


授業の進捗状況や受講生の習熟度などによって「授業計画と内容」,「成績評価の方法」が変更になる場合があります。
(科目名) |
微分積分学(講義・演義)A 1M5, 1M6
|
(英 訳) | Calculus with Exercises A | ||||
---|---|---|---|---|---|---|---|
(担当教員) |
|
||||||
(群) | 自然 | ||||||
(分野(分類)) | 数学(基礎) | ||||||
(使用言語) | 日本語 | ||||||
(旧群) | B群 | ||||||
(単位数) | 3 単位 | ||||||
(週コマ数) | 2 コマ | ||||||
(授業形態) | 講義 | ||||||
(開講年度・開講期) | 2025・前期 | ||||||
(配当学年) | 主として1回生 | ||||||
(対象学生) | 理系向 | ||||||
(曜時限) | 水2・木1 |
||||||
(教室) | 4共32 | ||||||
(授業の概要・目的) | 微分積分学は,線形代数学と共に現代の科学技術を支える数学の根幹をなす.この科目では,将来の応用に必要な微分積分学の基礎を解説する. 微分積分学(講義・演義)Aでは,高校で学んだ一変数関数の微分積分の理論的な基礎を固めるとともに,さらに進んだ数学的解析の手法を学ぶ. |
||||||
(到達目標) | 一変数関数の微分積分の理論的な基礎を理解すること,ならびに,それを用いた数学解析の手法を修得して応用できるようになることを目標とする. | ||||||
(授業計画と内容) | この科目は講義と演義とが一体として構成されている. 演義は原則として隔週で開講される.演義においては,受講者は問題演習や課題学習に積極的に取り組むことにより,それまでに講義で学んだ事柄の理解を深める. 以下に挙げるのは講義の計画・内容である.各項目には,受講者の理解の程度を確認しながら,【 】で指示した週数を充てる.各項目・小項目の講義の順序は固定したものではなく,担当者の講義方針と受講者の背景や理解の状況に応じて,講義担当者が適切に決める.講義の進め方については適宜,指示をして,受講者が予習をできるように十分に配慮する. 以下の内容を,フィードバック回を含め(試験週を除く)全15回にて行う. 1. 準備 【1週】: 数,集合・写像,論理 2. 実数,極限,連続関数【3〜4週】: 実数の連続性,数列の収束,無限級数* 関数の極限,連続関数とその性質(中間値の定理など) 3. 一変数関数の微分法【3〜4週】: 微分係数,一次近似,導関数,合成関数の微分 平均値の定理とその応用 高階導関数,テイラーの定理,無限小,近似値の計算* 4. 一変数関数の積分法【3〜4週】: リーマン積分,連続関数の積分可能性 微分積分学の基本定理,部分積分,置換積分 広義積分,曲線の長さ* なお 5. 重要な関数【3〜4週】: 指数関数,三角関数,対数関数 逆三角関数,ガンマ関数* については必要な箇所で適宜説明を加えるものとする. アステリスク * はオプション |
||||||
(履修要件) |
特になし
|
||||||
(成績評価の方法・観点及び達成度) | 演義担当教員によって平常点(演習への参加状況,課題への取組状況など)から得られた演義成績(30 点満点)をもとに,講義担当教員が期末試験を用いて,演義成績以上,100 点以下の範囲で 評価する. 教員によっては演義以外の平常点(レポート、中間試験などによるもの)を参考にすることもある.詳細は授業中に説明する. 本科目の評価が不合格であった履修者のうち,一定の基準以上の成績の者は再試験を受験できる.再試験の概要は KULASIS で履修者に通知する.なお再試験は9月末に実施予定である. |
||||||
(教科書) |
担当教員ごとに指示する.
|
||||||
(参考書等) |
授業中に紹介する
|
||||||
(授業外学習(予習・復習)等) | 予習,復習とともに,演習問題を積極的に解いてみることが必要である. | ||||||
(その他(オフィスアワー等)) | |||||||
微分積分学(講義・演義)A
1M5, 1M6 (科目名)
Calculus with Exercises A
(英 訳)
|
|
||||||
(群) 自然 (分野(分類)) 数学(基礎) (使用言語) 日本語 | |||||||
(旧群) B群 (単位数) 3 単位 (週コマ数) 2 コマ (授業形態) 講義 | |||||||
(開講年度・ 開講期) 2025・前期 (配当学年) 主として1回生 (対象学生) 理系向 |
|||||||
(曜時限)
水2・木1 (教室) 4共32 |
|||||||
(授業の概要・目的)
微分積分学は,線形代数学と共に現代の科学技術を支える数学の根幹をなす.この科目では,将来の応用に必要な微分積分学の基礎を解説する.
