


授業の進捗状況や受講生の習熟度などによって「授業計画と内容」,「成績評価の方法」が変更になる場合があります。
(科目名) |
線形代数学(講義・演義)B 1φ2
|
(英 訳) | Linear Algebra with Exercises B | ||||
---|---|---|---|---|---|---|---|
(担当教員) |
|
||||||
(群) | 自然 | ||||||
(分野(分類)) | 数学(基礎) | ||||||
(使用言語) | 日本語 | ||||||
(旧群) | B群 | ||||||
(単位数) | 3 単位 | ||||||
(週コマ数) | 2 コマ | ||||||
(授業形態) | 講義 | ||||||
(開講年度・開講期) | 2025・後期 | ||||||
(配当学年) | 主として1回生 | ||||||
(対象学生) | 理系向 | ||||||
(曜時限) | 水2・木2 |
||||||
(教室) | 共東32 | ||||||
(授業の概要・目的) | 線形代数学は,微分積分学と共に現代の科学技術を支える数学の根幹をなす.この科目では,将来の応用に必要な線形代数学の基礎を解説する. 線形代数学(講義・演義)Bでは,ベクトル空間,線形写像などの基礎概念を体系的に学ぶと共に,それらの概念を行列に応用してさらに理解を深める. |
||||||
(到達目標) | ベクトル空間,線形写像などの抽象概念を体系的に理解すること,ならびにそれを通してベクトル,行列の理論的な基礎を固めることを目標とする.その際には,ベクトルや行列等のより進んだ取り扱いに習熟することも目指す. | ||||||
(授業計画と内容) | この科目は講義と演義とが一体として構成されている. 演義は原則として隔週で開講される.演義においては,受講者は問題演習や課題学習に積極的に取り組むことにより,それまでに講義で学んだ事柄の理解を深める. 以下に挙げるのは講義の計画、内容である.各項目には,受講者の理解の程度を確認しながら,【 】で指示した週数を充てる.各項目・小項目の講義の順序は固定したものではなく,担当者の講義方針と受講者の背景や理解の状況に応じて,講義担当者が適切に決める.講義の進め方については適宜,指示をして,受講者が予習をできるように十分に配慮する. 以下の内容を,フィードバック回を含め(試験週を除く)全15回にて行う. 1. 抽象ベクトル空間【5〜6週】: 一次結合,一次独立,基底,次元,部分空間,線形写像,核と像 線形写像と行列,基底の変換,直和 2. 計量ベクトル空間【3〜4週】: 内積,正規直交基底,直交行列,ユニタリ行列,直交補空間 3. 固有値と行列の対角化【5〜6週】: 固有値と固有ベクトル,固有多項式,固有空間 行列の対角化,行列の上三角化,ケーリー.ハミルトンの定理 対称行列の直交行列による対角化 二次形式* エルミート行列のユニタリ行列による対角化* アステリスク * はオプション |
||||||
(履修要件) |
特になし
|
||||||
(成績評価の方法・観点及び達成度) | 演義担当教員によって平常点(演習への参加状況,課題への取組状況など)から得られた演義成績(30 点満点)をもとに,講義担当教員が期末試験を用いて,演義成績以上,100 点以下の範囲で 評価する. 教員によっては演義以外の平常点(レポート、中間試験などによるもの)を参考にすることもある.詳細は授業中に説明する. 本科目の評価が不合格であった履修者のうち,一定の基準以上の成績の者は再試験を受験できる.再試験の概要は KULASIS で履修者に通知する.なお再試験は3月末に実施予定である. |
||||||
(教科書) |
担当教員毎に指示する.
|
||||||
(参考書等) |
授業中に紹介する
|
||||||
(授業外学習(予習・復習)等) | 予習,復習とともに,演習問題を積極的に解いてみることが必要である. | ||||||
(その他(オフィスアワー等)) | 同一クラスにおいて前期開講の線形代数学(講義・演義)Aとの連続した履修を推奨する.また微分積分学(講義・演義)B を並行して受講することが望ましい. |
||||||
線形代数学(講義・演義)B
1φ2 (科目名)
Linear Algebra with Exercises B
(英 訳)
|
|
||||||
(群) 自然 (分野(分類)) 数学(基礎) (使用言語) 日本語 | |||||||
(旧群) B群 (単位数) 3 単位 (週コマ数) 2 コマ (授業形態) 講義 | |||||||
(開講年度・ 開講期) 2025・後期 (配当学年) 主として1回生 (対象学生) 理系向 |
|||||||
(曜時限)
水2・木2 (教室) 共東32 |
|||||||
(授業の概要・目的)
線形代数学は,微分積分学と共に現代の科学技術を支える数学の根幹をなす.この科目では,将来の応用に必要な線形代数学の基礎を解説する.
線形代数学(講義・演義)Bでは,ベクトル空間,線形写像などの基礎概念を体系的に学ぶと共に,それらの概念を行列に応用してさらに理解を深める. |
|||||||
(到達目標)
ベクトル空間,線形写像などの抽象概念を体系的に理解すること,ならびにそれを通してベクトル,行列の理論的な基礎を固めることを目標とする.その際には,ベクトルや行列等のより進んだ取り扱いに習熟することも目指す.
|
|||||||
(授業計画と内容)
この科目は講義と演義とが一体として構成されている. 演義は原則として隔週で開講される.演義においては,受講者は問題演習や課題学習に積極的に取り組むことにより,それまでに講義で学んだ事柄の理解を深める. 以下に挙げるのは講義の計画、内容である.各項目には,受講者の理解の程度を確認しながら,【 】で指示した週数を充てる.各項目・小項目の講義の順序は固定したものではなく,担当者の講義方針と受講者の背景や理解の状況に応じて,講義担当者が適切に決める.講義の進め方については適宜,指示をして,受講者が予習をできるように十分に配慮する. 以下の内容を,フィードバック回を含め(試験週を除く)全15回にて行う. 1. 抽象ベクトル空間【5〜6週】: 一次結合,一次独立,基底,次元,部分空間,線形写像,核と像 線形写像と行列,基底の変換,直和 2. 計量ベクトル空間【3〜4週】: 内積,正規直交基底,直交行列,ユニタリ行列,直交補空間 3. 固有値と行列の対角化【5〜6週】: 固有値と固有ベクトル,固有多項式,固有空間 行列の対角化,行列の上三角化,ケーリー.ハミルトンの定理 対称行列の直交行列による対角化 二次形式* エルミート行列のユニタリ行列による対角化* アステリスク * はオプション |
|||||||
(履修要件)
特になし
|
|||||||
(成績評価の方法・観点及び達成度)
演義担当教員によって平常点(演習への参加状況,課題への取組状況など)から得られた演義成績(30 点満点)をもとに,講義担当教員が期末試験を用いて,演義成績以上,100 点以下の範囲で 評価する.
教員によっては演義以外の平常点(レポート、中間試験などによるもの)を参考にすることもある.詳細は授業中に説明する. 本科目の評価が不合格であった履修者のうち,一定の基準以上の成績の者は再試験を受験できる.再試験の概要は KULASIS で履修者に通知する.なお再試験は3月末に実施予定である. |
|||||||
(教科書)
担当教員毎に指示する.
|
|||||||
(参考書等)
授業中に紹介する
|
|||||||
(授業外学習(予習・復習)等)
予習,復習とともに,演習問題を積極的に解いてみることが必要である.
|
|||||||
(その他(オフィスアワー等))
同一クラスにおいて前期開講の線形代数学(講義・演義)Aとの連続した履修を推奨する.また微分積分学(講義・演義)B を並行して受講することが望ましい.
|
|||||||
授業の進捗状況や受講生の習熟度などによって「授業計画と内容」,「成績評価の方法」が変更になる場合があります。
(科目名) |
線形代数学B 1T23, 1T24
|
(英 訳) | Linear Algebra B | ||||
---|---|---|---|---|---|---|---|
(担当教員) |
|
||||||
(群) | 自然 | ||||||
(分野(分類)) | 数学(基礎) | ||||||
(使用言語) | 日本語 | ||||||
(旧群) | B群 | ||||||
(単位数) | 2 単位 | ||||||
(週コマ数) | 1 コマ | ||||||
(授業形態) | 講義 | ||||||
(開講年度・開講期) | 2025・後期 | ||||||
(配当学年) | 主として1回生 | ||||||
(対象学生) | 理系向 | ||||||
(曜時限) | 水3 |
||||||
(教室) | 共東41 | ||||||
(授業の概要・目的) | 線形代数学は,微分積分学と共に現代の科学技術を支える数学の根底をなす.この科目では,将来の応用に必要な線形代数学の基礎を解説する.線形代数学Bでは,ベクトル空間,線形写像などの基礎概念を体系的に学ぶと共に,それらの概念を行列に応用してさらに理解を深める. | ||||||
(到達目標) | ベクトルや行列等の具体的な取り扱い方に加えて,応用上重要な固有値と行列の対角化などに習熟するとともに,ベクトル空間,線形写像などの抽象概念を体系的に理解し,それを通してベクトル,行列の理論的な基礎を固めることを目標とする. | ||||||
(授業計画と内容) | 以下の内容を,フィードバック回を含め(試験週を除く)全15回にて行う. 1. 線形写像[2週]: 線形写像と行列,基底の変換,核と像 2. 階数と連立一次方程式[3週]: 行列の基本変形,階数,連立一次方程式の解法,解の構造 3. 固有値と行列の対角化[7週]: 固有値と固有ベクトル,固有多項式,固有空間,行列の上三角化,行列の対角化,対称行列の直交行列による対角化,エルミート行列のユニタリ行列による対角化,ジョルダンの標準形* 4. 計量ベクトル空間[3週]: 内積,正規直交基底,直交化,直交行列,ユニタリ行列,直交補空間,二次形式 ※それまでに学んだ事柄の理解を深めるため,問題演習や課題学習を適宜,授業に取り入れる. ※アステリスク* はオプション |
||||||
(履修要件) |
線形代数学Aの内容を既知とする。
|
||||||
(成績評価の方法・観点及び達成度) | 習熟度を高め理解を深めるためにレポートの提出を求めますが、成績は定期試験によって評価します。 | ||||||
(教科書) |
授業中に指示する
|
||||||
(参考書等) |
授業中に紹介する
|
||||||
(授業外学習(予習・復習)等) | 予習,復習とともに,レポート課題だけでなく,教科書等の演習問題を積極的に解いてみることが必要である. | ||||||
(その他(オフィスアワー等)) | 工学部情報学科に所属する学生(回生を問わず)のみが履修できます。 クラス配当の線形代数学A,Bは一連の科目であり、前期と同一クラスでの履修を推奨する。また、微分積分学Bを並行して履修することが望ましい。 |
||||||
線形代数学B
1T23, 1T24 (科目名)
Linear Algebra B
(英 訳)
|
|
||||||
(群) 自然 (分野(分類)) 数学(基礎) (使用言語) 日本語 | |||||||
(旧群) B群 (単位数) 2 単位 (週コマ数) 1 コマ (授業形態) 講義 | |||||||
(開講年度・ 開講期) 2025・後期 (配当学年) 主として1回生 (対象学生) 理系向 |
|||||||
(曜時限)
水3 (教室) 共東41 |
|||||||
(授業の概要・目的)
線形代数学は,微分積分学と共に現代の科学技術を支える数学の根底をなす.この科目では,将来の応用に必要な線形代数学の基礎を解説する.線形代数学Bでは,ベクトル空間,線形写像などの基礎概念を体系的に学ぶと共に,それらの概念を行列に応用してさらに理解を深める.
|
|||||||
(到達目標)
ベクトルや行列等の具体的な取り扱い方に加えて,応用上重要な固有値と行列の対角化などに習熟するとともに,ベクトル空間,線形写像などの抽象概念を体系的に理解し,それを通してベクトル,行列の理論的な基礎を固めることを目標とする.
|
|||||||
(授業計画と内容)
以下の内容を,フィードバック回を含め(試験週を除く)全15回にて行う. 1. 線形写像[2週]: 線形写像と行列,基底の変換,核と像 2. 階数と連立一次方程式[3週]: 行列の基本変形,階数,連立一次方程式の解法,解の構造 3. 固有値と行列の対角化[7週]: 固有値と固有ベクトル,固有多項式,固有空間,行列の上三角化,行列の対角化,対称行列の直交行列による対角化,エルミート行列のユニタリ行列による対角化,ジョルダンの標準形* 4. 計量ベクトル空間[3週]: 内積,正規直交基底,直交化,直交行列,ユニタリ行列,直交補空間,二次形式 ※それまでに学んだ事柄の理解を深めるため,問題演習や課題学習を適宜,授業に取り入れる. ※アステリスク* はオプション |
|||||||
(履修要件)
線形代数学Aの内容を既知とする。
|
|||||||
(成績評価の方法・観点及び達成度)
習熟度を高め理解を深めるためにレポートの提出を求めますが、成績は定期試験によって評価します。
|
|||||||
(教科書)
授業中に指示する
|
|||||||
(参考書等)
授業中に紹介する
|
|||||||
(授業外学習(予習・復習)等)
予習,復習とともに,レポート課題だけでなく,教科書等の演習問題を積極的に解いてみることが必要である.
|
|||||||
(その他(オフィスアワー等))
工学部情報学科に所属する学生(回生を問わず)のみが履修できます。
クラス配当の線形代数学A,Bは一連の科目であり、前期と同一クラスでの履修を推奨する。また、微分積分学Bを並行して履修することが望ましい。 |
|||||||
授業の進捗状況や受講生の習熟度などによって「授業計画と内容」,「成績評価の方法」が変更になる場合があります。
(科目名) |
微分積分学(講義・演義)B 1H1, 1H2, 1H3, 1P1, 1P2
|
(英 訳) | Calculus with Exercises B | ||||
---|---|---|---|---|---|---|---|
(担当教員) |
|
||||||
(群) | 自然 | ||||||
(分野(分類)) | 数学(基礎) | ||||||
(使用言語) | 日本語 | ||||||
(旧群) | B群 | ||||||
(単位数) | 3 単位 | ||||||
(週コマ数) | 2 コマ | ||||||
(授業形態) | 講義 | ||||||
(開講年度・開講期) | 2025・後期 | ||||||
(配当学年) | 主として1回生 | ||||||
(対象学生) | 理系向 | ||||||
(曜時限) | 水3・木2 |
||||||
(教室) | 共南01 | ||||||
(授業の概要・目的) | 微分積分学は,線形代数学と共に現代の科学技術を支える数学の根幹をなす.この科目では,将来の応用に必要な微分積分学の基礎を解説する. 微分積分学(講義・演義)Bでは,微分積分学(講義・演義)Aに続いて一変数関数の微分積分の理解をさらに深めた後に,多変数関数の微分積分について学ぶ. |
||||||
(到達目標) | 一変数および多変数関数の微分積分の理論的な基礎を理解すること,ならびに,それを用いた数学的解析の手法を修得して応用できるようになることを目標とする. | ||||||
(授業計画と内容) | この科目は講義と演義とが一体となって構成されている. 演義は原則として隔週で開講される.演義においては,受講者は問題練習や課題学習に積極的に取り組むことにより,それまでに講義で学んだ事柄の理解を深める. 以下に挙げるのは講義の計画・内容である.各項目には,受講者の理解の程度を確認しながら,【 】で指示した週数を充てる.各項目・小項目の講義の順序は固定したものではなく,担当者の講義方針と受講者の背景や理解の状況に応じて,講義担当者が適切に決める.講義の進め方については適宜,指示をして,受講者が予習をできるように十分に配慮する. 以下の内容を,フィードバック回を含め(試験週を除く)全15回にて行う. 1.級数【3〜5週】: 無限級数(収束の判定法,絶対収束と条件収束) べき級数(収束半径,項別微積分) 関数列・関数項級数*(一様収束,項別微積分) 2.平面および空間の点集合【2週】: 距離,点列の収束,開集合・閉集合 連続関数 3.多変数関数の微分法【4〜5週】: 偏微分,微分(全微分)可能性,一次近似,接平面,勾配ベクトル 合成関数の微分(連鎖律),ヤコビ行列,ヤコビ行列式 テイラーの定理,極値問題 条件付き極値問題(陰関数定理) 4.多変数関数の積分法【4〜5週】: 重積分,累次積分,変数変換公式,面積・体積 広義積分,ガンマ関数とベータ関数 アステリスク * はオプション |
||||||
(履修要件) |
特になし
|
||||||
(成績評価の方法・観点及び達成度) | 演義担当教員によって平常点(演習への参加状況,課題への取組状況など)から得られた演義成績(30 点満点)をもとに,講義担当教員が期末試験を用いて,演義成績以上,100 点以下の範囲で 評価する. 教員によっては演義以外の平常点(レポート、中間試験などによるもの)を参考にすることもある.詳細は授業中に説明する. 本科目の評価が不合格であった履修者のうち,一定の基準以上の成績の者は再試験を受験できる.再試験の概要は KULASIS で履修者に通知する.なお再試験は3月末に実施予定である. |
||||||
(教科書) |
担当教員毎に指示する.
|
||||||
(参考書等) |
授業中に紹介する
|
||||||
(授業外学習(予習・復習)等) | 予習,復習とともに,演習問題を積極的に解いてみることが必要である. | ||||||
(その他(オフィスアワー等)) | 同一クラスにおいて前期開講の微分積分学(講義・演義)Aとの連続した履修を推奨する.また線形代数学(講義・演義)B を並行して受講することが望ましい. |
||||||
微分積分学(講義・演義)B
1H1, 1H2, 1H3, 1P1, 1P2 (科目名)
Calculus with Exercises B
(英 訳)
|
|
||||||
(群) 自然 (分野(分類)) 数学(基礎) (使用言語) 日本語 | |||||||
(旧群) B群 (単位数) 3 単位 (週コマ数) 2 コマ (授業形態) 講義 | |||||||
(開講年度・ 開講期) 2025・後期 (配当学年) 主として1回生 (対象学生) 理系向 |
|||||||
(曜時限)
水3・木2 (教室) 共南01 |
|||||||
(授業の概要・目的)
微分積分学は,線形代数学と共に現代の科学技術を支える数学の根幹をなす.この科目では,将来の応用に必要な微分積分学の基礎を解説する.
