributed in class

[参考書等]

(参考書)授業中に紹介する

[授業外学修(予習・復習)等]

Students are expected to review handouts and videos uploaded to PandA/YouTube before each class. Each week, students should complete the assigned readings, watch the provided videos, and prepare responses to discussion questions, which will be reviewed during the in-class session. Weekly quizzes and active participation will help assess your understanding of the material.

In addition to scientific concepts, we will explore the broader societal impacts of molecular biotechnology. Ethical issues will be integrated into many class discussions, with dedicated sessions on the moral dilemmas of transgenic organisms, gene editing, and medical biotechnology. Students are encouraged to bring their perspectives and critically engage with these complex topics.

[その他(オフィスアワー等)]

[主要授業科目 (学部・学科名)]