微分積分学(講義・演義)Aでは,高校で学んだ一変数関数の微分積分の理論的な基礎を固めるとともに,さらに進んだ数学的解析の手法を学ぶ. |
|||||||
(到達目標)
一変数関数の微分積分の理論的な基礎を理解すること,ならびに,それを用いた数学解析の手法を修得して応用できるようになることを目標とする.
|
|||||||
(授業計画と内容)
この科目は講義と演義とが一体として構成されている. 演義は原則として隔週で開講される.演義においては,受講者は問題演習や課題学習に積極的に取り組むことにより,それまでに講義で学んだ事柄の理解を深める. 以下に挙げるのは講義の計画・内容である.各項目には,受講者の理解の程度を確認しながら,【 】で指示した週数を充てる.各項目・小項目の講義の順序は固定したものではなく,担当者の講義方針と受講者の背景や理解の状況に応じて,講義担当者が適切に決める.講義の進め方については適宜,指示をして,受講者が予習をできるように十分に配慮する. 以下の内容を,フィードバック回を含め(試験週を除く)全15回にて行う. 1. 準備 【1週】: 数,集合・写像,論理 2. 実数,極限,連続関数【3〜4週】: 実数の連続性,数列の収束,無限級数* 関数の極限,連続関数とその性質(中間値の定理など) 3. 一変数関数の微分法【3〜4週】: 微分係数,一次近似,導関数,合成関数の微分 平均値の定理とその応用 高階導関数,テイラーの定理,無限小,近似値の計算* 4. 一変数関数の積分法【3〜4週】: リーマン積分,連続関数の積分可能性 微分積分学の基本定理,部分積分,置換積分 広義積分,曲線の長さ* なお 5. 重要な関数【3〜4週】: 指数関数,三角関数,対数関数 逆三角関数,ガンマ関数* については必要な箇所で適宜説明を加えるものとする. アステリスク * はオプション |
|||||||
(履修要件)
特になし
|
|||||||
(成績評価の方法・観点及び達成度)
演義担当教員によって平常点(演習への参加状況,課題への取組状況など)から得られた演義成績(30 点満点)をもとに,講義担当教員が期末試験を用いて,演義成績以上,100 点以下の範囲で 評価する.
教員によっては演義以外の平常点(レポート、中間試験などによるもの)を参考にすることもある.詳細は授業中に説明する. 本科目の評価が不合格であった履修者のうち,一定の基準以上の成績の者は再試験を受験できる.再試験の概要は KULASIS で履修者に通知する.なお再試験は9月末に実施予定である. |
|||||||
(教科書)
担当教員ごとに指示する.
|
|||||||
(参考書等)
授業中に紹介する
|
|||||||
(授業外学習(予習・復習)等)
予習,復習とともに,演習問題を積極的に解いてみることが必要である.