微分積分学(講義・演義)Bでは,微分積分学(講義・演義)Aに続いて一変数関数の微分積分の理解をさらに深めた後に,多変数関数の微分積分について学ぶ. |
|||||||
(到達目標)
一変数および多変数関数の微分積分の理論的な基礎を理解すること,ならびに,それを用いた数学的解析の手法を修得して応用できるようになることを目標とする.
|
|||||||
(授業計画と内容)
この科目は講義と演義とが一体となって構成されている. 演義は原則として隔週で開講される.演義においては,受講者は問題練習や課題学習に積極的に取り組むことにより,それまでに講義で学んだ事柄の理解を深める. 以下に挙げるのは講義の計画・内容である.各項目には,受講者の理解の程度を確認しながら,【 】で指示した週数を充てる.各項目・小項目の講義の順序は固定したものではなく,担当者の講義方針と受講者の背景や理解の状況に応じて,講義担当者が適切に決める.講義の進め方については適宜,指示をして,受講者が予習をできるように十分に配慮する. 以下の内容を,フィードバック回を含め(試験週を除く)全15回にて行う. 1.級数【3〜5週】: 無限級数(収束の判定法,絶対収束と条件収束) べき級数(収束半径,項別微積分) 関数列・関数項級数*(一様収束,項別微積分) 2.平面および空間の点集合【2週】: 距離,点列の収束,開集合・閉集合 連続関数 3.多変数関数の微分法【4〜5週】: 偏微分,微分(全微分)可能性,一次近似,接平面,勾配ベクトル 合成関数の微分(連鎖律),ヤコビ行列,ヤコビ行列式 テイラーの定理,極値問題 条件付き極値問題(陰関数定理) 4.多変数関数の積分法【4〜5週】: 重積分,累次積分,変数変換公式,面積・体積 広義積分,ガンマ関数とベータ関数 アステリスク * はオプション |
|||||||
(履修要件)
特になし
|
|||||||
(成績評価の方法・観点及び達成度)
演義担当教員によって平常点(演習への参加状況,課題への取組状況など)から得られた演義成績(30 点満点)をもとに,講義担当教員が期末試験を用いて,演義成績以上,100 点以下の範囲で 評価する.
教員によっては演義以外の平常点(レポート、中間試験などによるもの)を参考にすることもある.詳細は授業中に説明する. 本科目の評価が不合格であった履修者のうち,一定の基準以上の成績の者は再試験を受験できる.再試験の概要は KULASIS で履修者に通知する.なお再試験は3月末に実施予定である. |
|||||||
(教科書)
担当教員毎に指示する.
|
|||||||
(参考書等)
授業中に紹介する
|
|||||||
(授業外学習(予習・復習)等)
予習,復習とともに,演習問題を積極的に解いてみることが必要である.
|
|||||||
(その他(オフィスアワー等))
同一クラスにおいて前期開講の微分積分学(講義・演義)Aとの連続した履修を推奨する.また線形代数学(講義・演義)B を並行して受講することが望ましい.
|
|||||||
授業の進捗状況や受講生の習熟度などによって「授業計画と内容」,「成績評価の方法」が変更になる場合があります。
(科目名) |
微分積分学(講義・演義)B 1T7
|
(英 訳) | Calculus with Exercises B | ||||
---|---|---|---|---|---|---|---|
(担当教員) |
|
||||||
(群) | 自然 | ||||||
(分野(分類)) | 数学(基礎) | ||||||
(使用言語) | 日本語 | ||||||
(旧群) | B群 | ||||||
(単位数) | 3 単位 | ||||||
(週コマ数) | 2 コマ | ||||||
(授業形態) | 講義 | ||||||
(開講年度・開講期) | 2025・後期 | ||||||
(配当学年) | 主として1回生 | ||||||
(対象学生) | 理系向 | ||||||
(曜時限) | 水3・金1 |
||||||
(教室) | 共北32 | ||||||
(授業の概要・目的) | 微分積分学は,線形代数学と共に現代の科学技術を支える数学の根幹をなす.この科目では,将来の応用に必要な微分積分学の基礎を解説する. 微分積分学(講義・演義)Bでは,微分積分学(講義・演義)Aに続いて一変数関数の微分積分の理解をさらに深めた後に,多変数関数の微分積分について学ぶ. |
||||||
(到達目標) | 一変数および多変数関数の微分積分の理論的な基礎を理解すること,ならびに,それを用いた数学的解析の手法を修得して応用できるようになることを目標とする. | ||||||
(授業計画と内容) | この科目は講義と演義とが一体となって構成されている. 演義は原則として隔週で開講される.演義においては,受講者は問題練習や課題学習に積極的に取り組むことにより,それまでに講義で学んだ事柄の理解を深める. 以下に挙げるのは講義の計画・内容である.各項目には,受講者の理解の程度を確認しながら,【 】で指示した週数を充てる.各項目・小項目の講義の順序は固定したものではなく,担当者の講義方針と受講者の背景や理解の状況に応じて,講義担当者が適切に決める.講義の進め方については適宜,指示をして,受講者が予習をできるように十分に配慮する. 以下の内容を,フィードバック回を含め(試験週を除く)全15回にて行う. 1.級数【3〜5週】: 無限級数(収束の判定法,絶対収束と条件収束) べき級数(収束半径,項別微積分) 関数列・関数項級数*(一様収束,項別微積分) 2.平面および空間の点集合【2週】: 距離,点列の収束,開集合・閉集合 連続関数 3.多変数関数の微分法【4〜5週】: 偏微分,微分(全微分)可能性,一次近似,接平面,勾配ベクトル 合成関数の微分(連鎖律),ヤコビ行列,ヤコビ行列式 テイラーの定理,極値問題 条件付き極値問題(陰関数定理) 4.多変数関数の積分法【4〜5週】: 重積分,累次積分,変数変換公式,面積・体積 広義積分,ガンマ関数とベータ関数 アステリスク * はオプション |
||||||
(履修要件) |
特になし
|
||||||
(成績評価の方法・観点及び達成度) | 演義担当教員によって平常点(演習への参加状況,課題への取組状況など)から得られた演義成績(30 点満点)をもとに,講義担当教員が期末試験を用いて,演義成績以上,100 点以下の範囲で 評価する. 教員によっては演義以外の平常点(レポート、中間試験などによるもの)を参考にすることもある.詳細は授業中に説明する. 本科目の評価が不合格であった履修者のうち,一定の基準以上の成績の者は再試験を受験できる.再試験の概要は KULASIS で履修者に通知する.なお再試験は3月末に実施予定である. |
||||||
(教科書) |
担当教員毎に指示する.
|
||||||
(参考書等) |
授業中に紹介する
|
||||||
(授業外学習(予習・復習)等) | 予習,復習とともに,演習問題を積極的に解いてみることが必要である. | ||||||
(その他(オフィスアワー等)) | 同一クラスにおいて前期開講の微分積分学(講義・演義)Aとの連続した履修を推奨する.また線形代数学(講義・演義)B を並行して受講することが望ましい. |
||||||
微分積分学(講義・演義)B
1T7 (科目名)
Calculus with Exercises B
(英 訳)
|
|
||||||
(群) 自然 (分野(分類)) 数学(基礎) (使用言語) 日本語 | |||||||
(旧群) B群 (単位数) 3 単位 (週コマ数) 2 コマ (授業形態) 講義 | |||||||
(開講年度・ 開講期) 2025・後期 (配当学年) 主として1回生 (対象学生) 理系向 |
|||||||
(曜時限)
水3・金1 (教室) 共北32 |
|||||||
(授業の概要・目的)
微分積分学は,線形代数学と共に現代の科学技術を支える数学の根幹をなす.この科目では,将来の応用に必要な微分積分学の基礎を解説する.
微分積分学(講義・演義)Bでは,微分積分学(講義・演義)Aに続いて一変数関数の微分積分の理解をさらに深めた後に,多変数関数の微分積分について学ぶ. |
|||||||
(到達目標)
一変数および多変数関数の微分積分の理論的な基礎を理解すること,ならびに,それを用いた数学的解析の手法を修得して応用できるようになることを目標とする.
|
|||||||
(授業計画と内容)
この科目は講義と演義とが一体となって構成されている. 演義は原則として隔週で開講される.演義においては,受講者は問題練習や課題学習に積極的に取り組むことにより,それまでに講義で学んだ事柄の理解を深める. 以下に挙げるのは講義の計画・内容である.各項目には,受講者の理解の程度を確認しながら,【 】で指示した週数を充てる.各項目・小項目の講義の順序は固定したものではなく,担当者の講義方針と受講者の背景や理解の状況に応じて,講義担当者が適切に決める.講義の進め方については適宜,指示をして,受講者が予習をできるように十分に配慮する. 以下の内容を,フィードバック回を含め(試験週を除く)全15回にて行う. 1.級数【3〜5週】: 無限級数(収束の判定法,絶対収束と条件収束) べき級数(収束半径,項別微積分) 関数列・関数項級数*(一様収束,項別微積分) 2.平面および空間の点集合【2週】: 距離,点列の収束,開集合・閉集合 連続関数 3.多変数関数の微分法【4〜5週】: 偏微分,微分(全微分)可能性,一次近似,接平面,勾配ベクトル 合成関数の微分(連鎖律),ヤコビ行列,ヤコビ行列式 テイラーの定理,極値問題 条件付き極値問題(陰関数定理) 4.多変数関数の積分法【4〜5週】: 重積分,累次積分,変数変換公式,面積・体積 広義積分,ガンマ関数とベータ関数 アステリスク * はオプション |
|||||||
(履修要件)
特になし
|
|||||||
(成績評価の方法・観点及び達成度)
演義担当教員によって平常点(演習への参加状況,課題への取組状況など)から得られた演義成績(30 点満点)をもとに,講義担当教員が期末試験を用いて,演義成績以上,100 点以下の範囲で 評価する.
教員によっては演義以外の平常点(レポート、中間試験などによるもの)を参考にすることもある.詳細は授業中に説明する. 本科目の評価が不合格であった履修者のうち,一定の基準以上の成績の者は再試験を受験できる.再試験の概要は KULASIS で履修者に通知する.なお再試験は3月末に実施予定である. |
|||||||
(教科書)
担当教員毎に指示する.
|
|||||||
(参考書等)
授業中に紹介する
|
|||||||
(授業外学習(予習・復習)等)
予習,復習とともに,演習問題を積極的に解いてみることが必要である.
|
|||||||
(その他(オフィスアワー等))
同一クラスにおいて前期開講の微分積分学(講義・演義)Aとの連続した履修を推奨する.また線形代数学(講義・演義)B を並行して受講することが望ましい.
|
|||||||
授業の進捗状況や受講生の習熟度などによって「授業計画と内容」,「成績評価の方法」が変更になる場合があります。
(科目名) |
微分積分学(講義・演義)B 1T9
|
(英 訳) | Calculus with Exercises B | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
(担当教員) |
|
||||||||||||
(群) | 自然 | ||||||||||||
(分野(分類)) | 数学(基礎) | ||||||||||||
(使用言語) | 日本語 | ||||||||||||
(旧群) | B群 | ||||||||||||
(単位数) | 3 単位 | ||||||||||||
(週コマ数) | 2 コマ | ||||||||||||
(授業形態) | 講義 | ||||||||||||
(開講年度・開講期) | 2025・後期 | ||||||||||||
(配当学年) | 主として1回生 | ||||||||||||
(対象学生) | 理系向 | ||||||||||||
(曜時限) | 水3・金1 |
||||||||||||
(教室) | 共西31 | ||||||||||||
(授業の概要・目的) | 微分積分学は,線形代数学と共に現代の科学技術を支える数学の根幹をなす.この科目では,将来の応用に必要な微分積分学の基礎を解説する. 微分積分学(講義・演義)Bでは,微分積分学(講義・演義)Aに続いて一変数関数の微分積分の理解をさらに深めた後に,多変数関数の微分積分について学ぶ. |
||||||||||||
(到達目標) | 一変数および多変数関数の微分積分の理論的な基礎を理解すること,ならびに,それを用いた数学的解析の手法を修得して応用できるようになることを目標とする. | ||||||||||||
(授業計画と内容) | この科目は講義と演義とが一体となって構成されている. 演義は原則として隔週で開講される.演義においては,受講者は問題練習や課題学習に積極的に取り組むことにより,それまでに講義で学んだ事柄の理解を深める. 以下に挙げるのは講義の計画・内容である.各項目には,受講者の理解の程度を確認しながら,【 】で指示した週数を充てる.各項目・小項目の講義の順序は固定したものではなく,担当者の講義方針と受講者の背景や理解の状況に応じて,講義担当者が適切に決める.講義の進め方については適宜,指示をして,受講者が予習をできるように十分に配慮する. 以下の内容を,フィードバック回を含め(試験週を除く)全15回にて行う. 1.級数【3〜5週】: 無限級数(収束の判定法,絶対収束と条件収束) べき級数(収束半径,項別微積分) 関数列・関数項級数*(一様収束,項別微積分) 2.平面および空間の点集合【2週】: 距離,点列の収束,開集合・閉集合 連続関数 3.多変数関数の微分法【4〜5週】: 偏微分,微分(全微分)可能性,一次近似,接平面,勾配ベクトル 合成関数の微分(連鎖律),ヤコビ行列,ヤコビ行列式 テイラーの定理,極値問題 条件付き極値問題(陰関数定理) 4.多変数関数の積分法【4〜5週】: 重積分,累次積分,変数変換公式,面積・体積 広義積分,ガンマ関数とベータ関数 アステリスク * はオプション |
||||||||||||
(履修要件) |
特になし
|
||||||||||||
(成績評価の方法・観点及び達成度) | 演義担当教員によって平常点(演習への参加状況,課題への取組状況など)から得られた演義成績(30 点満点)をもとに,講義担当教員が期末試験を用いて,演義成績以上,100 点以下の範囲で 評価する. 教員によっては演義以外の平常点(レポート、中間試験などによるもの)を参考にすることもある.詳細は授業中に説明する. 本科目の評価が不合格であった履修者のうち,一定の基準以上の成績の者は再試験を受験できる.再試験の概要は KULASIS で履修者に通知する.なお再試験は3月末に実施予定である. |
||||||||||||
(教科書) |
担当教員毎に指示する.
|
||||||||||||
(参考書等) |
授業中に紹介する
|
||||||||||||
(授業外学習(予習・復習)等) | 予習,復習とともに,演習問題を積極的に解いてみることが必要である. | ||||||||||||
(その他(オフィスアワー等)) | 同一クラスにおいて前期開講の微分積分学(講義・演義)Aとの連続した履修を推奨する.また線形代数学(講義・演義)B を並行して受講することが望ましい. |
||||||||||||
微分積分学(講義・演義)B
1T9 (科目名)
Calculus with Exercises B
(英 訳)
|
|
|||||||||
(群) 自然 (分野(分類)) 数学(基礎) (使用言語) 日本語 | ||||||||||
(旧群) B群 (単位数) 3 単位 (週コマ数) 2 コマ (授業形態) 講義 | ||||||||||
(開講年度・ 開講期) 2025・後期 (配当学年) 主として1回生 (対象学生) 理系向 |
||||||||||
(曜時限)
水3・金1 (教室) 共西31 |
||||||||||
(授業の概要・目的)
微分積分学は,線形代数学と共に現代の科学技術を支える数学の根幹をなす.この科目では,将来の応用に必要な微分積分学の基礎を解説する.
微分積分学(講義・演義)Bでは,微分積分学(講義・演義)Aに続いて一変数関数の微分積分の理解をさらに深めた後に,多変数関数の微分積分について学ぶ. |
||||||||||
(到達目標)
一変数および多変数関数の微分積分の理論的な基礎を理解すること,ならびに,それを用いた数学的解析の手法を修得して応用できるようになることを目標とする.
|
||||||||||
(授業計画と内容)
この科目は講義と演義とが一体となって構成されている. 演義は原則として隔週で開講される.演義においては,受講者は問題練習や課題学習に積極的に取り組むことにより,それまでに講義で学んだ事柄の理解を深める. 以下に挙げるのは講義の計画・内容である.各項目には,受講者の理解の程度を確認しながら,【 】で指示した週数を充てる.各項目・小項目の講義の順序は固定したものではなく,担当者の講義方針と受講者の背景や理解の状況に応じて,講義担当者が適切に決める.講義の進め方については適宜,指示をして,受講者が予習をできるように十分に配慮する. 以下の内容を,フィードバック回を含め(試験週を除く)全15回にて行う. 1.級数【3〜5週】: 無限級数(収束の判定法,絶対収束と条件収束) べき級数(収束半径,項別微積分) 関数列・関数項級数*(一様収束,項別微積分) 2.平面および空間の点集合【2週】: 距離,点列の収束,開集合・閉集合 連続関数 3.多変数関数の微分法【4〜5週】: 偏微分,微分(全微分)可能性,一次近似,接平面,勾配ベクトル 合成関数の微分(連鎖律),ヤコビ行列,ヤコビ行列式 テイラーの定理,極値問題 条件付き極値問題(陰関数定理) 4.多変数関数の積分法【4〜5週】: 重積分,累次積分,変数変換公式,面積・体積 広義積分,ガンマ関数とベータ関数 アステリスク * はオプション |
||||||||||
(履修要件)
特になし
|
||||||||||
(成績評価の方法・観点及び達成度)
演義担当教員によって平常点(演習への参加状況,課題への取組状況など)から得られた演義成績(30 点満点)をもとに,講義担当教員が期末試験を用いて,演義成績以上,100 点以下の範囲で 評価する.
