Course number		U-LAS70 10002 SE50										
Course title (and course title in English)	ILAS S Biology コレー ILAS S in Biol	ILAS Seminar-E2 :Computer simulations in Biology (生物学におけるコンピュータシミ ュレーション) ILAS Seminar-E2 :Computer simulations in Biology Graduate School of Science and department of affiliation Graduate School of Science Senior Lecturer,BRANDANI, Giovanni · Bru										ni • Bruno
Group	Seminars in Liberal Arts a		s and S	nd Sciences Num		er of credits	2		Number of weekly time blocks		1	
Class style semi (Fac		nar ce-to-face course) I	Year/seme	esters	2025 • First semest		er	Quota (Freshma	an) ¹	15 (15)	
Target year M		ainly 1st year students Eli		gible students F		or all majors		Days and periods		Wed.5		
Classroom	25, Yoshida-South Campus Bldg. No. 4							Lan inst	anguage of struction English			
Keyword	computer simulations / Python / numerical methods / reaction kinetics / gene expression											
[Overview and purpose of the course]												
to investigate problems of great biological interest. For example, we will study how populations of prey and predators change over time in a given ecological system, understand how bacteria search for food around their environment, and predict the spread of epidemics. The course is structured as a series of tutorials (as Jupyter notebooks) where students implement a model for a given biological system and run simulations to learn more about it. In the final project, students will investigate a problem of choice, and present their results for the final evaluation.												
[Course objectives]												
To be able to program computer simulations using the Python programming language. To understand how models are routinely used to in biology. To learn about the process of scientific discovery: how to ask your own questions and design your own "computer experiments" to give an answer.												
[Course schedule and contents)]												
Schedule (r - Introducti - Programn - Chemical - Predator-I - Epidemio - Final proj (Total:14 cl	nay be si on to the ning in P kinetics orey pop logy ect asses an	ubject to change e course Python ulation dynamic Id 1 feedback)	, some	e topics a	re cover	ed in multiple	e classe	s):				

ILAS Seminar-E2: Computer simulations in Biology (生物学におけるコンピュータシミュレーション)(2)

[Course requirements]

Course open to all students. In order to practice with coding, each student should work on a laptop during classes.

[Evaluation methods and policy]

Class attendance and active participation (50%), final project and oral presentation (50%)

[Textbooks]

Handouts will be provided.

[Study outside of class (preparation and review)]

If conditions permit it, in one or more occasions students will be divided into small groups to work together on a project.

[Other information (office hours, etc.)]

Please feel free to come to my office at any time, or to send an email to brandani@biophys.kyoto-u.ac.jp

[Essential courses]