|
|||||||
(その他(オフィスアワー等))
|
|||||||
授業の進捗状況や受講生の習熟度などによって「授業計画と内容」,「成績評価の方法」が変更になる場合があります。
(科目名) |
線形代数学(講義・演義)A 1M1, 1M3
|
(英 訳) | Linear Algebra with Exercises A | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
(担当教員) |
|
||||||||||||
(群) | 自然 | ||||||||||||
(分野(分類)) | 数学(基礎) | ||||||||||||
(使用言語) | 日本語 | ||||||||||||
(旧群) | B群 | ||||||||||||
(単位数) | 3 単位 | ||||||||||||
(週コマ数) | 2 コマ | ||||||||||||
(授業形態) | 講義 | ||||||||||||
(開講年度・開講期) | 2025・前期 | ||||||||||||
(配当学年) | 主として1回生 | ||||||||||||
(対象学生) | 理系向 | ||||||||||||
(曜時限) | 水2・金3 |
||||||||||||
(教室) | 共北27 | ||||||||||||
(授業の概要・目的) | 線形代数学は,微分積分学と共に現代の科学技術を支える数学の根幹をなす.この科目では将来の応用に必要な線形代数学の基礎を解説する. 線形代数学(講義・演義)Aでは行列や連立一次方程式の具体的な取り扱いに習熟することを目的とする. |
||||||||||||
(到達目標) | ベクトル,行列や連立一次方程式の具体的な取り扱いに習熟することを目標とする. | ||||||||||||
(授業計画と内容) | この科目は講義と演義とが一体となって構成されている. 演義は原則として隔週で開講される.演義においては,受講者は問題演習や課題学習に積極的に取り組むことにより,それまでに講義で学んだ事柄の理解を深める. 以下に挙げるのは講義の計画・内容である.各項目には,受講者の理解の程度を確認しながら,【 】で指示した週数を充てる.各項目・小項目の講義の順序は固定したものではなく,担当者の講義方針と受講者の背景や理解の状況に応じて,講義担当者が適切に決める.講義の進め方については適宜,指示をして,受講者が予習をできるように十分に配慮する. 以下の内容を,フィードバック回を含め(試験週を除く)全15回にて行う. 1. 準備【1週】: 数,集合・写像,論理 2.平面ベクトルと2次行列【2週】: ベクトルと行列の計算,逆行列,ケーリー・ハミルトンの定理 平面の一次変換(回転,折り返しなど)と行列 連立一次方程式と行列 3.数ベクトル空間と行列【5〜7週】: (i) 数ベクトル,数ベクトルの演算,一次結合 (ii) 行列,行列の演算(和,スカラー倍,積) (iii) 行列の例 (iv) 行列の基本変形,階数,正則行列,逆行列 (v) 連立一次方程式の解法,解の構造* うち (i)-(iii) を2〜3週,(iv),(v) を3〜4週で扱う. 4.行列式【4〜6週】: (i) 置換と符号,行列式の定義と性質(基本変形,積,転置との関係など) (ii) 行列式の展開,クラメルの公式,行列式と体積 うち (i) を3〜4週,(ii) を1〜2週で扱う. アステリスク * はオプション |
||||||||||||
(履修要件) |
特になし
|
||||||||||||
(成績評価の方法・観点及び達成度) | 演義担当教員によって平常点(演習への参加状況,課題への取組状況など)から得られた演義成績(30 点満点)をもとに,講義担当教員が期末試験を用いて,演義成績以上,100 点以下の範囲で 評価する. 教員によっては演義以外の平常点(レポート、中間試験などによるもの)を参考にすることもある.詳細は授業中に説明する. 本科目の評価が不合格であった履修者のうち,一定の基準以上の成績の者は再試験を受験できる.再試験の概要は KULASIS で履修者に通知する.なお再試験は9月末に実施予定である. |
||||||||||||
(教科書) |
担当教員ごとに指示する.
|
||||||||||||
(参考書等) |
授業中に紹介する
|
||||||||||||
(授業外学習(予習・復習)等) | 予習,復習とともに,演習問題を積極的に解いてみることが必要である. | ||||||||||||
(その他(オフィスアワー等)) | |||||||||||||
線形代数学(講義・演義)A
1M1, 1M3 (科目名)
Linear Algebra with Exercises A
(英 訳)
|
|
|||||||||
(群) 自然 (分野(分類)) 数学(基礎) (使用言語) 日本語 | ||||||||||
(旧群) B群 (単位数) 3 単位 (週コマ数) 2 コマ (授業形態) 講義 | ||||||||||
(開講年度・ 開講期) 2025・前期 (配当学年) 主として1回生 (対象学生) 理系向 |
||||||||||
(曜時限)
水2・金3 (教室) 共北27 |
||||||||||
(授業の概要・目的)
線形代数学は,微分積分学と共に現代の科学技術を支える数学の根幹をなす.この科目では将来の応用に必要な線形代数学の基礎を解説する.