教員によっては演義以外の平常点(レポート、中間試験などによるもの)を参考にすることもある.詳細は授業中に説明する. 本科目の評価が不合格であった履修者のうち,一定の基準以上の成績の者は再試験を受験できる.再試験の概要は KULASIS で履修者に通知する.なお再試験は3月末に実施予定である. |
||||||||||
(教科書)
担当教員毎に指示する.
|
||||||||||
(参考書等)
授業中に紹介する
|
||||||||||
(授業外学習(予習・復習)等)
予習,復習とともに,演習問題を積極的に解いてみることが必要である.
|
||||||||||
(その他(オフィスアワー等))
同一クラスにおいて前期開講の微分積分学(講義・演義)Aとの連続した履修を推奨する.また線形代数学(講義・演義)B を並行して受講することが望ましい.
|
||||||||||
授業の進捗状況や受講生の習熟度などによって「授業計画と内容」,「成績評価の方法」が変更になる場合があります。
(科目名) |
微分積分学(講義・演義)B 1T10
|
(英 訳) | Calculus with Exercises B | ||||
---|---|---|---|---|---|---|---|
(担当教員) |
|
||||||
(群) | 自然 | ||||||
(分野(分類)) | 数学(基礎) | ||||||
(使用言語) | 日本語 | ||||||
(旧群) | B群 | ||||||
(単位数) | 3 単位 | ||||||
(週コマ数) | 2 コマ | ||||||
(授業形態) | 講義 | ||||||
(開講年度・開講期) | 2025・後期 | ||||||
(配当学年) | 主として1回生 | ||||||
(対象学生) | 理系向 | ||||||
(曜時限) | 水3・金2 |
||||||
(教室) | 共北32 | ||||||
(授業の概要・目的) | 微分積分学は,線形代数学と共に現代の科学技術を支える数学の根幹をなす.この科目では,将来の応用に必要な微分積分学の基礎を解説する. 微分積分学(講義・演義)Bでは,微分積分学(講義・演義)Aに続いて一変数関数の微分積分の理解をさらに深めた後に,多変数関数の微分積分について学ぶ. |
||||||
(到達目標) | 一変数および多変数関数の微分積分の理論的な基礎を理解すること,ならびに,それを用いた数学的解析の手法を修得して応用できるようになることを目標とする. | ||||||
(授業計画と内容) | この科目は講義と演義とが一体となって構成されている. 演義は原則として隔週で開講される.演義においては,受講者は問題練習や課題学習に積極的に取り組むことにより,それまでに講義で学んだ事柄の理解を深める. 以下に挙げるのは講義の計画・内容である.各項目には,受講者の理解の程度を確認しながら,【 】で指示した週数を充てる.各項目・小項目の講義の順序は固定したものではなく,担当者の講義方針と受講者の背景や理解の状況に応じて,講義担当者が適切に決める.講義の進め方については適宜,指示をして,受講者が予習をできるように十分に配慮する. 以下の内容を,フィードバック回を含め(試験週を除く)全15回にて行う. 1.級数【3〜5週】: 無限級数(収束の判定法,絶対収束と条件収束) べき級数(収束半径,項別微積分) 関数列・関数項級数*(一様収束,項別微積分) 2.平面および空間の点集合【2週】: 距離,点列の収束,開集合・閉集合 連続関数 3.多変数関数の微分法【4〜5週】: 偏微分,微分(全微分)可能性,一次近似,接平面,勾配ベクトル 合成関数の微分(連鎖律),ヤコビ行列,ヤコビ行列式 テイラーの定理,極値問題 条件付き極値問題(陰関数定理) 4.多変数関数の積分法【4〜5週】: 重積分,累次積分,変数変換公式,面積・体積 広義積分,ガンマ関数とベータ関数 アステリスク * はオプション |
||||||
(履修要件) |
特になし
|
||||||
(成績評価の方法・観点及び達成度) | 演義担当教員によって平常点(演習への参加状況,課題への取組状況など)から得られた演義成績(30 点満点)をもとに,講義担当教員が期末試験を用いて,演義成績以上,100 点以下の範囲で 評価する. 教員によっては演義以外の平常点(レポート、中間試験などによるもの)を参考にすることもある.詳細は授業中に説明する. 本科目の評価が不合格であった履修者のうち,一定の基準以上の成績の者は再試験を受験できる.再試験の概要は KULASIS で履修者に通知する.なお再試験は3月末に実施予定である. |
||||||
(教科書) |
担当教員毎に指示する.
|
||||||
(参考書等) |
授業中に紹介する
|
||||||
(授業外学習(予習・復習)等) | 予習,復習とともに,演習問題を積極的に解いてみることが必要である. | ||||||
(その他(オフィスアワー等)) | 同一クラスにおいて前期開講の微分積分学(講義・演義)Aとの連続した履修を推奨する.また線形代数学(講義・演義)B を並行して受講することが望ましい. |
||||||
微分積分学(講義・演義)B
1T10 (科目名)
Calculus with Exercises B
(英 訳)
|
|
||||||
(群) 自然 (分野(分類)) 数学(基礎) (使用言語) 日本語 | |||||||
(旧群) B群 (単位数) 3 単位 (週コマ数) 2 コマ (授業形態) 講義 | |||||||
(開講年度・ 開講期) 2025・後期 (配当学年) 主として1回生 (対象学生) 理系向 |
|||||||
(曜時限)
水3・金2 (教室) 共北32 |
|||||||
(授業の概要・目的)
微分積分学は,線形代数学と共に現代の科学技術を支える数学の根幹をなす.この科目では,将来の応用に必要な微分積分学の基礎を解説する.
微分積分学(講義・演義)Bでは,微分積分学(講義・演義)Aに続いて一変数関数の微分積分の理解をさらに深めた後に,多変数関数の微分積分について学ぶ. |
|||||||
(到達目標)
一変数および多変数関数の微分積分の理論的な基礎を理解すること,ならびに,それを用いた数学的解析の手法を修得して応用できるようになることを目標とする.
|
|||||||
(授業計画と内容)
この科目は講義と演義とが一体となって構成されている. 演義は原則として隔週で開講される.演義においては,受講者は問題練習や課題学習に積極的に取り組むことにより,それまでに講義で学んだ事柄の理解を深める. 以下に挙げるのは講義の計画・内容である.各項目には,受講者の理解の程度を確認しながら,【 】で指示した週数を充てる.各項目・小項目の講義の順序は固定したものではなく,担当者の講義方針と受講者の背景や理解の状況に応じて,講義担当者が適切に決める.講義の進め方については適宜,指示をして,受講者が予習をできるように十分に配慮する. 以下の内容を,フィードバック回を含め(試験週を除く)全15回にて行う. 1.級数【3〜5週】: 無限級数(収束の判定法,絶対収束と条件収束) べき級数(収束半径,項別微積分) 関数列・関数項級数*(一様収束,項別微積分) 2.平面および空間の点集合【2週】: 距離,点列の収束,開集合・閉集合 連続関数 3.多変数関数の微分法【4〜5週】: 偏微分,微分(全微分)可能性,一次近似,接平面,勾配ベクトル 合成関数の微分(連鎖律),ヤコビ行列,ヤコビ行列式 テイラーの定理,極値問題 条件付き極値問題(陰関数定理) 4.多変数関数の積分法【4〜5週】: 重積分,累次積分,変数変換公式,面積・体積 広義積分,ガンマ関数とベータ関数 アステリスク * はオプション |
|||||||
(履修要件)
特になし
|
|||||||
(成績評価の方法・観点及び達成度)
演義担当教員によって平常点(演習への参加状況,課題への取組状況など)から得られた演義成績(30 点満点)をもとに,講義担当教員が期末試験を用いて,演義成績以上,100 点以下の範囲で 評価する.
教員によっては演義以外の平常点(レポート、中間試験などによるもの)を参考にすることもある.詳細は授業中に説明する. 本科目の評価が不合格であった履修者のうち,一定の基準以上の成績の者は再試験を受験できる.再試験の概要は KULASIS で履修者に通知する.なお再試験は3月末に実施予定である. |
|||||||
(教科書)
担当教員毎に指示する.
|
|||||||
(参考書等)
授業中に紹介する
|
|||||||
(授業外学習(予習・復習)等)
予習,復習とともに,演習問題を積極的に解いてみることが必要である.
|
|||||||
(その他(オフィスアワー等))
同一クラスにおいて前期開講の微分積分学(講義・演義)Aとの連続した履修を推奨する.また線形代数学(講義・演義)B を並行して受講することが望ましい.
|
|||||||
授業の進捗状況や受講生の習熟度などによって「授業計画と内容」,「成績評価の方法」が変更になる場合があります。
(科目名) |
微分積分学(講義・演義)B 1T12
|
(英 訳) | Calculus with Exercises B | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
(担当教員) |
|
||||||||||||
(群) | 自然 | ||||||||||||
(分野(分類)) | 数学(基礎) | ||||||||||||
(使用言語) | 日本語 | ||||||||||||
(旧群) | B群 | ||||||||||||
(単位数) | 3 単位 | ||||||||||||
(週コマ数) | 2 コマ | ||||||||||||
(授業形態) | 講義 | ||||||||||||
(開講年度・開講期) | 2025・後期 | ||||||||||||
(配当学年) | 主として1回生 | ||||||||||||
(対象学生) | 理系向 | ||||||||||||
(曜時限) | 水3・金2 |
||||||||||||
(教室) | 共西31 | ||||||||||||
(授業の概要・目的) | 微分積分学は,線形代数学と共に現代の科学技術を支える数学の根幹をなす.この科目では,将来の応用に必要な微分積分学の基礎を解説する. 微分積分学(講義・演義)Bでは,微分積分学(講義・演義)Aに続いて一変数関数の微分積分の理解をさらに深めた後に,多変数関数の微分積分について学ぶ. |
||||||||||||
(到達目標) | 一変数および多変数関数の微分積分の理論的な基礎を理解すること,ならびに,それを用いた数学的解析の手法を修得して応用できるようになることを目標とする. | ||||||||||||
(授業計画と内容) | この科目は講義と演義とが一体となって構成されている. 演義は原則として隔週で開講される.演義においては,受講者は問題練習や課題学習に積極的に取り組むことにより,それまでに講義で学んだ事柄の理解を深める. 以下に挙げるのは講義の計画・内容である.各項目には,受講者の理解の程度を確認しながら,【 】で指示した週数を充てる.各項目・小項目の講義の順序は固定したものではなく,担当者の講義方針と受講者の背景や理解の状況に応じて,講義担当者が適切に決める.講義の進め方については適宜,指示をして,受講者が予習をできるように十分に配慮する. 以下の内容を,フィードバック回を含め(試験週を除く)全15回にて行う. 1.級数【3〜5週】: 無限級数(収束の判定法,絶対収束と条件収束) べき級数(収束半径,項別微積分) 関数列・関数項級数*(一様収束,項別微積分) 2.平面および空間の点集合【2週】: 距離,点列の収束,開集合・閉集合 連続関数 3.多変数関数の微分法【4〜5週】: 偏微分,微分(全微分)可能性,一次近似,接平面,勾配ベクトル 合成関数の微分(連鎖律),ヤコビ行列,ヤコビ行列式 テイラーの定理,極値問題 条件付き極値問題(陰関数定理) 4.多変数関数の積分法【4〜5週】: 重積分,累次積分,変数変換公式,面積・体積 広義積分,ガンマ関数とベータ関数 アステリスク * はオプション |
||||||||||||
(履修要件) |
特になし
|
||||||||||||
(成績評価の方法・観点及び達成度) | 演義担当教員によって平常点(演習への参加状況,課題への取組状況など)から得られた演義成績(30 点満点)をもとに,講義担当教員が期末試験を用いて,演義成績以上,100 点以下の範囲で 評価する. 教員によっては演義以外の平常点(レポート、中間試験などによるもの)を参考にすることもある.詳細は授業中に説明する. 本科目の評価が不合格であった履修者のうち,一定の基準以上の成績の者は再試験を受験できる.再試験の概要は KULASIS で履修者に通知する.なお再試験は3月末に実施予定である. |
||||||||||||
(教科書) |
担当教員毎に指示する.
|
||||||||||||
(参考書等) |
授業中に紹介する
|
||||||||||||
(授業外学習(予習・復習)等) | 予習,復習とともに,演習問題を積極的に解いてみることが必要である. | ||||||||||||
(その他(オフィスアワー等)) | 同一クラスにおいて前期開講の微分積分学(講義・演義)Aとの連続した履修を推奨する.また線形代数学(講義・演義)B を並行して受講することが望ましい. |
||||||||||||
微分積分学(講義・演義)B
1T12 (科目名)
Calculus with Exercises B
(英 訳)
|
|
|||||||||
(群) 自然 (分野(分類)) 数学(基礎) (使用言語) 日本語 | ||||||||||
(旧群) B群 (単位数) 3 単位 (週コマ数) 2 コマ (授業形態) 講義 | ||||||||||
(開講年度・ 開講期) 2025・後期 (配当学年) 主として1回生 (対象学生) 理系向 |
||||||||||
(曜時限)
水3・金2 (教室) 共西31 |
||||||||||
(授業の概要・目的)
微分積分学は,線形代数学と共に現代の科学技術を支える数学の根幹をなす.この科目では,将来の応用に必要な微分積分学の基礎を解説する.
微分積分学(講義・演義)Bでは,微分積分学(講義・演義)Aに続いて一変数関数の微分積分の理解をさらに深めた後に,多変数関数の微分積分について学ぶ. |
||||||||||
(到達目標)
一変数および多変数関数の微分積分の理論的な基礎を理解すること,ならびに,それを用いた数学的解析の手法を修得して応用できるようになることを目標とする.
|
||||||||||
(授業計画と内容)
この科目は講義と演義とが一体となって構成されている. 演義は原則として隔週で開講される.演義においては,受講者は問題練習や課題学習に積極的に取り組むことにより,それまでに講義で学んだ事柄の理解を深める. 以下に挙げるのは講義の計画・内容である.各項目には,受講者の理解の程度を確認しながら,【 】で指示した週数を充てる.各項目・小項目の講義の順序は固定したものではなく,担当者の講義方針と受講者の背景や理解の状況に応じて,講義担当者が適切に決める.講義の進め方については適宜,指示をして,受講者が予習をできるように十分に配慮する. 以下の内容を,フィードバック回を含め(試験週を除く)全15回にて行う. 1.級数【3〜5週】: 無限級数(収束の判定法,絶対収束と条件収束) べき級数(収束半径,項別微積分) 関数列・関数項級数*(一様収束,項別微積分) 2.平面および空間の点集合【2週】: 距離,点列の収束,開集合・閉集合 連続関数 3.多変数関数の微分法【4〜5週】: 偏微分,微分(全微分)可能性,一次近似,接平面,勾配ベクトル 合成関数の微分(連鎖律),ヤコビ行列,ヤコビ行列式 テイラーの定理,極値問題 条件付き極値問題(陰関数定理) 4.多変数関数の積分法【4〜5週】: 重積分,累次積分,変数変換公式,面積・体積 広義積分,ガンマ関数とベータ関数 アステリスク * はオプション |
||||||||||
(履修要件)
特になし
|
||||||||||
(成績評価の方法・観点及び達成度)
演義担当教員によって平常点(演習への参加状況,課題への取組状況など)から得られた演義成績(30 点満点)をもとに,講義担当教員が期末試験を用いて,演義成績以上,100 点以下の範囲で 評価する.
教員によっては演義以外の平常点(レポート、中間試験などによるもの)を参考にすることもある.詳細は授業中に説明する. 本科目の評価が不合格であった履修者のうち,一定の基準以上の成績の者は再試験を受験できる.再試験の概要は KULASIS で履修者に通知する.なお再試験は3月末に実施予定である. |
||||||||||
(教科書)
担当教員毎に指示する.
|
||||||||||
(参考書等)
授業中に紹介する
|
||||||||||
(授業外学習(予習・復習)等)
予習,復習とともに,演習問題を積極的に解いてみることが必要である.
|
||||||||||
(その他(オフィスアワー等))
同一クラスにおいて前期開講の微分積分学(講義・演義)Aとの連続した履修を推奨する.また線形代数学(講義・演義)B を並行して受講することが望ましい.
|
||||||||||
授業の進捗状況や受講生の習熟度などによって「授業計画と内容」,「成績評価の方法」が変更になる場合があります。
(科目名) |
微分積分学(講義・演義)B 1T13
|
(英 訳) | Calculus with Exercises B | ||||
---|---|---|---|---|---|---|---|
(担当教員) |
|
||||||
(群) | 自然 | ||||||
(分野(分類)) | 数学(基礎) | ||||||
(使用言語) | 日本語 | ||||||
(旧群) | B群 | ||||||
(単位数) | 3 単位 | ||||||
(週コマ数) | 2 コマ | ||||||
(授業形態) | 講義 | ||||||
(開講年度・開講期) | 2025・後期 | ||||||
(配当学年) | 主として1回生 | ||||||
(対象学生) | 理系向 | ||||||
(曜時限) | 水3・金1 |
||||||
(教室) | 共北25 | ||||||
(授業の概要・目的) | 微分積分学は,線形代数学と共に現代の科学技術を支える数学の根幹をなす.この科目では,将来の応用に必要な微分積分学の基礎を解説する. 微分積分学(講義・演義)Bでは,微分積分学(講義・演義)Aに続いて一変数関数の微分積分の理解をさらに深めた後に,多変数関数の微分積分について学ぶ. |
||||||
(到達目標) | 一変数および多変数関数の微分積分の理論的な基礎を理解すること,ならびに,それを用いた数学的解析の手法を修得して応用できるようになることを目標とする. | ||||||
(授業計画と内容) | この科目は講義と演義とが一体となって構成されている. 演義は原則として隔週で開講される.演義においては,受講者は問題練習や課題学習に積極的に取り組むことにより,それまでに講義で学んだ事柄の理解を深める. 以下に挙げるのは講義の計画・内容である.各項目には,受講者の理解の程度を確認しながら,【 】で指示した週数を充てる.各項目・小項目の講義の順序は固定したものではなく,担当者の講義方針と受講者の背景や理解の状況に応じて,講義担当者が適切に決める.講義の進め方については適宜,指示をして,受講者が予習をできるように十分に配慮する. 以下の内容を,フィードバック回を含め(試験週を除く)全15回にて行う. 1.級数【3〜5週】: 無限級数(収束の判定法,絶対収束と条件収束) べき級数(収束半径,項別微積分) 関数列・関数項級数*(一様収束,項別微積分) 2.平面および空間の点集合【2週】: 距離,点列の収束,開集合・閉集合 連続関数 3.多変数関数の微分法【4〜5週】: 偏微分,微分(全微分)可能性,一次近似,接平面,勾配ベクトル 合成関数の微分(連鎖律),ヤコビ行列,ヤコビ行列式 テイラーの定理,極値問題 条件付き極値問題(陰関数定理) 4.多変数関数の積分法【4〜5週】: 重積分,累次積分,変数変換公式,面積・体積 広義積分,ガンマ関数とベータ関数 アステリスク * はオプション |
||||||
(履修要件) |
特になし
|
||||||
(成績評価の方法・観点及び達成度) | 演義担当教員によって平常点(演習への参加状況,課題への取組状況など)から得られた演義成績(30 点満点)をもとに,講義担当教員が期末試験を用いて,演義成績以上,100 点以下の範囲で 評価する. 教員によっては演義以外の平常点(レポート、中間試験などによるもの)を参考にすることもある.詳細は授業中に説明する. 本科目の評価が不合格であった履修者のうち,一定の基準以上の成績の者は再試験を受験できる.再試験の概要は KULASIS で履修者に通知する.なお再試験は3月末に実施予定である. |
||||||
(教科書) |
担当教員毎に指示する.
|
||||||
(参考書等) |
授業中に紹介する
|
||||||
(授業外学習(予習・復習)等) | 予習,復習とともに,演習問題を積極的に解いてみることが必要である. | ||||||
(その他(オフィスアワー等)) | 同一クラスにおいて前期開講の微分積分学(講義・演義)Aとの連続した履修を推奨する.また線形代数学(講義・演義)B を並行して受講することが望ましい. |
||||||
微分積分学(講義・演義)B
1T13 (科目名)
Calculus with Exercises B
(英 訳)
|
|
||||||
(群) 自然 (分野(分類)) 数学(基礎) (使用言語) 日本語 | |||||||
(旧群) B群 (単位数) 3 単位 (週コマ数) 2 コマ (授業形態) 講義 | |||||||
(開講年度・ 開講期) 2025・後期 (配当学年) 主として1回生 (対象学生) 理系向 |
|||||||
(曜時限)
水3・金1 (教室) 共北25 |
|||||||
(授業の概要・目的)
微分積分学は,線形代数学と共に現代の科学技術を支える数学の根幹をなす.この科目では,将来の応用に必要な微分積分学の基礎を解説する.
微分積分学(講義・演義)Bでは,微分積分学(講義・演義)Aに続いて一変数関数の微分積分の理解をさらに深めた後に,多変数関数の微分積分について学ぶ. |
|||||||
(到達目標)
一変数および多変数関数の微分積分の理論的な基礎を理解すること,ならびに,それを用いた数学的解析の手法を修得して応用できるようになることを目標とする.
|
|||||||
(授業計画と内容)
この科目は講義と演義とが一体となって構成されている. 演義は原則として隔週で開講される.演義においては,受講者は問題練習や課題学習に積極的に取り組むことにより,それまでに講義で学んだ事柄の理解を深める. 以下に挙げるのは講義の計画・内容である.各項目には,受講者の理解の程度を確認しながら,【 】で指示した週数を充てる.各項目・小項目の講義の順序は固定したものではなく,担当者の講義方針と受講者の背景や理解の状況に応じて,講義担当者が適切に決める.講義の進め方については適宜,指示をして,受講者が予習をできるように十分に配慮する. 以下の内容を,フィードバック回を含め(試験週を除く)全15回にて行う. 1.級数【3〜5週】: 無限級数(収束の判定法,絶対収束と条件収束) べき級数(収束半径,項別微積分) 関数列・関数項級数*(一様収束,項別微積分) 2.平面および空間の点集合【2週】: 距離,点列の収束,開集合・閉集合 連続関数 3.多変数関数の微分法【4〜5週】: 偏微分,微分(全微分)可能性,一次近似,接平面,勾配ベクトル 合成関数の微分(連鎖律),ヤコビ行列,ヤコビ行列式 テイラーの定理,極値問題 条件付き極値問題(陰関数定理) 4.多変数関数の積分法【4〜5週】: 重積分,累次積分,変数変換公式,面積・体積 広義積分,ガンマ関数とベータ関数 アステリスク * はオプション |
|||||||
(履修要件)
特になし
|
|||||||
(成績評価の方法・観点及び達成度)
演義担当教員によって平常点(演習への参加状況,課題への取組状況など)から得られた演義成績(30 点満点)をもとに,講義担当教員が期末試験を用いて,演義成績以上,100 点以下の範囲で 評価する.
教員によっては演義以外の平常点(レポート、中間試験などによるもの)を参考にすることもある.詳細は授業中に説明する. 本科目の評価が不合格であった履修者のうち,一定の基準以上の成績の者は再試験を受験できる.再試験の概要は KULASIS で履修者に通知する.なお再試験は3月末に実施予定である. |
|||||||
(教科書)
担当教員毎に指示する.
|
|||||||
(参考書等)
授業中に紹介する
|
|||||||
(授業外学習(予習・復習)等)
予習,復習とともに,演習問題を積極的に解いてみることが必要である.
|
|||||||
(その他(オフィスアワー等))
同一クラスにおいて前期開講の微分積分学(講義・演義)Aとの連続した履修を推奨する.また線形代数学(講義・演義)B を並行して受講することが望ましい.
|
|||||||
授業の進捗状況や受講生の習熟度などによって「授業計画と内容」,「成績評価の方法」が変更になる場合があります。
(科目名) |
微分積分学(講義・演義)B 1T15
|
(英 訳) | Calculus with Exercises B | ||||
---|---|---|---|---|---|---|---|
(担当教員) |
|
||||||
(群) | 自然 | ||||||
(分野(分類)) | 数学(基礎) | ||||||
(使用言語) | 日本語 | ||||||
(旧群) | B群 | ||||||
(単位数) | 3 単位 | ||||||
(週コマ数) | 2 コマ | ||||||
(授業形態) | 講義 | ||||||
(開講年度・開講期) | 2025・後期 | ||||||
(配当学年) | 主として1回生 | ||||||
(対象学生) | 理系向 | ||||||
(曜時限) | 水3・金2 |
||||||
(教室) | 共北25 | ||||||
(授業の概要・目的) | 微分積分学は,線形代数学と共に現代の科学技術を支える数学の根幹をなす.この科目では,将来の応用に必要な微分積分学の基礎を解説する. 微分積分学(講義・演義)Bでは,微分積分学(講義・演義)Aに続いて一変数関数の微分積分の理解をさらに深めた後に,多変数関数の微分積分について学ぶ. |
||||||
(到達目標) | 一変数および多変数関数の微分積分の理論的な基礎を理解すること,ならびに,それを用いた数学的解析の手法を修得して応用できるようになることを目標とする. | ||||||
(授業計画と内容) | この科目は講義と演義とが一体となって構成されている. 演義は原則として隔週で開講される.演義においては,受講者は問題練習や課題学習に積極的に取り組むことにより,それまでに講義で学んだ事柄の理解を深める. 以下に挙げるのは講義の計画・内容である.各項目には,受講者の理解の程度を確認しながら,【 】で指示した週数を充てる.各項目・小項目の講義の順序は固定したものではなく,担当者の講義方針と受講者の背景や理解の状況に応じて,講義担当者が適切に決める.講義の進め方については適宜,指示をして,受講者が予習をできるように十分に配慮する. 以下の内容を,フィードバック回を含め(試験週を除く)全15回にて行う. 1.級数【3〜5週】: 無限級数(収束の判定法,絶対収束と条件収束) べき級数(収束半径,項別微積分) 関数列・関数項級数*(一様収束,項別微積分) 2.平面および空間の点集合【2週】: 距離,点列の収束,開集合・閉集合 連続関数 3.多変数関数の微分法【4〜5週】: 偏微分,微分(全微分)可能性,一次近似,接平面,勾配ベクトル 合成関数の微分(連鎖律),ヤコビ行列,ヤコビ行列式 テイラーの定理,極値問題 条件付き極値問題(陰関数定理) 4.多変数関数の積分法【4〜5週】: 重積分,累次積分,変数変換公式,面積・体積 広義積分,ガンマ関数とベータ関数 アステリスク * はオプション |
||||||
(履修要件) |
特になし
|
||||||
(成績評価の方法・観点及び達成度) | 演義担当教員によって平常点(演習への参加状況,課題への取組状況など)から得られた演義成績(30 点満点)をもとに,講義担当教員が期末試験を用いて,演義成績以上,100 点以下の範囲で 評価する. 教員によっては演義以外の平常点(レポート、中間試験などによるもの)を参考にすることもある.詳細は授業中に説明する. 本科目の評価が不合格であった履修者のうち,一定の基準以上の成績の者は再試験を受験できる.再試験の概要は KULASIS で履修者に通知する.なお再試験は3月末に実施予定である. |
||||||
(教科書) |
担当教員毎に指示する.
|
||||||
(参考書等) |
授業中に紹介する
|
||||||
(授業外学習(予習・復習)等) | 予習,復習とともに,演習問題を積極的に解いてみることが必要である. | ||||||
(その他(オフィスアワー等)) | 同一クラスにおいて前期開講の微分積分学(講義・演義)Aとの連続した履修を推奨する.また線形代数学(講義・演義)B を並行して受講することが望ましい. |
||||||
微分積分学(講義・演義)B
1T15 (科目名)
Calculus with Exercises B
(英 訳)
|
|
||||||
(群) 自然 (分野(分類)) 数学(基礎) (使用言語) 日本語 | |||||||
(旧群) B群 (単位数) 3 単位 (週コマ数) 2 コマ (授業形態) 講義 | |||||||
(開講年度・ 開講期) 2025・後期 (配当学年) 主として1回生 (対象学生) 理系向 |
|||||||
(曜時限)
水3・金2 (教室) 共北25 |
|||||||
(授業の概要・目的)
微分積分学は,線形代数学と共に現代の科学技術を支える数学の根幹をなす.この科目では,将来の応用に必要な微分積分学の基礎を解説する.
微分積分学(講義・演義)Bでは,微分積分学(講義・演義)Aに続いて一変数関数の微分積分の理解をさらに深めた後に,多変数関数の微分積分について学ぶ. |
|||||||
(到達目標)
一変数および多変数関数の微分積分の理論的な基礎を理解すること,ならびに,それを用いた数学的解析の手法を修得して応用できるようになることを目標とする.
|
|||||||
(授業計画と内容)
この科目は講義と演義とが一体となって構成されている. 演義は原則として隔週で開講される.演義においては,受講者は問題練習や課題学習に積極的に取り組むことにより,それまでに講義で学んだ事柄の理解を深める. 以下に挙げるのは講義の計画・内容である.各項目には,受講者の理解の程度を確認しながら,【 】で指示した週数を充てる.各項目・小項目の講義の順序は固定したものではなく,担当者の講義方針と受講者の背景や理解の状況に応じて,講義担当者が適切に決める.講義の進め方については適宜,指示をして,受講者が予習をできるように十分に配慮する. 以下の内容を,フィードバック回を含め(試験週を除く)全15回にて行う. 1.級数【3〜5週】: 無限級数(収束の判定法,絶対収束と条件収束) べき級数(収束半径,項別微積分) 関数列・関数項級数*(一様収束,項別微積分) 2.平面および空間の点集合【2週】: 距離,点列の収束,開集合・閉集合 連続関数 3.多変数関数の微分法【4〜5週】: 偏微分,微分(全微分)可能性,一次近似,接平面,勾配ベクトル 合成関数の微分(連鎖律),ヤコビ行列,ヤコビ行列式 テイラーの定理,極値問題 条件付き極値問題(陰関数定理) 4.多変数関数の積分法【4〜5週】: 重積分,累次積分,変数変換公式,面積・体積 広義積分,ガンマ関数とベータ関数 アステリスク * はオプション |
|||||||
(履修要件)
特になし
|
|||||||
(成績評価の方法・観点及び達成度)
演義担当教員によって平常点(演習への参加状況,課題への取組状況など)から得られた演義成績(30 点満点)をもとに,講義担当教員が期末試験を用いて,演義成績以上,100 点以下の範囲で 評価する.
教員によっては演義以外の平常点(レポート、中間試験などによるもの)を参考にすることもある.詳細は授業中に説明する. 本科目の評価が不合格であった履修者のうち,一定の基準以上の成績の者は再試験を受験できる.再試験の概要は KULASIS で履修者に通知する.なお再試験は3月末に実施予定である. |
|||||||
(教科書)
担当教員毎に指示する.
|
|||||||
(参考書等)
授業中に紹介する
|
|||||||
(授業外学習(予習・復習)等)
予習,復習とともに,演習問題を積極的に解いてみることが必要である.
|
|||||||
(その他(オフィスアワー等))
同一クラスにおいて前期開講の微分積分学(講義・演義)Aとの連続した履修を推奨する.また線形代数学(講義・演義)B を並行して受講することが望ましい.
|
|||||||
授業の進捗状況や受講生の習熟度などによって「授業計画と内容」,「成績評価の方法」が変更になる場合があります。
(科目名) |
線形代数学(講義・演義)B 1T8
|
(英 訳) | Linear Algebra with Exercises B | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
(担当教員) |
|
||||||||||||
(群) | 自然 | ||||||||||||
(分野(分類)) | 数学(基礎) | ||||||||||||
(使用言語) | 日本語 | ||||||||||||
(旧群) | B群 | ||||||||||||
(単位数) | 3 単位 | ||||||||||||
(週コマ数) | 2 コマ | ||||||||||||
(授業形態) | 講義 | ||||||||||||
(開講年度・開講期) | 2025・後期 | ||||||||||||
(配当学年) | 主として1回生 | ||||||||||||
(対象学生) | 理系向 | ||||||||||||
(曜時限) | 水3・金1 |
||||||||||||
(教室) | 共北26 | ||||||||||||
(授業の概要・目的) | 線形代数学は,微分積分学と共に現代の科学技術を支える数学の根幹をなす.この科目では,将来の応用に必要な線形代数学の基礎を解説する. 線形代数学(講義・演義)Bでは,ベクトル空間,線形写像などの基礎概念を体系的に学ぶと共に,それらの概念を行列に応用してさらに理解を深める. |
||||||||||||
(到達目標) | ベクトル空間,線形写像などの抽象概念を体系的に理解すること,ならびにそれを通してベクトル,行列の理論的な基礎を固めることを目標とする.その際には,ベクトルや行列等のより進んだ取り扱いに習熟することも目指す. | ||||||||||||
(授業計画と内容) | この科目は講義と演義とが一体として構成されている. 演義は原則として隔週で開講される.演義においては,受講者は問題演習や課題学習に積極的に取り組むことにより,それまでに講義で学んだ事柄の理解を深める. 以下に挙げるのは講義の計画、内容である.各項目には,受講者の理解の程度を確認しながら,【 】で指示した週数を充てる.各項目・小項目の講義の順序は固定したものではなく,担当者の講義方針と受講者の背景や理解の状況に応じて,講義担当者が適切に決める.講義の進め方については適宜,指示をして,受講者が予習をできるように十分に配慮する. 以下の内容を,フィードバック回を含め(試験週を除く)全15回にて行う. 1. 抽象ベクトル空間【5〜6週】: 一次結合,一次独立,基底,次元,部分空間,線形写像,核と像 線形写像と行列,基底の変換,直和 2. 計量ベクトル空間【3〜4週】: 内積,正規直交基底,直交行列,ユニタリ行列,直交補空間 3. 固有値と行列の対角化【5〜6週】: 固有値と固有ベクトル,固有多項式,固有空間 行列の対角化,行列の上三角化,ケーリー.ハミルトンの定理 対称行列の直交行列による対角化 二次形式* エルミート行列のユニタリ行列による対角化* アステリスク * はオプション |
||||||||||||
(履修要件) |
特になし
|
||||||||||||
(成績評価の方法・観点及び達成度) | 演義担当教員によって平常点(演習への参加状況,課題への取組状況など)から得られた演義成績(30 点満点)をもとに,講義担当教員が期末試験を用いて,演義成績以上,100 点以下の範囲で 評価する. 教員によっては演義以外の平常点(レポート、中間試験などによるもの)を参考にすることもある.詳細は授業中に説明する. 本科目の評価が不合格であった履修者のうち,一定の基準以上の成績の者は再試験を受験できる.再試験の概要は KULASIS で履修者に通知する.なお再試験は3月末に実施予定である. |
||||||||||||
(教科書) |
担当教員毎に指示する.
|
||||||||||||
(参考書等) |
授業中に紹介する
|
||||||||||||
(授業外学習(予習・復習)等) | 予習,復習とともに,演習問題を積極的に解いてみることが必要である. | ||||||||||||
(その他(オフィスアワー等)) | 同一クラスにおいて前期開講の線形代数学(講義・演義)Aとの連続した履修を推奨する.また微分積分学(講義・演義)B を並行して受講することが望ましい. |
||||||||||||
線形代数学(講義・演義)B
1T8 (科目名)
Linear Algebra with Exercises B
(英 訳)
|
|
|||||||||
(群) 自然 (分野(分類)) 数学(基礎) (使用言語) 日本語 | ||||||||||
(旧群) B群 (単位数) 3 単位 (週コマ数) 2 コマ (授業形態) 講義 | ||||||||||
(開講年度・ 開講期) 2025・後期 (配当学年) 主として1回生 (対象学生) 理系向 |
||||||||||
(曜時限)
水3・金1 (教室) 共北26 |
||||||||||
(授業の概要・目的)
線形代数学は,微分積分学と共に現代の科学技術を支える数学の根幹をなす.この科目では,将来の応用に必要な線形代数学の基礎を解説する.
線形代数学(講義・演義)Bでは,ベクトル空間,線形写像などの基礎概念を体系的に学ぶと共に,それらの概念を行列に応用してさらに理解を深める. |
||||||||||
(到達目標)
ベクトル空間,線形写像などの抽象概念を体系的に理解すること,ならびにそれを通してベクトル,行列の理論的な基礎を固めることを目標とする.その際には,ベクトルや行列等のより進んだ取り扱いに習熟することも目指す.
|
||||||||||
(授業計画と内容)
この科目は講義と演義とが一体として構成されている. 演義は原則として隔週で開講される.演義においては,受講者は問題演習や課題学習に積極的に取り組むことにより,それまでに講義で学んだ事柄の理解を深める. 以下に挙げるのは講義の計画、内容である.各項目には,受講者の理解の程度を確認しながら,【 】で指示した週数を充てる.各項目・小項目の講義の順序は固定したものではなく,担当者の講義方針と受講者の背景や理解の状況に応じて,講義担当者が適切に決める.講義の進め方については適宜,指示をして,受講者が予習をできるように十分に配慮する. 以下の内容を,フィードバック回を含め(試験週を除く)全15回にて行う. 1. 抽象ベクトル空間【5〜6週】: 一次結合,一次独立,基底,次元,部分空間,線形写像,核と像 線形写像と行列,基底の変換,直和 2. 計量ベクトル空間【3〜4週】: 内積,正規直交基底,直交行列,ユニタリ行列,直交補空間 3. 固有値と行列の対角化【5〜6週】: 固有値と固有ベクトル,固有多項式,固有空間 行列の対角化,行列の上三角化,ケーリー.ハミルトンの定理 対称行列の直交行列による対角化 二次形式* エルミート行列のユニタリ行列による対角化* アステリスク * はオプション |
||||||||||
(履修要件)
特になし
|
||||||||||
(成績評価の方法・観点及び達成度)
演義担当教員によって平常点(演習への参加状況,課題への取組状況など)から得られた演義成績(30 点満点)をもとに,講義担当教員が期末試験を用いて,演義成績以上,100 点以下の範囲で 評価する.