線形代数学(講義・演義)Aでは行列や連立一次方程式の具体的な取り扱いに習熟することを目的とする. |
||||||||||
(到達目標)
ベクトル,行列や連立一次方程式の具体的な取り扱いに習熟することを目標とする.
|
||||||||||
(授業計画と内容)
この科目は講義と演義とが一体となって構成されている. 演義は原則として隔週で開講される.演義においては,受講者は問題演習や課題学習に積極的に取り組むことにより,それまでに講義で学んだ事柄の理解を深める. 以下に挙げるのは講義の計画・内容である.各項目には,受講者の理解の程度を確認しながら,【 】で指示した週数を充てる.各項目・小項目の講義の順序は固定したものではなく,担当者の講義方針と受講者の背景や理解の状況に応じて,講義担当者が適切に決める.講義の進め方については適宜,指示をして,受講者が予習をできるように十分に配慮する. 以下の内容を,フィードバック回を含め(試験週を除く)全15回にて行う. 1. 準備【1週】: 数,集合・写像,論理 2.平面ベクトルと2次行列【2週】: ベクトルと行列の計算,逆行列,ケーリー・ハミルトンの定理 平面の一次変換(回転,折り返しなど)と行列 連立一次方程式と行列 3.数ベクトル空間と行列【5〜7週】: (i) 数ベクトル,数ベクトルの演算,一次結合 (ii) 行列,行列の演算(和,スカラー倍,積) (iii) 行列の例 (iv) 行列の基本変形,階数,正則行列,逆行列 (v) 連立一次方程式の解法,解の構造* うち (i)-(iii) を2〜3週,(iv),(v) を3〜4週で扱う. 4.行列式【4〜6週】: (i) 置換と符号,行列式の定義と性質(基本変形,積,転置との関係など) (ii) 行列式の展開,クラメルの公式,行列式と体積 うち (i) を3〜4週,(ii) を1〜2週で扱う. アステリスク * はオプション |
||||||||||
(履修要件)
特になし
|
||||||||||
(成績評価の方法・観点及び達成度)
演義担当教員によって平常点(演習への参加状況,課題への取組状況など)から得られた演義成績(30 点満点)をもとに,講義担当教員が期末試験を用いて,演義成績以上,100 点以下の範囲で 評価する.
教員によっては演義以外の平常点(レポート、中間試験などによるもの)を参考にすることもある.詳細は授業中に説明する. 本科目の評価が不合格であった履修者のうち,一定の基準以上の成績の者は再試験を受験できる.再試験の概要は KULASIS で履修者に通知する.なお再試験は9月末に実施予定である. |
||||||||||
(教科書)
担当教員ごとに指示する.
|
||||||||||
(参考書等)
授業中に紹介する
|
||||||||||
(授業外学習(予習・復習)等)
予習,復習とともに,演習問題を積極的に解いてみることが必要である.
|
||||||||||
(その他(オフィスアワー等))
|
||||||||||
授業の進捗状況や受講生の習熟度などによって「授業計画と内容」,「成績評価の方法」が変更になる場合があります。
(科目名) |
線形代数学(講義・演義)A 1φ2
|
(英 訳) | Linear Algebra with Exercises A | ||||
---|---|---|---|---|---|---|---|
(担当教員) |
|
||||||
(群) | 自然 | ||||||
(分野(分類)) | 数学(基礎) | ||||||
(使用言語) | 日本語 | ||||||
(旧群) | B群 | ||||||
(単位数) | 3 単位 | ||||||
(週コマ数) | 2 コマ | ||||||
(授業形態) | 講義 | ||||||
(開講年度・開講期) | 2025・前期 | ||||||
(配当学年) | 主として1回生 | ||||||
(対象学生) | 理系向 | ||||||
(曜時限) | 水2・木2 |
||||||
(教室) | 共東32 | ||||||