教員によっては演義以外の平常点(レポート、中間試験などによるもの)を参考にすることもある.詳細は授業中に説明する. 本科目の評価が不合格であった履修者のうち,一定の基準以上の成績の者は再試験を受験できる.再試験の概要は KULASIS で履修者に通知する.なお再試験は3月末に実施予定である. |
||||||||||
(教科書)
担当教員毎に指示する.
|
||||||||||
(参考書等)
授業中に紹介する
|
||||||||||
(授業外学習(予習・復習)等)
予習,復習とともに,演習問題を積極的に解いてみることが必要である.
|
||||||||||
(その他(オフィスアワー等))
同一クラスにおいて前期開講の線形代数学(講義・演義)Aとの連続した履修を推奨する.また微分積分学(講義・演義)B を並行して受講することが望ましい.
|
||||||||||
授業の進捗状況や受講生の習熟度などによって「授業計画と内容」,「成績評価の方法」が変更になる場合があります。
(科目名) |
線形代数学(講義・演義)B 1T11
|
(英 訳) | Linear Algebra with Exercises B | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
(担当教員) |
|
||||||||||||
(群) | 自然 | ||||||||||||
(分野(分類)) | 数学(基礎) | ||||||||||||
(使用言語) | 日本語 | ||||||||||||
(旧群) | B群 | ||||||||||||
(単位数) | 3 単位 | ||||||||||||
(週コマ数) | 2 コマ | ||||||||||||
(授業形態) | 講義 | ||||||||||||
(開講年度・開講期) | 2025・後期 | ||||||||||||
(配当学年) | 主として1回生 | ||||||||||||
(対象学生) | 理系向 | ||||||||||||
(曜時限) | 水3・金2 |
||||||||||||
(教室) | 共北26 | ||||||||||||
(授業の概要・目的) | 線形代数学は,微分積分学と共に現代の科学技術を支える数学の根幹をなす.この科目では,将来の応用に必要な線形代数学の基礎を解説する. 線形代数学(講義・演義)Bでは,ベクトル空間,線形写像などの基礎概念を体系的に学ぶと共に,それらの概念を行列に応用してさらに理解を深める. |
||||||||||||
(到達目標) | ベクトル空間,線形写像などの抽象概念を体系的に理解すること,ならびにそれを通してベクトル,行列の理論的な基礎を固めることを目標とする.その際には,ベクトルや行列等のより進んだ取り扱いに習熟することも目指す. | ||||||||||||
(授業計画と内容) | この科目は講義と演義とが一体として構成されている. 演義は原則として隔週で開講される.演義においては,受講者は問題演習や課題学習に積極的に取り組むことにより,それまでに講義で学んだ事柄の理解を深める. 以下に挙げるのは講義の計画、内容である.各項目には,受講者の理解の程度を確認しながら,【 】で指示した週数を充てる.各項目・小項目の講義の順序は固定したものではなく,担当者の講義方針と受講者の背景や理解の状況に応じて,講義担当者が適切に決める.講義の進め方については適宜,指示をして,受講者が予習をできるように十分に配慮する. 以下の内容を,フィードバック回を含め(試験週を除く)全15回にて行う. 1. 抽象ベクトル空間【5〜6週】: 一次結合,一次独立,基底,次元,部分空間,線形写像,核と像 線形写像と行列,基底の変換,直和 2. 計量ベクトル空間【3〜4週】: 内積,正規直交基底,直交行列,ユニタリ行列,直交補空間 3. 固有値と行列の対角化【5〜6週】: 固有値と固有ベクトル,固有多項式,固有空間 行列の対角化,行列の上三角化,ケーリー.ハミルトンの定理 対称行列の直交行列による対角化 二次形式* エルミート行列のユニタリ行列による対角化* アステリスク * はオプション |
||||||||||||
(履修要件) |
特になし
|
||||||||||||
(成績評価の方法・観点及び達成度) | 演義担当教員によって平常点(演習への参加状況,課題への取組状況など)から得られた演義成績(30 点満点)をもとに,講義担当教員が期末試験を用いて,演義成績以上,100 点以下の範囲で 評価する. 教員によっては演義以外の平常点(レポート、中間試験などによるもの)を参考にすることもある.詳細は授業中に説明する. 本科目の評価が不合格であった履修者のうち,一定の基準以上の成績の者は再試験を受験できる.再試験の概要は KULASIS で履修者に通知する.なお再試験は3月末に実施予定である. |
||||||||||||
(教科書) |
担当教員毎に指示する.
|
||||||||||||
(参考書等) |
授業中に紹介する
|
||||||||||||
(授業外学習(予習・復習)等) | 予習,復習とともに,演習問題を積極的に解いてみることが必要である. | ||||||||||||
(その他(オフィスアワー等)) | 同一クラスにおいて前期開講の線形代数学(講義・演義)Aとの連続した履修を推奨する.また微分積分学(講義・演義)B を並行して受講することが望ましい. |
||||||||||||
線形代数学(講義・演義)B
1T11 (科目名)
Linear Algebra with Exercises B
(英 訳)
|
|
|||||||||
(群) 自然 (分野(分類)) 数学(基礎) (使用言語) 日本語 | ||||||||||
(旧群) B群 (単位数) 3 単位 (週コマ数) 2 コマ (授業形態) 講義 | ||||||||||
(開講年度・ 開講期) 2025・後期 (配当学年) 主として1回生 (対象学生) 理系向 |
||||||||||
(曜時限)
水3・金2 (教室) 共北26 |
||||||||||
(授業の概要・目的)
線形代数学は,微分積分学と共に現代の科学技術を支える数学の根幹をなす.この科目では,将来の応用に必要な線形代数学の基礎を解説する.
線形代数学(講義・演義)Bでは,ベクトル空間,線形写像などの基礎概念を体系的に学ぶと共に,それらの概念を行列に応用してさらに理解を深める. |
||||||||||
(到達目標)
ベクトル空間,線形写像などの抽象概念を体系的に理解すること,ならびにそれを通してベクトル,行列の理論的な基礎を固めることを目標とする.その際には,ベクトルや行列等のより進んだ取り扱いに習熟することも目指す.
|
||||||||||
(授業計画と内容)
この科目は講義と演義とが一体として構成されている. 演義は原則として隔週で開講される.演義においては,受講者は問題演習や課題学習に積極的に取り組むことにより,それまでに講義で学んだ事柄の理解を深める. 以下に挙げるのは講義の計画、内容である.各項目には,受講者の理解の程度を確認しながら,【 】で指示した週数を充てる.各項目・小項目の講義の順序は固定したものではなく,担当者の講義方針と受講者の背景や理解の状況に応じて,講義担当者が適切に決める.講義の進め方については適宜,指示をして,受講者が予習をできるように十分に配慮する. 以下の内容を,フィードバック回を含め(試験週を除く)全15回にて行う. 1. 抽象ベクトル空間【5〜6週】: 一次結合,一次独立,基底,次元,部分空間,線形写像,核と像 線形写像と行列,基底の変換,直和 2. 計量ベクトル空間【3〜4週】: 内積,正規直交基底,直交行列,ユニタリ行列,直交補空間 3. 固有値と行列の対角化【5〜6週】: 固有値と固有ベクトル,固有多項式,固有空間 行列の対角化,行列の上三角化,ケーリー.ハミルトンの定理 対称行列の直交行列による対角化 二次形式* エルミート行列のユニタリ行列による対角化* アステリスク * はオプション |
||||||||||
(履修要件)
特になし
|
||||||||||
(成績評価の方法・観点及び達成度)
演義担当教員によって平常点(演習への参加状況,課題への取組状況など)から得られた演義成績(30 点満点)をもとに,講義担当教員が期末試験を用いて,演義成績以上,100 点以下の範囲で 評価する.
教員によっては演義以外の平常点(レポート、中間試験などによるもの)を参考にすることもある.詳細は授業中に説明する. 本科目の評価が不合格であった履修者のうち,一定の基準以上の成績の者は再試験を受験できる.再試験の概要は KULASIS で履修者に通知する.なお再試験は3月末に実施予定である. |
||||||||||
(教科書)
担当教員毎に指示する.
|
||||||||||
(参考書等)
授業中に紹介する
|
||||||||||
(授業外学習(予習・復習)等)
予習,復習とともに,演習問題を積極的に解いてみることが必要である.
|
||||||||||
(その他(オフィスアワー等))
同一クラスにおいて前期開講の線形代数学(講義・演義)Aとの連続した履修を推奨する.また微分積分学(講義・演義)B を並行して受講することが望ましい.
|
||||||||||
授業の進捗状況や受講生の習熟度などによって「授業計画と内容」,「成績評価の方法」が変更になる場合があります。
(科目名) |
線形代数学(講義・演義)B 1T14
|
(英 訳) | Linear Algebra with Exercises B | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
(担当教員) |
|
||||||||||||
(群) | 自然 | ||||||||||||
(分野(分類)) | 数学(基礎) | ||||||||||||
(使用言語) | 日本語 | ||||||||||||
(旧群) | B群 | ||||||||||||
(単位数) | 3 単位 | ||||||||||||
(週コマ数) | 2 コマ | ||||||||||||
(授業形態) | 講義 | ||||||||||||
(開講年度・開講期) | 2025・後期 | ||||||||||||
(配当学年) | 主として1回生 | ||||||||||||
(対象学生) | 理系向 | ||||||||||||
(曜時限) | 水3・金1 |
||||||||||||
(教室) | 共北37 | ||||||||||||
(授業の概要・目的) | 線形代数学は,微分積分学と共に現代の科学技術を支える数学の根幹をなす.この科目では,将来の応用に必要な線形代数学の基礎を解説する. 線形代数学(講義・演義)Bでは,ベクトル空間,線形写像などの基礎概念を体系的に学ぶと共に,それらの概念を行列に応用してさらに理解を深める. |
||||||||||||
(到達目標) | ベクトル空間,線形写像などの抽象概念を体系的に理解すること,ならびにそれを通してベクトル,行列の理論的な基礎を固めることを目標とする.その際には,ベクトルや行列等のより進んだ取り扱いに習熟することも目指す. | ||||||||||||
(授業計画と内容) | この科目は講義と演義とが一体として構成されている. 演義は原則として隔週で開講される.演義においては,受講者は問題演習や課題学習に積極的に取り組むことにより,それまでに講義で学んだ事柄の理解を深める. 以下に挙げるのは講義の計画、内容である.各項目には,受講者の理解の程度を確認しながら,【 】で指示した週数を充てる.各項目・小項目の講義の順序は固定したものではなく,担当者の講義方針と受講者の背景や理解の状況に応じて,講義担当者が適切に決める.講義の進め方については適宜,指示をして,受講者が予習をできるように十分に配慮する. 以下の内容を,フィードバック回を含め(試験週を除く)全15回にて行う. 1. 抽象ベクトル空間【5〜6週】: 一次結合,一次独立,基底,次元,部分空間,線形写像,核と像 線形写像と行列,基底の変換,直和 2. 計量ベクトル空間【3〜4週】: 内積,正規直交基底,直交行列,ユニタリ行列,直交補空間 3. 固有値と行列の対角化【5〜6週】: 固有値と固有ベクトル,固有多項式,固有空間 行列の対角化,行列の上三角化,ケーリー.ハミルトンの定理 対称行列の直交行列による対角化 二次形式* エルミート行列のユニタリ行列による対角化* アステリスク * はオプション |
||||||||||||
(履修要件) |
特になし
|
||||||||||||
(成績評価の方法・観点及び達成度) | 演義担当教員によって平常点(演習への参加状況,課題への取組状況など)から得られた演義成績(30 点満点)をもとに,講義担当教員が期末試験を用いて,演義成績以上,100 点以下の範囲で 評価する. 教員によっては演義以外の平常点(レポート、中間試験などによるもの)を参考にすることもある.詳細は授業中に説明する. 本科目の評価が不合格であった履修者のうち,一定の基準以上の成績の者は再試験を受験できる.再試験の概要は KULASIS で履修者に通知する.なお再試験は3月末に実施予定である. |
||||||||||||
(教科書) |
担当教員毎に指示する.
|
||||||||||||
(参考書等) |
授業中に紹介する
|
||||||||||||
(授業外学習(予習・復習)等) | 予習,復習とともに,演習問題を積極的に解いてみることが必要である. | ||||||||||||
(その他(オフィスアワー等)) | 同一クラスにおいて前期開講の線形代数学(講義・演義)Aとの連続した履修を推奨する.また微分積分学(講義・演義)B を並行して受講することが望ましい. |
||||||||||||
線形代数学(講義・演義)B
1T14 (科目名)
Linear Algebra with Exercises B
(英 訳)
|
|
|||||||||
(群) 自然 (分野(分類)) 数学(基礎) (使用言語) 日本語 | ||||||||||
(旧群) B群 (単位数) 3 単位 (週コマ数) 2 コマ (授業形態) 講義 | ||||||||||
(開講年度・ 開講期) 2025・後期 (配当学年) 主として1回生 (対象学生) 理系向 |
||||||||||
(曜時限)
水3・金1 (教室) 共北37 |
||||||||||
(授業の概要・目的)
線形代数学は,微分積分学と共に現代の科学技術を支える数学の根幹をなす.この科目では,将来の応用に必要な線形代数学の基礎を解説する.
線形代数学(講義・演義)Bでは,ベクトル空間,線形写像などの基礎概念を体系的に学ぶと共に,それらの概念を行列に応用してさらに理解を深める. |
||||||||||
(到達目標)
ベクトル空間,線形写像などの抽象概念を体系的に理解すること,ならびにそれを通してベクトル,行列の理論的な基礎を固めることを目標とする.その際には,ベクトルや行列等のより進んだ取り扱いに習熟することも目指す.
|
||||||||||
(授業計画と内容)
この科目は講義と演義とが一体として構成されている. 演義は原則として隔週で開講される.演義においては,受講者は問題演習や課題学習に積極的に取り組むことにより,それまでに講義で学んだ事柄の理解を深める. 以下に挙げるのは講義の計画、内容である.各項目には,受講者の理解の程度を確認しながら,【 】で指示した週数を充てる.各項目・小項目の講義の順序は固定したものではなく,担当者の講義方針と受講者の背景や理解の状況に応じて,講義担当者が適切に決める.講義の進め方については適宜,指示をして,受講者が予習をできるように十分に配慮する. 以下の内容を,フィードバック回を含め(試験週を除く)全15回にて行う. 1. 抽象ベクトル空間【5〜6週】: 一次結合,一次独立,基底,次元,部分空間,線形写像,核と像 線形写像と行列,基底の変換,直和 2. 計量ベクトル空間【3〜4週】: 内積,正規直交基底,直交行列,ユニタリ行列,直交補空間 3. 固有値と行列の対角化【5〜6週】: 固有値と固有ベクトル,固有多項式,固有空間 行列の対角化,行列の上三角化,ケーリー.ハミルトンの定理 対称行列の直交行列による対角化 二次形式* エルミート行列のユニタリ行列による対角化* アステリスク * はオプション |
||||||||||
(履修要件)
特になし
|
||||||||||
(成績評価の方法・観点及び達成度)
演義担当教員によって平常点(演習への参加状況,課題への取組状況など)から得られた演義成績(30 点満点)をもとに,講義担当教員が期末試験を用いて,演義成績以上,100 点以下の範囲で 評価する.
教員によっては演義以外の平常点(レポート、中間試験などによるもの)を参考にすることもある.詳細は授業中に説明する. 本科目の評価が不合格であった履修者のうち,一定の基準以上の成績の者は再試験を受験できる.再試験の概要は KULASIS で履修者に通知する.なお再試験は3月末に実施予定である. |
||||||||||
(教科書)
担当教員毎に指示する.
|
||||||||||
(参考書等)
授業中に紹介する
|
||||||||||
(授業外学習(予習・復習)等)
予習,復習とともに,演習問題を積極的に解いてみることが必要である.
|
||||||||||
(その他(オフィスアワー等))
同一クラスにおいて前期開講の線形代数学(講義・演義)Aとの連続した履修を推奨する.また微分積分学(講義・演義)B を並行して受講することが望ましい.
|
||||||||||
授業の進捗状況や受講生の習熟度などによって「授業計画と内容」,「成績評価の方法」が変更になる場合があります。
(科目名) |
線形代数学(講義・演義)B 1T16
|
(英 訳) | Linear Algebra with Exercises B | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
(担当教員) |
|
||||||||||||
(群) | 自然 | ||||||||||||
(分野(分類)) | 数学(基礎) | ||||||||||||
(使用言語) | 日本語 | ||||||||||||
(旧群) | B群 | ||||||||||||
(単位数) | 3 単位 | ||||||||||||
(週コマ数) | 2 コマ | ||||||||||||
(授業形態) | 講義 | ||||||||||||
(開講年度・開講期) | 2025・後期 | ||||||||||||
(配当学年) | 主として1回生 | ||||||||||||
(対象学生) | 理系向 | ||||||||||||
(曜時限) | 水3・金2 |
||||||||||||
(教室) | 共北37 | ||||||||||||
(授業の概要・目的) | 線形代数学は,微分積分学と共に現代の科学技術を支える数学の根幹をなす.この科目では,将来の応用に必要な線形代数学の基礎を解説する. 線形代数学(講義・演義)Bでは,ベクトル空間,線形写像などの基礎概念を体系的に学ぶと共に,それらの概念を行列に応用してさらに理解を深める. |
||||||||||||
(到達目標) | ベクトル空間,線形写像などの抽象概念を体系的に理解すること,ならびにそれを通してベクトル,行列の理論的な基礎を固めることを目標とする.その際には,ベクトルや行列等のより進んだ取り扱いに習熟することも目指す. | ||||||||||||
(授業計画と内容) | この科目は講義と演義とが一体として構成されている. 演義は原則として隔週で開講される.演義においては,受講者は問題演習や課題学習に積極的に取り組むことにより,それまでに講義で学んだ事柄の理解を深める. 以下に挙げるのは講義の計画、内容である.各項目には,受講者の理解の程度を確認しながら,【 】で指示した週数を充てる.各項目・小項目の講義の順序は固定したものではなく,担当者の講義方針と受講者の背景や理解の状況に応じて,講義担当者が適切に決める.講義の進め方については適宜,指示をして,受講者が予習をできるように十分に配慮する. 以下の内容を,フィードバック回を含め(試験週を除く)全15回にて行う. 1. 抽象ベクトル空間【5〜6週】: 一次結合,一次独立,基底,次元,部分空間,線形写像,核と像 線形写像と行列,基底の変換,直和 2. 計量ベクトル空間【3〜4週】: 内積,正規直交基底,直交行列,ユニタリ行列,直交補空間 3. 固有値と行列の対角化【5〜6週】: 固有値と固有ベクトル,固有多項式,固有空間 行列の対角化,行列の上三角化,ケーリー.ハミルトンの定理 対称行列の直交行列による対角化 二次形式* エルミート行列のユニタリ行列による対角化* アステリスク * はオプション |
||||||||||||
(履修要件) |
特になし
|
||||||||||||
(成績評価の方法・観点及び達成度) | 演義担当教員によって平常点(演習への参加状況,課題への取組状況など)から得られた演義成績(30 点満点)をもとに,講義担当教員が期末試験を用いて,演義成績以上,100 点以下の範囲で 評価する. 教員によっては演義以外の平常点(レポート、中間試験などによるもの)を参考にすることもある.詳細は授業中に説明する. 本科目の評価が不合格であった履修者のうち,一定の基準以上の成績の者は再試験を受験できる.再試験の概要は KULASIS で履修者に通知する.なお再試験は3月末に実施予定である. |
||||||||||||
(教科書) |
担当教員毎に指示する.
|
||||||||||||
(参考書等) |
授業中に紹介する
|
||||||||||||
(授業外学習(予習・復習)等) | 予習,復習とともに,演習問題を積極的に解いてみることが必要である. | ||||||||||||
(その他(オフィスアワー等)) | 同一クラスにおいて前期開講の線形代数学(講義・演義)Aとの連続した履修を推奨する.また微分積分学(講義・演義)B を並行して受講することが望ましい. |
||||||||||||
線形代数学(講義・演義)B
1T16 (科目名)
Linear Algebra with Exercises B
(英 訳)
|
|
|||||||||
(群) 自然 (分野(分類)) 数学(基礎) (使用言語) 日本語 | ||||||||||
(旧群) B群 (単位数) 3 単位 (週コマ数) 2 コマ (授業形態) 講義 | ||||||||||
(開講年度・ 開講期) 2025・後期 (配当学年) 主として1回生 (対象学生) 理系向 |
||||||||||
(曜時限)
水3・金2 (教室) 共北37 |
||||||||||
(授業の概要・目的)
線形代数学は,微分積分学と共に現代の科学技術を支える数学の根幹をなす.この科目では,将来の応用に必要な線形代数学の基礎を解説する.
線形代数学(講義・演義)Bでは,ベクトル空間,線形写像などの基礎概念を体系的に学ぶと共に,それらの概念を行列に応用してさらに理解を深める. |
||||||||||
(到達目標)
ベクトル空間,線形写像などの抽象概念を体系的に理解すること,ならびにそれを通してベクトル,行列の理論的な基礎を固めることを目標とする.その際には,ベクトルや行列等のより進んだ取り扱いに習熟することも目指す.
|
||||||||||
(授業計画と内容)
この科目は講義と演義とが一体として構成されている. 演義は原則として隔週で開講される.演義においては,受講者は問題演習や課題学習に積極的に取り組むことにより,それまでに講義で学んだ事柄の理解を深める. 以下に挙げるのは講義の計画、内容である.各項目には,受講者の理解の程度を確認しながら,【 】で指示した週数を充てる.各項目・小項目の講義の順序は固定したものではなく,担当者の講義方針と受講者の背景や理解の状況に応じて,講義担当者が適切に決める.講義の進め方については適宜,指示をして,受講者が予習をできるように十分に配慮する. 以下の内容を,フィードバック回を含め(試験週を除く)全15回にて行う. 1. 抽象ベクトル空間【5〜6週】: 一次結合,一次独立,基底,次元,部分空間,線形写像,核と像 線形写像と行列,基底の変換,直和 2. 計量ベクトル空間【3〜4週】: 内積,正規直交基底,直交行列,ユニタリ行列,直交補空間 3. 固有値と行列の対角化【5〜6週】: 固有値と固有ベクトル,固有多項式,固有空間 行列の対角化,行列の上三角化,ケーリー.ハミルトンの定理 対称行列の直交行列による対角化 二次形式* エルミート行列のユニタリ行列による対角化* アステリスク * はオプション |
||||||||||
(履修要件)
特になし
|
||||||||||
(成績評価の方法・観点及び達成度)
演義担当教員によって平常点(演習への参加状況,課題への取組状況など)から得られた演義成績(30 点満点)をもとに,講義担当教員が期末試験を用いて,演義成績以上,100 点以下の範囲で 評価する.
教員によっては演義以外の平常点(レポート、中間試験などによるもの)を参考にすることもある.詳細は授業中に説明する. 本科目の評価が不合格であった履修者のうち,一定の基準以上の成績の者は再試験を受験できる.再試験の概要は KULASIS で履修者に通知する.なお再試験は3月末に実施予定である. |
||||||||||
(教科書)
担当教員毎に指示する.
|
||||||||||
(参考書等)
授業中に紹介する
|
||||||||||
(授業外学習(予習・復習)等)
予習,復習とともに,演習問題を積極的に解いてみることが必要である.
|
||||||||||
(その他(オフィスアワー等))
同一クラスにおいて前期開講の線形代数学(講義・演義)Aとの連続した履修を推奨する.また微分積分学(講義・演義)B を並行して受講することが望ましい.
|
||||||||||
授業の進捗状況や受講生の習熟度などによって「授業計画と内容」,「成績評価の方法」が変更になる場合があります。
(科目名) |
微分積分学続論II−微分方程式 2T17, 2T18, 2T19
|
(英 訳) | Advanced Calculus II - Differential Equations | ||||
---|---|---|---|---|---|---|---|
(担当教員) |
|
||||||
(群) | 自然 | ||||||
(分野(分類)) | 数学(発展) | ||||||
(使用言語) | 日本語 | ||||||
(旧群) | B群 | ||||||
(単位数) | 2 単位 | ||||||
(週コマ数) | 1 コマ | ||||||
(授業形態) | 講義 | ||||||
(開講年度・開講期) | 2025・後期 | ||||||
(配当学年) | 主として2回生 | ||||||
(対象学生) | 理系向 | ||||||
(曜時限) | 水4 |
||||||
(教室) | 共東31 | ||||||
(授業の概要・目的) | 「微分積分学(講義・演義)A, B」および「線形代数学(講義・演義)A, B」,または「微分積分学A, B」および「線形代数学A, B」を前提として,様々な自然科学の学習において基礎知識として必要となる,常微分方程式の数学的基礎について講義をする.主に,定数係数線形常微分方程式をはじめとする初等的に解くことのできる微分方程式についての解法,一般の線形微分方程式の解空間構造などの基本的性質,常微分方程式の数学的理論の基盤となる解の存在と一意性とそれに関連する事項について講ずる. | ||||||
(到達目標) | ・定数係数線形常微分方程式をはじめとする初等的に解くことのできる微分方程式についての代表的な解法を修得する ・一般の線形常微分方程式の解空間の構造などの基本的性質について理解する ・常微分方程式の数学的理論の基盤となる解の存在と一意性とそれに関連する事項を理解する |
||||||
(授業計画と内容) | 以下の各項目について講述する.各項目には,受講者の理解の程度を確認しながら,【 】で指示した週数を充てる.各項目・小項目の講義の順序は固定したものではなく,担当者の講義方針と受講者の背景や理解の状況に応じて,講義担当者が適切に決める.講義の進め方については適宜,指示をして,受講者が予習をできるように十分に配慮する. 以下の内容を,フィードバック回を含め(試験週を除く)全15回にて行う. 1.導入【1週】 微分方程式とは何か,物理現象などに現れる微分方程式の具体例 2.初等解法【3週】 変数分離,一階線形微分方程式,定数変化法,全微分形,積分因子,級数解法の例 3.線形微分方程式【6〜7週】 線形微分方程式(変数係数を含む)の解の空間,基本解と基本行列,ロンスキー行列,定数変化法,線形微分方程式の解法,行列の指数関数とその計算(射影行列を含む),2次元定数係数線形微分方程式の相平面図 4.常微分方程式の基本定理【3〜4週】 連続関数全体の空間とその性質(ノルム空間,完備性),逐次近似法,常微分方程式の解の存在と一意性(コーシー・リプシッツの定理),初期値に対する連続性,解の延長 |
||||||
(履修要件) |
「微分積分学(講義・演義)A, B」および「線形代数学(講義・演義)A, B」,または「微分積分学A, B」および「線形代数学A, B」の内容は既知とする.
本講義の履修希望者は,必ず初回授業の授業に出席すること. |
||||||
(成績評価の方法・観点及び達成度) | 主として定期試験による(詳しくは担当教員毎に授業中に指示する). | ||||||
(教科書) |
担当教員ごとに指示する.
|
||||||
(参考書等) |
授業中に紹介する
|
||||||
(授業外学習(予習・復習)等) | 予習・復習とともに,演習問題を積極的に解いてみることが必要である. | ||||||
(その他(オフィスアワー等)) | |||||||
微分積分学続論II−微分方程式
2T17, 2T18, 2T19 (科目名)
Advanced Calculus II - Differential Equations
(英 訳)
|
|
||||||
(群) 自然 (分野(分類)) 数学(発展) (使用言語) 日本語 | |||||||
(旧群) B群 (単位数) 2 単位 (週コマ数) 1 コマ (授業形態) 講義 | |||||||
(開講年度・ 開講期) 2025・後期 (配当学年) 主として2回生 (対象学生) 理系向 |
|||||||
(曜時限)
水4 (教室) 共東31 |
|||||||
(授業の概要・目的)
「微分積分学(講義・演義)A, B」および「線形代数学(講義・演義)A, B」,または「微分積分学A, B」および「線形代数学A, B」を前提として,様々な自然科学の学習において基礎知識として必要となる,常微分方程式の数学的基礎について講義をする.主に,定数係数線形常微分方程式をはじめとする初等的に解くことのできる微分方程式についての解法,一般の線形微分方程式の解空間構造などの基本的性質,常微分方程式の数学的理論の基盤となる解の存在と一意性とそれに関連する事項について講ずる.
|
|||||||
(到達目標)
・定数係数線形常微分方程式をはじめとする初等的に解くことのできる微分方程式についての代表的な解法を修得する
・一般の線形常微分方程式の解空間の構造などの基本的性質について理解する ・常微分方程式の数学的理論の基盤となる解の存在と一意性とそれに関連する事項を理解する |
|||||||
(授業計画と内容)
以下の各項目について講述する.各項目には,受講者の理解の程度を確認しながら,【 】で指示した週数を充てる.各項目・小項目の講義の順序は固定したものではなく,担当者の講義方針と受講者の背景や理解の状況に応じて,講義担当者が適切に決める.講義の進め方については適宜,指示をして,受講者が予習をできるように十分に配慮する. 以下の内容を,フィードバック回を含め(試験週を除く)全15回にて行う. 1.導入【1週】 微分方程式とは何か,物理現象などに現れる微分方程式の具体例 2.初等解法【3週】 変数分離,一階線形微分方程式,定数変化法,全微分形,積分因子,級数解法の例 3.線形微分方程式【6〜7週】 線形微分方程式(変数係数を含む)の解の空間,基本解と基本行列,ロンスキー行列,定数変化法,線形微分方程式の解法,行列の指数関数とその計算(射影行列を含む),2次元定数係数線形微分方程式の相平面図 4.常微分方程式の基本定理【3〜4週】 連続関数全体の空間とその性質(ノルム空間,完備性),逐次近似法,常微分方程式の解の存在と一意性(コーシー・リプシッツの定理),初期値に対する連続性,解の延長 |
|||||||
(履修要件)
「微分積分学(講義・演義)A, B」および「線形代数学(講義・演義)A, B」,または「微分積分学A, B」および「線形代数学A, B」の内容は既知とする.
本講義の履修希望者は,必ず初回授業の授業に出席すること. |
|||||||
(成績評価の方法・観点及び達成度)
主として定期試験による(詳しくは担当教員毎に授業中に指示する).
|
|||||||
(教科書)
担当教員ごとに指示する.
|
|||||||
(参考書等)
授業中に紹介する
|
|||||||
(授業外学習(予習・復習)等)
予習・復習とともに,演習問題を積極的に解いてみることが必要である.
|
|||||||
(その他(オフィスアワー等))
|
|||||||
授業の進捗状況や受講生の習熟度などによって「授業計画と内容」,「成績評価の方法」が変更になる場合があります。
(科目名) |
微分積分学(講義・演義)B 1H1, 1H2, 1H3
|
(英 訳) | Calculus with Exercises B | ||||
---|---|---|---|---|---|---|---|
(担当教員) |
|
||||||
(群) | 自然 | ||||||
(分野(分類)) | 数学(基礎) | ||||||
(使用言語) | 日本語 | ||||||
(旧群) | B群 | ||||||
(単位数) | 3 単位 | ||||||
(週コマ数) | 2 コマ | ||||||
(授業形態) | 講義 | ||||||
(開講年度・開講期) | 2025・後期 | ||||||
(配当学年) | 主として1回生 | ||||||
(対象学生) | 理系向 | ||||||
(曜時限) | 水4・木2 |
||||||
(教室) | 共南01 | ||||||
(授業の概要・目的) | 微分積分学は,線形代数学と共に現代の科学技術を支える数学の根幹をなす.この科目では,将来の応用に必要な微分積分学の基礎を解説する. 微分積分学(講義・演義)Bでは,微分積分学(講義・演義)Aに続いて一変数関数の微分積分の理解をさらに深めた後に,多変数関数の微分積分について学ぶ. |
||||||
(到達目標) | 一変数および多変数関数の微分積分の理論的な基礎を理解すること,ならびに,それを用いた数学的解析の手法を修得して応用できるようになることを目標とする. | ||||||
(授業計画と内容) | この科目は講義と演義とが一体となって構成されている. 演義は原則として隔週で開講される.演義においては,受講者は問題練習や課題学習に積極的に取り組むことにより,それまでに講義で学んだ事柄の理解を深める. 以下に挙げるのは講義の計画・内容である.各項目には,受講者の理解の程度を確認しながら,【 】で指示した週数を充てる.各項目・小項目の講義の順序は固定したものではなく,担当者の講義方針と受講者の背景や理解の状況に応じて,講義担当者が適切に決める.講義の進め方については適宜,指示をして,受講者が予習をできるように十分に配慮する. 以下の内容を,フィードバック回を含め(試験週を除く)全15回にて行う. 1.級数【3〜5週】: 無限級数(収束の判定法,絶対収束と条件収束) べき級数(収束半径,項別微積分) 関数列・関数項級数*(一様収束,項別微積分) 2.平面および空間の点集合【2週】: 距離,点列の収束,開集合・閉集合 連続関数 3.多変数関数の微分法【4〜5週】: 偏微分,微分(全微分)可能性,一次近似,接平面,勾配ベクトル 合成関数の微分(連鎖律),ヤコビ行列,ヤコビ行列式 テイラーの定理,極値問題 条件付き極値問題(陰関数定理) 4.多変数関数の積分法【4〜5週】: 重積分,累次積分,変数変換公式,面積・体積 広義積分,ガンマ関数とベータ関数 アステリスク * はオプション |
||||||
(履修要件) |
特になし
|
||||||
(成績評価の方法・観点及び達成度) | 演義担当教員によって平常点(演習への参加状況,課題への取組状況など)から得られた演義成績(30 点満点)をもとに,講義担当教員が期末試験を用いて,演義成績以上,100 点以下の範囲で 評価する. 教員によっては演義以外の平常点(レポート、中間試験などによるもの)を参考にすることもある.詳細は授業中に説明する. 本科目の評価が不合格であった履修者のうち,一定の基準以上の成績の者は再試験を受験できる.再試験の概要は KULASIS で履修者に通知する.なお再試験は3月末に実施予定である. |
||||||
(教科書) |
担当教員毎に指示する.
|
||||||
(参考書等) |
授業中に紹介する
|
||||||
(授業外学習(予習・復習)等) | 予習,復習とともに,演習問題を積極的に解いてみることが必要である. | ||||||
(その他(オフィスアワー等)) | 同一クラスにおいて前期開講の微分積分学(講義・演義)Aとの連続した履修を推奨する.また線形代数学(講義・演義)B を並行して受講することが望ましい. |
||||||
微分積分学(講義・演義)B
1H1, 1H2, 1H3 (科目名)
Calculus with Exercises B
(英 訳)
|
|
||||||
(群) 自然 (分野(分類)) 数学(基礎) (使用言語) 日本語 | |||||||
(旧群) B群 (単位数) 3 単位 (週コマ数) 2 コマ (授業形態) 講義 | |||||||
(開講年度・ 開講期) 2025・後期 (配当学年) 主として1回生 (対象学生) 理系向 |
|||||||
(曜時限)
水4・木2 (教室) 共南01 |
|||||||
(授業の概要・目的)
微分積分学は,線形代数学と共に現代の科学技術を支える数学の根幹をなす.この科目では,将来の応用に必要な微分積分学の基礎を解説する.
微分積分学(講義・演義)Bでは,微分積分学(講義・演義)Aに続いて一変数関数の微分積分の理解をさらに深めた後に,多変数関数の微分積分について学ぶ. |
|||||||
(到達目標)
一変数および多変数関数の微分積分の理論的な基礎を理解すること,ならびに,それを用いた数学的解析の手法を修得して応用できるようになることを目標とする.
|
|||||||
(授業計画と内容)
この科目は講義と演義とが一体となって構成されている. 演義は原則として隔週で開講される.演義においては,受講者は問題練習や課題学習に積極的に取り組むことにより,それまでに講義で学んだ事柄の理解を深める. 以下に挙げるのは講義の計画・内容である.各項目には,受講者の理解の程度を確認しながら,【 】で指示した週数を充てる.各項目・小項目の講義の順序は固定したものではなく,担当者の講義方針と受講者の背景や理解の状況に応じて,講義担当者が適切に決める.講義の進め方については適宜,指示をして,受講者が予習をできるように十分に配慮する. 以下の内容を,フィードバック回を含め(試験週を除く)全15回にて行う. 1.級数【3〜5週】: 無限級数(収束の判定法,絶対収束と条件収束) べき級数(収束半径,項別微積分) 関数列・関数項級数*(一様収束,項別微積分) 2.平面および空間の点集合【2週】: 距離,点列の収束,開集合・閉集合 連続関数 3.多変数関数の微分法【4〜5週】: 偏微分,微分(全微分)可能性,一次近似,接平面,勾配ベクトル 合成関数の微分(連鎖律),ヤコビ行列,ヤコビ行列式 テイラーの定理,極値問題 条件付き極値問題(陰関数定理) 4.多変数関数の積分法【4〜5週】: 重積分,累次積分,変数変換公式,面積・体積 広義積分,ガンマ関数とベータ関数 アステリスク * はオプション |
|||||||
(履修要件)
特になし
|
|||||||
(成績評価の方法・観点及び達成度)
演義担当教員によって平常点(演習への参加状況,課題への取組状況など)から得られた演義成績(30 点満点)をもとに,講義担当教員が期末試験を用いて,演義成績以上,100 点以下の範囲で 評価する.