(授業の概要・目的) | 線形代数学は,微分積分学と共に現代の科学技術を支える数学の根幹をなす.この科目では将来の応用に必要な線形代数学の基礎を解説する. 線形代数学(講義・演義)Aでは行列や連立一次方程式の具体的な取り扱いに習熟することを目的とする. |
||||||
(到達目標) | ベクトル,行列や連立一次方程式の具体的な取り扱いに習熟することを目標とする. | ||||||
(授業計画と内容) | この科目は講義と演義とが一体となって構成されている. 演義は原則として隔週で開講される.演義においては,受講者は問題演習や課題学習に積極的に取り組むことにより,それまでに講義で学んだ事柄の理解を深める. 以下に挙げるのは講義の計画・内容である.各項目には,受講者の理解の程度を確認しながら,【 】で指示した週数を充てる.各項目・小項目の講義の順序は固定したものではなく,担当者の講義方針と受講者の背景や理解の状況に応じて,講義担当者が適切に決める.講義の進め方については適宜,指示をして,受講者が予習をできるように十分に配慮する. 以下の内容を,フィードバック回を含め(試験週を除く)全15回にて行う. 1. 準備【1週】: 数,集合・写像,論理 2.平面ベクトルと2次行列【2週】: ベクトルと行列の計算,逆行列,ケーリー・ハミルトンの定理 平面の一次変換(回転,折り返しなど)と行列 連立一次方程式と行列 3.数ベクトル空間と行列【5〜7週】: (i) 数ベクトル,数ベクトルの演算,一次結合 (ii) 行列,行列の演算(和,スカラー倍,積) (iii) 行列の例 (iv) 行列の基本変形,階数,正則行列,逆行列 (v) 連立一次方程式の解法,解の構造* うち (i)-(iii) を2〜3週,(iv),(v) を3〜4週で扱う. 4.行列式【4〜6週】: (i) 置換と符号,行列式の定義と性質(基本変形,積,転置との関係など) (ii) 行列式の展開,クラメルの公式,行列式と体積 うち (i) を3〜4週,(ii) を1〜2週で扱う. アステリスク * はオプション |
||||||
(履修要件) |
特になし
|
||||||
(成績評価の方法・観点及び達成度) | 演義担当教員によって平常点(演習への参加状況,課題への取組状況など)から得られた演義成績(30 点満点)をもとに,講義担当教員が期末試験を用いて,演義成績以上,100 点以下の範囲で 評価する. 教員によっては演義以外の平常点(レポート、中間試験などによるもの)を参考にすることもある.詳細は授業中に説明する. 本科目の評価が不合格であった履修者のうち,一定の基準以上の成績の者は再試験を受験できる.再試験の概要は KULASIS で履修者に通知する.なお再試験は9月末に実施予定である. |
||||||
(教科書) |
担当教員ごとに指示する.
|
||||||
(参考書等) |
授業中に紹介する
|
||||||
(授業外学習(予習・復習)等) | 予習,復習とともに,演習問題を積極的に解いてみることが必要である. | ||||||
(その他(オフィスアワー等)) | |||||||
線形代数学(講義・演義)A
1φ2 (科目名)
Linear Algebra with Exercises A
(英 訳)
|
|
||||||
(群) 自然 (分野(分類)) 数学(基礎) (使用言語) 日本語 | |||||||
(旧群) B群 (単位数) 3 単位 (週コマ数) 2 コマ (授業形態) 講義 | |||||||
(開講年度・ 開講期) 2025・前期 (配当学年) 主として1回生 (対象学生) 理系向 |
|||||||
(曜時限)
水2・木2 (教室) 共東32 |
|||||||
(授業の概要・目的)
線形代数学は,微分積分学と共に現代の科学技術を支える数学の根幹をなす.この科目では将来の応用に必要な線形代数学の基礎を解説する.
線形代数学(講義・演義)Aでは行列や連立一次方程式の具体的な取り扱いに習熟することを目的とする. |
|||||||
(到達目標)
ベクトル,行列や連立一次方程式の具体的な取り扱いに習熟することを目標とする.