教員によっては演義以外の平常点(レポート、中間試験などによるもの)を参考にすることもある.詳細は授業中に説明する. 本科目の評価が不合格であった履修者のうち,一定の基準以上の成績の者は再試験を受験できる.再試験の概要は KULASIS で履修者に通知する.なお再試験は3月末に実施予定である. |
|||||||
(教科書)
担当教員毎に指示する.
|
|||||||
(参考書等)
授業中に紹介する
|
|||||||
(授業外学習(予習・復習)等)
予習,復習とともに,演習問題を積極的に解いてみることが必要である.
|
|||||||
(その他(オフィスアワー等))
同一クラスにおいて前期開講の微分積分学(講義・演義)Aとの連続した履修を推奨する.また線形代数学(講義・演義)B を並行して受講することが望ましい.
|
|||||||
授業の進捗状況や受講生の習熟度などによって「授業計画と内容」,「成績評価の方法」が変更になる場合があります。
(科目名) |
Advanced Calculus II-Differential Equations 2T25
|
(英 訳) | Advanced Calculus II-Differential Equations | ||||
---|---|---|---|---|---|---|---|
(担当教員) |
|
||||||
(群) | 自然 | ||||||
(分野(分類)) | 数学(発展) | ||||||
(使用言語) | 英語 | ||||||
(旧群) | B群 | ||||||
(単位数) | 2 単位 | ||||||
(週コマ数) | 1 コマ | ||||||
(授業形態) | 講義 | ||||||
(開講年度・開講期) | 2025・後期 | ||||||
(配当学年) | 2回生以上 | ||||||
(対象学生) | 理系向 | ||||||
(曜時限) | 水5 |
||||||
(教室) | 共北21 | ||||||
(授業の概要・目的) | Based on the knowledge of Calculus with Exercises A/B and Linear Algebra with Exercises A/B or Calculus A/ B and Liner Algebra A/B, this course explains ordinary differential equations. Starting from the basic solutions techniques (such as separation of variables and integrating factors) for differential equations, the course introduces the second order linear differential equations and their solution. Differential equations are studied in context of modelling of various physical situations (for example, vibrations, mixing problem, population dynamics, etc.). | ||||||
(到達目標) | To learn the different types of differential equations and their solution methods. | ||||||
(授業計画と内容) | 1. Elementary methods of solution (6 weeks) - Separation of variables, linear first order differential equations, total differential equations (exact differential equations) and integrating factors 2. Existence and uniqueness of the solution of initial value problems (4 weeks) - Space of continuous functions and its properties (normed spaces, completeness), iterated approximation, Cauchy-Lipschitz's theorem and the connection of solution 3. Linear differential equations (4 weeks) - Space of solutions of homogeneous equations, variation of parameters, exponential function for matrices and Wronskian determinant. 4. Feedback (1 week) |
||||||
(履修要件) |
To understand Calculus with Exercises A/B and Linear Algebra with Exercises A/B or Calculus A/B and Linear Algebra A/B.
|
||||||
(成績評価の方法・観点及び達成度) | Weekly submission of class examples, class participation and homework (20%), Snap quizzes (15%), Final examination(65%). | ||||||
(教科書) |
『Advanced Engineering Mathematics, 9th ed.』
(Wiley, 2006)
|
||||||
(参考書等) |
『Thomas' Calculus, 14th ed.』
(Pearson)
『Calculus Vol. 2 and Vol. 3』
(OpenStax)
(Books are available online at https:// openstax.org/details/books/calculus-volume-2 and https://openstax.org/details/books/calculus-volume-3)
『Differential Equations, 4th ed.』
(McGraw-Hill)
|
||||||
(授業外学習(予習・復習)等) | Students are encouraged to do assigned homework related to the classes. | ||||||
(その他(オフィスアワー等)) | The content of this course is independent of Advanced Calculus I in the 1st semester. | ||||||
Advanced Calculus II-Differential Equations
2T25 (科目名)
Advanced Calculus II-Differential Equations
(英 訳)
|
|
||||||
(群) 自然 (分野(分類)) 数学(発展) (使用言語) 英語 | |||||||
(旧群) B群 (単位数) 2 単位 (週コマ数) 1 コマ (授業形態) 講義 | |||||||
(開講年度・ 開講期) 2025・後期 (配当学年) 2回生以上 (対象学生) 理系向 |
|||||||
(曜時限)
水5 (教室) 共北21 |
|||||||
(授業の概要・目的)
Based on the knowledge of Calculus with Exercises A/B and Linear Algebra with Exercises A/B or Calculus A/ B and Liner Algebra A/B, this course explains ordinary differential equations. Starting from the basic solutions techniques (such as separation of variables and integrating factors) for differential equations, the course introduces the second order linear differential equations and their solution. Differential equations are studied in context of modelling of various physical situations (for example, vibrations, mixing problem, population dynamics, etc.).
|
|||||||
(到達目標)
To learn the different types of differential equations and their solution methods.
|
|||||||
(授業計画と内容)
1. Elementary methods of solution (6 weeks) - Separation of variables, linear first order differential equations, total differential equations (exact differential equations) and integrating factors 2. Existence and uniqueness of the solution of initial value problems (4 weeks) - Space of continuous functions and its properties (normed spaces, completeness), iterated approximation, Cauchy-Lipschitz's theorem and the connection of solution 3. Linear differential equations (4 weeks) - Space of solutions of homogeneous equations, variation of parameters, exponential function for matrices and Wronskian determinant. 4. Feedback (1 week) |
|||||||
(履修要件)
To understand Calculus with Exercises A/B and Linear Algebra with Exercises A/B or Calculus A/B and Linear Algebra A/B.
|
|||||||
(成績評価の方法・観点及び達成度)
Weekly submission of class examples, class participation and homework (20%), Snap quizzes (15%), Final examination(65%).
|
|||||||
(教科書)
『Advanced Engineering Mathematics, 9th ed.』
(Wiley, 2006)
|
|||||||
(参考書等)
『Thomas' Calculus, 14th ed.』
(Pearson)
『Calculus Vol. 2 and Vol. 3』
(OpenStax)
(Books are available online at https:// openstax.org/details/books/calculus-volume-2 and https://openstax.org/details/books/calculus-volume-3)
『Differential Equations, 4th ed.』
(McGraw-Hill)
|
|||||||
(授業外学習(予習・復習)等)
Students are encouraged to do assigned homework related to the classes.
|
|||||||
(その他(オフィスアワー等))
The content of this course is independent of Advanced Calculus I in the 1st semester.
|
|||||||
授業の進捗状況や受講生の習熟度などによって「授業計画と内容」,「成績評価の方法」が変更になる場合があります。
(科目名) |
数学探訪I
|
(英 訳) | Quest for Mathematics I | ||||
---|---|---|---|---|---|---|---|
(担当教員) |
|
||||||
(群) | 自然 | ||||||
(分野(分類)) | 数学(基礎) | ||||||
(使用言語) | 日本語 | ||||||
(旧群) | B群 | ||||||
(単位数) | 2 単位 | ||||||
(週コマ数) | 1 コマ | ||||||
(授業形態) | 講義 | ||||||
(開講年度・開講期) | 2025・後期 | ||||||
(配当学年) | 主として1・2回生 | ||||||
(対象学生) | 全学向 | ||||||
(曜時限) | 水5 |
||||||
(教室) | 共北26 | ||||||
総合人間学部 の学生は、全学共通科目として履修できません。所属学部で履修登録してください。 | |||||||
(授業の概要・目的) | 直交する3方向から見て正方形に見える立体は,どんな形をしてるでしょうか? 立方体はもちろんそうですが,正四面体をはじめとするさまざまな多面体がこの性質を満たしてます。さらに,シェルピンスキー四面体などのフラクタル立体も,この性質を持っています。このような立体をイマジナリーキューブとよぶことにします。担当者はイマジナリーキューブ,特に,フラクタルなイマジナリーキューブに関して研究を行う中で,美しい形や美しい数学に出会い,その立体としての美しさと数学的な面白さを一般の人に伝えるべく,立体パズルをデザインしたり立体オブジェを作成したりして,それらを用いたワークショップなどの活動を行ってきました。この授業では,パズルや立体オブジェを用いながら,イマジナリーキューブとそれに関連する数学についてお話をします。目的は二つあります。 一つは,イマジナリーキューブをはじめとする立体図形の面白さを知ってほしいということです。授業は,パズルを解くことから始まります。パズルを解くのは楽しいですが,パズルを解いた後に現れる数学的構造は,より深い楽しみの存在を教えてくれるはずです。その後も,立体の美しさ,そして,その奥にある数学の美しさをいくつもお見せしますので楽しんでください。3D プリントで作成した立体をたくさん差し上げます。 もう一つは,立体を通じて数学に関する理解を深めることです。立体図形の研究自体が,幾何学という数学の一つの分野ですが,それ以外にも,いろんな数学と結びついています。立体の回転は線形変換の特殊なものですが,回転を具体例にして考えると線形代数の理解が深まります。立体の対称性は,群のもっとも分かりやすい例ですし,群論を用いて得られる立体の対称性に関する性質は,皆さんも興味をもてるものと思います。また,この授業ではフラクタル立体とその影について扱いますが,フラクタル立体は,見た目の美しさに加えて,さまざまな数学的概念と関連しています。(立体)図形が組み合わさって構造を作るさまは,見た目もその数学も美しいです。さらに,4次元の立体,特に,4次元の正多胞体やイマジナリーキューブについても話をします。 数学を勉強することにより,かたちの見え方が変わってくることを期待しています。 |
||||||
(到達目標) | イマジナリーキューブをはじめとする立体図形に関する理解を深める。 立体図形との関係で,線形代数,群論,フラクタル,組合せ理論,高次元空間などの数学について勉強し,理解を深める。 数学を楽しむ心を身につける。 |
||||||
(授業計画と内容) | イマジナリーキューブなどの立体図形を用いて授業を行います。イマジナリーキューブという特別な対象を扱いますが,普通の数学の理解につながるような話をします。 3D プリンタで作成した立体をいくつか差し上げますので,手にとって自分で確かめながら勉強を進めてください。 1. イマジナリーキューブ・パズル --- 公理的な幾何学と解析的な幾何学について 2. 極小凸イマジナリーキューブはいくつある? --- 凸図形,立体の数え上げ 3. 立体の回転 --- 線形代数入門,特に,特殊直交変換(すなわち回転)について 4. その立体の対称性はいくつある? --- 正多面体,半正多面体と,それらの回転対称性 5. 回転と回転を合成すると? --- 群論入門 6. 立体の回転構造は何種類ある? --- バーンサイドの定理と数え上げ 7. タイリングと半正多面体 --- 平面幾何,球面幾何,そして,双曲幾何 8. 4 次元の立体 --- 4 次元の多面体の不思議 9. フラクタル立体について 10. フラクタルの基礎 11.フラクタル立体の影1 --- フラクタル構造と数の展開の関係 12. フラクタル立体の影2 --- self-affine set とタイリング 13. TriMata --- シェルピンスキー四面体の自己組織的な構成法 14. こんなところにもフラクタル --- ゲームとフラクタルとセル・オートマトン 15 フィードバック 1 話完結を目指しますが,話題によっては次の時間にずれこむことがあります。 |
||||||
(履修要件) |
文系高校数学以上の知識は仮定しません。総合人間学部の学生は,学部科目「計算と位相」を受講してください。
|
||||||
(成績評価の方法・観点及び達成度) | 授業中に課すレポートにより到達目標の達成度をみて,それに基づき評価します。 | ||||||
(教科書) |
授業中にプリントを配布します
|
||||||
(参考書等) |
『正多面体を解く』
(東海大学出版部, 2002)
|
||||||
(関連URL) |
https://u.kyoto-u.jp/icube
イマジナリーキューブのページ
https://youtu.be/VQvyxG4X4iA フラクタルイマジナリーキューブの動画 |
||||||
(授業外学習(予習・復習)等) | 日頃から、身の回りにある立体の構造に興味をもってほしい。 | ||||||
(その他(オフィスアワー等)) | パズルなどの教材を利用するため,人数制限を行います。(40人程度) |
||||||
数学探訪I
(科目名)
Quest for Mathematics I
(英 訳)
|
|
||||||
(群) 自然 (分野(分類)) 数学(基礎) (使用言語) 日本語 | |||||||
(旧群) B群 (単位数) 2 単位 (週コマ数) 1 コマ (授業形態) 講義 | |||||||
(開講年度・ 開講期) 2025・後期 (配当学年) 主として1・2回生 (対象学生) 全学向 |
|||||||
(曜時限)
水5 (教室) 共北26 |
|||||||
総合人間学部 の学生は、全学共通科目として履修できません。所属学部で履修登録してください。 | |||||||
(授業の概要・目的)
直交する3方向から見て正方形に見える立体は,どんな形をしてるでしょうか?
立方体はもちろんそうですが,正四面体をはじめとするさまざまな多面体がこの性質を満たしてます。さらに,シェルピンスキー四面体などのフラクタル立体も,この性質を持っています。このような立体をイマジナリーキューブとよぶことにします。担当者はイマジナリーキューブ,特に,フラクタルなイマジナリーキューブに関して研究を行う中で,美しい形や美しい数学に出会い,その立体としての美しさと数学的な面白さを一般の人に伝えるべく,立体パズルをデザインしたり立体オブジェを作成したりして,それらを用いたワークショップなどの活動を行ってきました。この授業では,パズルや立体オブジェを用いながら,イマジナリーキューブとそれに関連する数学についてお話をします。目的は二つあります。 一つは,イマジナリーキューブをはじめとする立体図形の面白さを知ってほしいということです。授業は,パズルを解くことから始まります。パズルを解くのは楽しいですが,パズルを解いた後に現れる数学的構造は,より深い楽しみの存在を教えてくれるはずです。その後も,立体の美しさ,そして,その奥にある数学の美しさをいくつもお見せしますので楽しんでください。3D プリントで作成した立体をたくさん差し上げます。 もう一つは,立体を通じて数学に関する理解を深めることです。立体図形の研究自体が,幾何学という数学の一つの分野ですが,それ以外にも,いろんな数学と結びついています。立体の回転は線形変換の特殊なものですが,回転を具体例にして考えると線形代数の理解が深まります。立体の対称性は,群のもっとも分かりやすい例ですし,群論を用いて得られる立体の対称性に関する性質は,皆さんも興味をもてるものと思います。また,この授業ではフラクタル立体とその影について扱いますが,フラクタル立体は,見た目の美しさに加えて,さまざまな数学的概念と関連しています。(立体)図形が組み合わさって構造を作るさまは,見た目もその数学も美しいです。さらに,4次元の立体,特に,4次元の正多胞体やイマジナリーキューブについても話をします。 数学を勉強することにより,かたちの見え方が変わってくることを期待しています。 |
|||||||
(到達目標)
イマジナリーキューブをはじめとする立体図形に関する理解を深める。
立体図形との関係で,線形代数,群論,フラクタル,組合せ理論,高次元空間などの数学について勉強し,理解を深める。 数学を楽しむ心を身につける。 |
|||||||
(授業計画と内容)
イマジナリーキューブなどの立体図形を用いて授業を行います。イマジナリーキューブという特別な対象を扱いますが,普通の数学の理解につながるような話をします。 3D プリンタで作成した立体をいくつか差し上げますので,手にとって自分で確かめながら勉強を進めてください。 1. イマジナリーキューブ・パズル --- 公理的な幾何学と解析的な幾何学について 2. 極小凸イマジナリーキューブはいくつある? --- 凸図形,立体の数え上げ 3. 立体の回転 --- 線形代数入門,特に,特殊直交変換(すなわち回転)について 4. その立体の対称性はいくつある? --- 正多面体,半正多面体と,それらの回転対称性 5. 回転と回転を合成すると? --- 群論入門 6. 立体の回転構造は何種類ある? --- バーンサイドの定理と数え上げ 7. タイリングと半正多面体 --- 平面幾何,球面幾何,そして,双曲幾何 8. 4 次元の立体 --- 4 次元の多面体の不思議 9. フラクタル立体について 10. フラクタルの基礎 11.フラクタル立体の影1 --- フラクタル構造と数の展開の関係 12. フラクタル立体の影2 --- self-affine set とタイリング 13. TriMata --- シェルピンスキー四面体の自己組織的な構成法 14. こんなところにもフラクタル --- ゲームとフラクタルとセル・オートマトン 15 フィードバック 1 話完結を目指しますが,話題によっては次の時間にずれこむことがあります。 |
|||||||
(履修要件)
文系高校数学以上の知識は仮定しません。総合人間学部の学生は,学部科目「計算と位相」を受講してください。
|
|||||||
(成績評価の方法・観点及び達成度)
授業中に課すレポートにより到達目標の達成度をみて,それに基づき評価します。
|
|||||||
(教科書)
授業中にプリントを配布します
|
|||||||
(参考書等)
『正多面体を解く』
(東海大学出版部, 2002)
|
|||||||
(授業外学習(予習・復習)等)
日頃から、身の回りにある立体の構造に興味をもってほしい。
|
|||||||
(その他(オフィスアワー等))
パズルなどの教材を利用するため,人数制限を行います。(40人程度)
|
|||||||
授業の進捗状況や受講生の習熟度などによって「授業計画と内容」,「成績評価の方法」が変更になる場合があります。
(科目名) |
微分積分学(講義・演義)B 1S2
|
(英 訳) | Calculus with Exercises B | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
(担当教員) |
|
||||||||||||
(群) | 自然 | ||||||||||||
(分野(分類)) | 数学(基礎) | ||||||||||||
(使用言語) | 日本語 | ||||||||||||
(旧群) | B群 | ||||||||||||
(単位数) | 3 単位 | ||||||||||||
(週コマ数) | 2 コマ | ||||||||||||
(授業形態) | 講義 | ||||||||||||
(開講年度・開講期) | 2025・後期 | ||||||||||||
(配当学年) | 主として1回生 | ||||||||||||
(対象学生) | 理系向 | ||||||||||||
(曜時限) | 木1・金2 |
||||||||||||
(教室) | 1共32 | ||||||||||||
(授業の概要・目的) | 微分積分学は,線形代数学と共に現代の科学技術を支える数学の根幹をなす.この科目では,将来の応用に必要な微分積分学の基礎を解説する. 微分積分学(講義・演義)Bでは,微分積分学(講義・演義)Aに続いて一変数関数の微分積分の理解をさらに深めた後に,多変数関数の微分積分について学ぶ. |
||||||||||||
(到達目標) | 一変数および多変数関数の微分積分の理論的な基礎を理解すること,ならびに,それを用いた数学的解析の手法を修得して応用できるようになることを目標とする. | ||||||||||||
(授業計画と内容) | この科目は講義と演義とが一体となって構成されている. 演義は原則として隔週で開講される.演義においては,受講者は問題練習や課題学習に積極的に取り組むことにより,それまでに講義で学んだ事柄の理解を深める. 以下に挙げるのは講義の計画・内容である.各項目には,受講者の理解の程度を確認しながら,【 】で指示した週数を充てる.各項目・小項目の講義の順序は固定したものではなく,担当者の講義方針と受講者の背景や理解の状況に応じて,講義担当者が適切に決める.講義の進め方については適宜,指示をして,受講者が予習をできるように十分に配慮する. 以下の内容を,フィードバック回を含め(試験週を除く)全15回にて行う. 1.級数【3〜5週】: 無限級数(収束の判定法,絶対収束と条件収束) べき級数(収束半径,項別微積分) 関数列・関数項級数*(一様収束,項別微積分) 2.平面および空間の点集合【2週】: 距離,点列の収束,開集合・閉集合 連続関数 3.多変数関数の微分法【4〜5週】: 偏微分,微分(全微分)可能性,一次近似,接平面,勾配ベクトル 合成関数の微分(連鎖律),ヤコビ行列,ヤコビ行列式 テイラーの定理,極値問題 条件付き極値問題(陰関数定理) 4.多変数関数の積分法【4〜5週】: 重積分,累次積分,変数変換公式,面積・体積 広義積分,ガンマ関数とベータ関数 アステリスク * はオプション |
||||||||||||
(履修要件) |
特になし
|
||||||||||||
(成績評価の方法・観点及び達成度) | 演義担当教員によって平常点(演習への参加状況,課題への取組状況など)から得られた演義成績(30 点満点)をもとに,講義担当教員が期末試験を用いて,演義成績以上,100 点以下の範囲で 評価する. 教員によっては演義以外の平常点(レポート、中間試験などによるもの)を参考にすることもある.詳細は授業中に説明する. 本科目の評価が不合格であった履修者のうち,一定の基準以上の成績の者は再試験を受験できる.再試験の概要は KULASIS で履修者に通知する.なお再試験は3月末に実施予定である. |
||||||||||||
(教科書) |
担当教員毎に指示する.
|
||||||||||||
(参考書等) |
授業中に紹介する
|
||||||||||||
(授業外学習(予習・復習)等) | 予習,復習とともに,演習問題を積極的に解いてみることが必要である. | ||||||||||||
(その他(オフィスアワー等)) | 同一クラスにおいて前期開講の微分積分学(講義・演義)Aとの連続した履修を推奨する.また線形代数学(講義・演義)B を並行して受講することが望ましい. |
||||||||||||
微分積分学(講義・演義)B
1S2 (科目名)
Calculus with Exercises B
(英 訳)
|
|
|||||||||
(群) 自然 (分野(分類)) 数学(基礎) (使用言語) 日本語 | ||||||||||
(旧群) B群 (単位数) 3 単位 (週コマ数) 2 コマ (授業形態) 講義 | ||||||||||
(開講年度・ 開講期) 2025・後期 (配当学年) 主として1回生 (対象学生) 理系向 |
||||||||||
(曜時限)
木1・金2 (教室) 1共32 |
||||||||||
(授業の概要・目的)
微分積分学は,線形代数学と共に現代の科学技術を支える数学の根幹をなす.この科目では,将来の応用に必要な微分積分学の基礎を解説する.
微分積分学(講義・演義)Bでは,微分積分学(講義・演義)Aに続いて一変数関数の微分積分の理解をさらに深めた後に,多変数関数の微分積分について学ぶ. |
||||||||||
(到達目標)
一変数および多変数関数の微分積分の理論的な基礎を理解すること,ならびに,それを用いた数学的解析の手法を修得して応用できるようになることを目標とする.
|
||||||||||
(授業計画と内容)
この科目は講義と演義とが一体となって構成されている. 演義は原則として隔週で開講される.演義においては,受講者は問題練習や課題学習に積極的に取り組むことにより,それまでに講義で学んだ事柄の理解を深める. 以下に挙げるのは講義の計画・内容である.各項目には,受講者の理解の程度を確認しながら,【 】で指示した週数を充てる.各項目・小項目の講義の順序は固定したものではなく,担当者の講義方針と受講者の背景や理解の状況に応じて,講義担当者が適切に決める.講義の進め方については適宜,指示をして,受講者が予習をできるように十分に配慮する. 以下の内容を,フィードバック回を含め(試験週を除く)全15回にて行う. 1.級数【3〜5週】: 無限級数(収束の判定法,絶対収束と条件収束) べき級数(収束半径,項別微積分) 関数列・関数項級数*(一様収束,項別微積分) 2.平面および空間の点集合【2週】: 距離,点列の収束,開集合・閉集合 連続関数 3.多変数関数の微分法【4〜5週】: 偏微分,微分(全微分)可能性,一次近似,接平面,勾配ベクトル 合成関数の微分(連鎖律),ヤコビ行列,ヤコビ行列式 テイラーの定理,極値問題 条件付き極値問題(陰関数定理) 4.多変数関数の積分法【4〜5週】: 重積分,累次積分,変数変換公式,面積・体積 広義積分,ガンマ関数とベータ関数 アステリスク * はオプション |
||||||||||
(履修要件)
特になし
|
||||||||||
(成績評価の方法・観点及び達成度)
演義担当教員によって平常点(演習への参加状況,課題への取組状況など)から得られた演義成績(30 点満点)をもとに,講義担当教員が期末試験を用いて,演義成績以上,100 点以下の範囲で 評価する.
教員によっては演義以外の平常点(レポート、中間試験などによるもの)を参考にすることもある.詳細は授業中に説明する. 本科目の評価が不合格であった履修者のうち,一定の基準以上の成績の者は再試験を受験できる.再試験の概要は KULASIS で履修者に通知する.なお再試験は3月末に実施予定である. |
||||||||||
(教科書)
担当教員毎に指示する.
|
||||||||||
(参考書等)
授業中に紹介する
|
||||||||||
(授業外学習(予習・復習)等)
予習,復習とともに,演習問題を積極的に解いてみることが必要である.
|
||||||||||
(その他(オフィスアワー等))
同一クラスにおいて前期開講の微分積分学(講義・演義)Aとの連続した履修を推奨する.また線形代数学(講義・演義)B を並行して受講することが望ましい.
|
||||||||||
授業の進捗状況や受講生の習熟度などによって「授業計画と内容」,「成績評価の方法」が変更になる場合があります。
(科目名) |
微分積分学(講義・演義)B 1S4
|
(英 訳) | Calculus with Exercises B | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
(担当教員) |
|
||||||||||||
(群) | 自然 | ||||||||||||
(分野(分類)) | 数学(基礎) | ||||||||||||
(使用言語) | 日本語 | ||||||||||||
(旧群) | B群 | ||||||||||||
(単位数) | 3 単位 | ||||||||||||
(週コマ数) | 2 コマ | ||||||||||||
(授業形態) | 講義 | ||||||||||||
(開講年度・開講期) | 2025・後期 | ||||||||||||
(配当学年) | 主として1回生 | ||||||||||||
(対象学生) | 理系向 | ||||||||||||
(曜時限) | 木1・金2 |
||||||||||||
(教室) | 1共31 | ||||||||||||
(授業の概要・目的) | 微分積分学は,線形代数学と共に現代の科学技術を支える数学の根幹をなす.この科目では,将来の応用に必要な微分積分学の基礎を解説する. 微分積分学(講義・演義)Bでは,微分積分学(講義・演義)Aに続いて一変数関数の微分積分の理解をさらに深めた後に,多変数関数の微分積分について学ぶ. |
||||||||||||
(到達目標) | 一変数および多変数関数の微分積分の理論的な基礎を理解すること,ならびに,それを用いた数学的解析の手法を修得して応用できるようになることを目標とする. | ||||||||||||
(授業計画と内容) | この科目は講義と演義とが一体となって構成されている. 演義は原則として隔週で開講される.演義においては,受講者は問題練習や課題学習に積極的に取り組むことにより,それまでに講義で学んだ事柄の理解を深める. 以下に挙げるのは講義の計画・内容である.各項目には,受講者の理解の程度を確認しながら,【 】で指示した週数を充てる.各項目・小項目の講義の順序は固定したものではなく,担当者の講義方針と受講者の背景や理解の状況に応じて,講義担当者が適切に決める.講義の進め方については適宜,指示をして,受講者が予習をできるように十分に配慮する. 以下の内容を,フィードバック回を含め(試験週を除く)全15回にて行う. 1.級数【3〜5週】: 無限級数(収束の判定法,絶対収束と条件収束) べき級数(収束半径,項別微積分) 関数列・関数項級数*(一様収束,項別微積分) 2.平面および空間の点集合【2週】: 距離,点列の収束,開集合・閉集合 連続関数 3.多変数関数の微分法【4〜5週】: 偏微分,微分(全微分)可能性,一次近似,接平面,勾配ベクトル 合成関数の微分(連鎖律),ヤコビ行列,ヤコビ行列式 テイラーの定理,極値問題 条件付き極値問題(陰関数定理) 4.多変数関数の積分法【4〜5週】: 重積分,累次積分,変数変換公式,面積・体積 広義積分,ガンマ関数とベータ関数 アステリスク * はオプション |
||||||||||||
(履修要件) |
特になし
|
||||||||||||
(成績評価の方法・観点及び達成度) | 演義担当教員によって平常点(演習への参加状況,課題への取組状況など)から得られた演義成績(30 点満点)をもとに,講義担当教員が期末試験を用いて,演義成績以上,100 点以下の範囲で 評価する. 教員によっては演義以外の平常点(レポート、中間試験などによるもの)を参考にすることもある.詳細は授業中に説明する. 本科目の評価が不合格であった履修者のうち,一定の基準以上の成績の者は再試験を受験できる.再試験の概要は KULASIS で履修者に通知する.なお再試験は3月末に実施予定である. |
||||||||||||
(教科書) |
担当教員毎に指示する.
|
||||||||||||
(参考書等) |
授業中に紹介する
|
||||||||||||
(授業外学習(予習・復習)等) | 予習,復習とともに,演習問題を積極的に解いてみることが必要である. | ||||||||||||
(その他(オフィスアワー等)) | 同一クラスにおいて前期開講の微分積分学(講義・演義)Aとの連続した履修を推奨する.また線形代数学(講義・演義)B を並行して受講することが望ましい. |
||||||||||||
微分積分学(講義・演義)B
1S4 (科目名)
Calculus with Exercises B
(英 訳)
|
|
|||||||||
(群) 自然 (分野(分類)) 数学(基礎) (使用言語) 日本語 | ||||||||||
(旧群) B群 (単位数) 3 単位 (週コマ数) 2 コマ (授業形態) 講義 | ||||||||||
(開講年度・ 開講期) 2025・後期 (配当学年) 主として1回生 (対象学生) 理系向 |
||||||||||
(曜時限)
木1・金2 (教室) 1共31 |
||||||||||
(授業の概要・目的)
微分積分学は,線形代数学と共に現代の科学技術を支える数学の根幹をなす.この科目では,将来の応用に必要な微分積分学の基礎を解説する.
微分積分学(講義・演義)Bでは,微分積分学(講義・演義)Aに続いて一変数関数の微分積分の理解をさらに深めた後に,多変数関数の微分積分について学ぶ. |
||||||||||
(到達目標)
一変数および多変数関数の微分積分の理論的な基礎を理解すること,ならびに,それを用いた数学的解析の手法を修得して応用できるようになることを目標とする.
|
||||||||||
(授業計画と内容)
この科目は講義と演義とが一体となって構成されている. 演義は原則として隔週で開講される.演義においては,受講者は問題練習や課題学習に積極的に取り組むことにより,それまでに講義で学んだ事柄の理解を深める. 以下に挙げるのは講義の計画・内容である.各項目には,受講者の理解の程度を確認しながら,【 】で指示した週数を充てる.各項目・小項目の講義の順序は固定したものではなく,担当者の講義方針と受講者の背景や理解の状況に応じて,講義担当者が適切に決める.講義の進め方については適宜,指示をして,受講者が予習をできるように十分に配慮する. 以下の内容を,フィードバック回を含め(試験週を除く)全15回にて行う. 1.級数【3〜5週】: 無限級数(収束の判定法,絶対収束と条件収束) べき級数(収束半径,項別微積分) 関数列・関数項級数*(一様収束,項別微積分) 2.平面および空間の点集合【2週】: 距離,点列の収束,開集合・閉集合 連続関数 3.多変数関数の微分法【4〜5週】: 偏微分,微分(全微分)可能性,一次近似,接平面,勾配ベクトル 合成関数の微分(連鎖律),ヤコビ行列,ヤコビ行列式 テイラーの定理,極値問題 条件付き極値問題(陰関数定理) 4.多変数関数の積分法【4〜5週】: 重積分,累次積分,変数変換公式,面積・体積 広義積分,ガンマ関数とベータ関数 アステリスク * はオプション |
||||||||||
(履修要件)
特になし
|
||||||||||
(成績評価の方法・観点及び達成度)
演義担当教員によって平常点(演習への参加状況,課題への取組状況など)から得られた演義成績(30 点満点)をもとに,講義担当教員が期末試験を用いて,演義成績以上,100 点以下の範囲で 評価する.
教員によっては演義以外の平常点(レポート、中間試験などによるもの)を参考にすることもある.詳細は授業中に説明する. 本科目の評価が不合格であった履修者のうち,一定の基準以上の成績の者は再試験を受験できる.再試験の概要は KULASIS で履修者に通知する.なお再試験は3月末に実施予定である. |
||||||||||
(教科書)
担当教員毎に指示する.
|
||||||||||
(参考書等)
授業中に紹介する
|
||||||||||
(授業外学習(予習・復習)等)
予習,復習とともに,演習問題を積極的に解いてみることが必要である.
|
||||||||||
(その他(オフィスアワー等))
同一クラスにおいて前期開講の微分積分学(講義・演義)Aとの連続した履修を推奨する.また線形代数学(講義・演義)B を並行して受講することが望ましい.
|
||||||||||
授業の進捗状況や受講生の習熟度などによって「授業計画と内容」,「成績評価の方法」が変更になる場合があります。
(科目名) |
線形代数学(講義・演義)B 1S1
|
(英 訳) | Linear Algebra with Exercises B | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
(担当教員) |
|
||||||||||||
(群) | 自然 | ||||||||||||
(分野(分類)) | 数学(基礎) | ||||||||||||
(使用言語) | 日本語 | ||||||||||||
(旧群) | B群 | ||||||||||||
(単位数) | 3 単位 | ||||||||||||
(週コマ数) | 2 コマ | ||||||||||||
(授業形態) | 講義 | ||||||||||||
(開講年度・開講期) | 2025・後期 | ||||||||||||
(配当学年) | 主として1回生 | ||||||||||||
(対象学生) | 理系向 | ||||||||||||
(曜時限) | 木1・金2 |
||||||||||||
(教室) | 1共02 | ||||||||||||
(授業の概要・目的) | 線形代数学は,微分積分学と共に現代の科学技術を支える数学の根幹をなす.この科目では,将来の応用に必要な線形代数学の基礎を解説する. 線形代数学(講義・演義)Bでは,ベクトル空間,線形写像などの基礎概念を体系的に学ぶと共に,それらの概念を行列に応用してさらに理解を深める. |
||||||||||||
(到達目標) | ベクトル空間,線形写像などの抽象概念を体系的に理解すること,ならびにそれを通してベクトル,行列の理論的な基礎を固めることを目標とする.その際には,ベクトルや行列等のより進んだ取り扱いに習熟することも目指す. | ||||||||||||
(授業計画と内容) | この科目は講義と演義とが一体として構成されている. 演義は原則として隔週で開講される.演義においては,受講者は問題演習や課題学習に積極的に取り組むことにより,それまでに講義で学んだ事柄の理解を深める. 以下に挙げるのは講義の計画、内容である.各項目には,受講者の理解の程度を確認しながら,【 】で指示した週数を充てる.各項目・小項目の講義の順序は固定したものではなく,担当者の講義方針と受講者の背景や理解の状況に応じて,講義担当者が適切に決める.講義の進め方については適宜,指示をして,受講者が予習をできるように十分に配慮する. 以下の内容を,フィードバック回を含め(試験週を除く)全15回にて行う. 1. 抽象ベクトル空間【5〜6週】: 一次結合,一次独立,基底,次元,部分空間,線形写像,核と像 線形写像と行列,基底の変換,直和 2. 計量ベクトル空間【3〜4週】: 内積,正規直交基底,直交行列,ユニタリ行列,直交補空間 3. 固有値と行列の対角化【5〜6週】: 固有値と固有ベクトル,固有多項式,固有空間 行列の対角化,行列の上三角化,ケーリー.ハミルトンの定理 対称行列の直交行列による対角化 二次形式* エルミート行列のユニタリ行列による対角化* アステリスク * はオプション |
||||||||||||
(履修要件) |
特になし
|
||||||||||||
(成績評価の方法・観点及び達成度) | 演義担当教員によって平常点(演習への参加状況,課題への取組状況など)から得られた演義成績(30 点満点)をもとに,講義担当教員が期末試験を用いて,演義成績以上,100 点以下の範囲で 評価する. 教員によっては演義以外の平常点(レポート、中間試験などによるもの)を参考にすることもある.詳細は授業中に説明する. 本科目の評価が不合格であった履修者のうち,一定の基準以上の成績の者は再試験を受験できる.再試験の概要は KULASIS で履修者に通知する.なお再試験は3月末に実施予定である. |
||||||||||||
(教科書) |
担当教員毎に指示する.
|
||||||||||||
(参考書等) |
授業中に紹介する
|
||||||||||||
(授業外学習(予習・復習)等) | 予習,復習とともに,演習問題を積極的に解いてみることが必要である. | ||||||||||||
(その他(オフィスアワー等)) | 同一クラスにおいて前期開講の線形代数学(講義・演義)Aとの連続した履修を推奨する.また微分積分学(講義・演義)B を並行して受講することが望ましい. |
||||||||||||
線形代数学(講義・演義)B
1S1 (科目名)
Linear Algebra with Exercises B
(英 訳)
|
|
|||||||||
(群) 自然 (分野(分類)) 数学(基礎) (使用言語) 日本語 | ||||||||||
(旧群) B群 (単位数) 3 単位 (週コマ数) 2 コマ (授業形態) 講義 | ||||||||||
(開講年度・ 開講期) 2025・後期 (配当学年) 主として1回生 (対象学生) 理系向 |
||||||||||
(曜時限)
木1・金2 (教室) 1共02 |
||||||||||
(授業の概要・目的)
線形代数学は,微分積分学と共に現代の科学技術を支える数学の根幹をなす.この科目では,将来の応用に必要な線形代数学の基礎を解説する.
線形代数学(講義・演義)Bでは,ベクトル空間,線形写像などの基礎概念を体系的に学ぶと共に,それらの概念を行列に応用してさらに理解を深める. |
||||||||||
(到達目標)
ベクトル空間,線形写像などの抽象概念を体系的に理解すること,ならびにそれを通してベクトル,行列の理論的な基礎を固めることを目標とする.その際には,ベクトルや行列等のより進んだ取り扱いに習熟することも目指す.
|
||||||||||
(授業計画と内容)
この科目は講義と演義とが一体として構成されている. 演義は原則として隔週で開講される.演義においては,受講者は問題演習や課題学習に積極的に取り組むことにより,それまでに講義で学んだ事柄の理解を深める. 以下に挙げるのは講義の計画、内容である.各項目には,受講者の理解の程度を確認しながら,【 】で指示した週数を充てる.各項目・小項目の講義の順序は固定したものではなく,担当者の講義方針と受講者の背景や理解の状況に応じて,講義担当者が適切に決める.講義の進め方については適宜,指示をして,受講者が予習をできるように十分に配慮する. 以下の内容を,フィードバック回を含め(試験週を除く)全15回にて行う. 1. 抽象ベクトル空間【5〜6週】: 一次結合,一次独立,基底,次元,部分空間,線形写像,核と像 線形写像と行列,基底の変換,直和 2. 計量ベクトル空間【3〜4週】: 内積,正規直交基底,直交行列,ユニタリ行列,直交補空間 3. 固有値と行列の対角化【5〜6週】: 固有値と固有ベクトル,固有多項式,固有空間 行列の対角化,行列の上三角化,ケーリー.ハミルトンの定理 対称行列の直交行列による対角化 二次形式* エルミート行列のユニタリ行列による対角化* アステリスク * はオプション |
||||||||||
(履修要件)
特になし
|
||||||||||
(成績評価の方法・観点及び達成度)
演義担当教員によって平常点(演習への参加状況,課題への取組状況など)から得られた演義成績(30 点満点)をもとに,講義担当教員が期末試験を用いて,演義成績以上,100 点以下の範囲で 評価する.
教員によっては演義以外の平常点(レポート、中間試験などによるもの)を参考にすることもある.詳細は授業中に説明する. 本科目の評価が不合格であった履修者のうち,一定の基準以上の成績の者は再試験を受験できる.再試験の概要は KULASIS で履修者に通知する.なお再試験は3月末に実施予定である. |
||||||||||
(教科書)
担当教員毎に指示する.
|
||||||||||
(参考書等)
授業中に紹介する
|
||||||||||
(授業外学習(予習・復習)等)
予習,復習とともに,演習問題を積極的に解いてみることが必要である.
|
||||||||||
(その他(オフィスアワー等))
同一クラスにおいて前期開講の線形代数学(講義・演義)Aとの連続した履修を推奨する.また微分積分学(講義・演義)B を並行して受講することが望ましい.
|
||||||||||