|
|||||||
(授業計画と内容)
この科目は講義と演義とが一体となって構成されている. 演義は原則として隔週で開講される.演義においては,受講者は問題演習や課題学習に積極的に取り組むことにより,それまでに講義で学んだ事柄の理解を深める. 以下に挙げるのは講義の計画・内容である.各項目には,受講者の理解の程度を確認しながら,【 】で指示した週数を充てる.各項目・小項目の講義の順序は固定したものではなく,担当者の講義方針と受講者の背景や理解の状況に応じて,講義担当者が適切に決める.講義の進め方については適宜,指示をして,受講者が予習をできるように十分に配慮する. 以下の内容を,フィードバック回を含め(試験週を除く)全15回にて行う. 1. 準備【1週】: 数,集合・写像,論理 2.平面ベクトルと2次行列【2週】: ベクトルと行列の計算,逆行列,ケーリー・ハミルトンの定理 平面の一次変換(回転,折り返しなど)と行列 連立一次方程式と行列 3.数ベクトル空間と行列【5〜7週】: (i) 数ベクトル,数ベクトルの演算,一次結合 (ii) 行列,行列の演算(和,スカラー倍,積) (iii) 行列の例 (iv) 行列の基本変形,階数,正則行列,逆行列 (v) 連立一次方程式の解法,解の構造* うち (i)-(iii) を2〜3週,(iv),(v) を3〜4週で扱う. 4.行列式【4〜6週】: (i) 置換と符号,行列式の定義と性質(基本変形,積,転置との関係など) (ii) 行列式の展開,クラメルの公式,行列式と体積 うち (i) を3〜4週,(ii) を1〜2週で扱う. アステリスク * はオプション |
|||||||
(履修要件)
特になし
|
|||||||
(成績評価の方法・観点及び達成度)
演義担当教員によって平常点(演習への参加状況,課題への取組状況など)から得られた演義成績(30 点満点)をもとに,講義担当教員が期末試験を用いて,演義成績以上,100 点以下の範囲で 評価する.
教員によっては演義以外の平常点(レポート、中間試験などによるもの)を参考にすることもある.詳細は授業中に説明する. 本科目の評価が不合格であった履修者のうち,一定の基準以上の成績の者は再試験を受験できる.再試験の概要は KULASIS で履修者に通知する.なお再試験は9月末に実施予定である. |
|||||||
(教科書)
担当教員ごとに指示する.
|
|||||||
(参考書等)
授業中に紹介する
|
|||||||
(授業外学習(予習・復習)等)
予習,復習とともに,演習問題を積極的に解いてみることが必要である.
|
|||||||
(その他(オフィスアワー等))
|
|||||||
授業の進捗状況や受講生の習熟度などによって「授業計画と内容」,「成績評価の方法」が変更になる場合があります。
(科目名) |
線形代数学A 1T23, 1T24
|
(英 訳) | Linear Algebra A | ||||
---|---|---|---|---|---|---|---|
(担当教員) |
|
||||||
(群) | 自然 | ||||||
(分野(分類)) | 数学(基礎) | ||||||
(使用言語) | 日本語 | ||||||
(旧群) | B群 | ||||||
(単位数) | 2 単位 | ||||||
(週コマ数) | 1 コマ | ||||||
(授業形態) | 講義 | ||||||
(開講年度・開講期) | 2025・前期 | ||||||
(配当学年) | 主として1回生 | ||||||
(対象学生) | 理系向 | ||||||
(曜時限) | 水3 |
||||||
(教室) | 共東41 | ||||||
(授業の概要・目的) | 線形代数学は,微分積分学と共に現代の科学技術を支える数学の根底をなす.この科目では,将来の応用に必要な線形代数学の基礎を解説する.線形代数学Aでは行列や連立一次方程式の具体的な取り扱いに習熟し,さらに,内在する構造への理解を深めることを目標とする. | ||||||
(到達目標) | ベクトル,行列や連立1次方程式の具体的な取り扱いに習熟することを目標とする. | ||||||
(授業計画と内容) | 以下の内容を,フィードバック回を含め(試験週を除く)全15回にて行う. 1.平面ベクトルと2次行列[2週]: ベクトルと行列の計算,逆行列,ケーリー・ハミルトンの定理,平面の一次変換(回転,折り返しなど)と行列,連立1次方程式と行列 2. 数ベクトル空間と行列[2週]: 数ベクトル,数ベクトルの演算,行列,行列の演算(和,スカラー倍,積),行列の例 3. 行列式,逆行列[7週]: 置換と符号,行列式の定義と性質[ここまで3週] 行列式の展開,正則行列,逆行列,クラメルの公式,行列式と体積[ここまで4週] 4. 線形空間[4週]: 一次結合,一次独立,基底,次元,部分空間,直和*[ここまで4週] ※それまでに学んだ事柄の理解を深めるため,問題演習や課題学習を適宜,授業に取り入れる. ※アステリスク* はオプション |
||||||
(履修要件) |
特になし
|
||||||
(成績評価の方法・観点及び達成度) | 習熟度を高め理解を深めるためにレポートの提出を求めますが、成績は定期試験によって評価します。 | ||||||
(教科書) |
授業中に指示する
|
||||||
(参考書等) |
授業中に紹介する
|
||||||
(授業外学習(予習・復習)等) | 予習,復習とともに,レポート問題だけでなく,教科書等の演習問題を積極的に解いてみることが必要である. | ||||||
(その他(オフィスアワー等)) | 工学部情報学科に所属する学生(回生を問わず)のみが履修できます. クラス配当の線形代数学A,Bは一連の科目であり、通年で同一クラスでの連続した履修を推奨する。また、微分積分学Aを並行して履修することが望ましい. |
||||||
線形代数学A
1T23, 1T24 (科目名)
Linear Algebra A
(英 訳)
|
|
||||||
(群) 自然 (分野(分類)) 数学(基礎) (使用言語) 日本語 | |||||||
(旧群) B群 (単位数) 2 単位 (週コマ数) 1 コマ (授業形態) 講義 | |||||||
(開講年度・ 開講期) 2025・前期 (配当学年) 主として1回生 (対象学生) 理系向 |
|||||||
(曜時限)
水3 (教室) 共東41 |
|||||||
(授業の概要・目的)
線形代数学は,微分積分学と共に現代の科学技術を支える数学の根底をなす.この科目では,将来の応用に必要な線形代数学の基礎を解説する.線形代数学Aでは行列や連立一次方程式の具体的な取り扱いに習熟し,さらに,内在する構造への理解を深めることを目標とする.
|
|||||||
(到達目標)
ベクトル,行列や連立1次方程式の具体的な取り扱いに習熟することを目標とする.
|
|||||||
(授業計画と内容)
以下の内容を,フィードバック回を含め(試験週を除く)全15回にて行う. 1.平面ベクトルと2次行列[2週]: ベクトルと行列の計算,逆行列,ケーリー・ハミルトンの定理,平面の一次変換(回転,折り返しなど)と行列,連立1次方程式と行列 2. 数ベクトル空間と行列[2週]: 数ベクトル,数ベクトルの演算,行列,行列の演算(和,スカラー倍,積),行列の例 3. 行列式,逆行列[7週]: 置換と符号,行列式の定義と性質[ここまで3週] 行列式の展開,正則行列,逆行列,クラメルの公式,行列式と体積[ここまで4週] 4. 線形空間[4週]: 一次結合,一次独立,基底,次元,部分空間,直和*[ここまで4週] ※それまでに学んだ事柄の理解を深めるため,問題演習や課題学習を適宜,授業に取り入れる. ※アステリスク* はオプション |
|||||||
(履修要件)
特になし
|
|||||||
(成績評価の方法・観点及び達成度)
習熟度を高め理解を深めるためにレポートの提出を求めますが、成績は定期試験によって評価します。
|
|||||||
(教科書)
授業中に指示する
|
|||||||
(参考書等)
授業中に紹介する
|
|||||||
(授業外学習(予習・復習)等)
予習,復習とともに,レポート問題だけでなく,教科書等の演習問題を積極的に解いてみることが必要である.
|
|||||||
(その他(オフィスアワー等))
工学部情報学科に所属する学生(回生を問わず)のみが履修できます.
クラス配当の線形代数学A,Bは一連の科目であり、通年で同一クラスでの連続した履修を推奨する。また、微分積分学Aを並行して履修することが望ましい. |
|||||||
授業の進捗状況や受講生の習熟度などによって「授業計画と内容」,「成績評価の方法」が変更になる場合があります。
(科目名) |
微分積分学続論I−ベクトル解析 2S1, 2S2, 2S3, 2S4
|
(英 訳) | Advanced Calculus I - Vector Calculus | ||||
---|---|---|---|---|---|---|---|
(担当教員) |
|
||||||
(群) | 自然 | ||||||
(分野(分類)) | 数学(発展) | ||||||
(使用言語) | 日本語 | ||||||
(旧群) | B群 | ||||||
(単位数) | 2 単位 | ||||||
(週コマ数) | 1 コマ | ||||||
(授業形態) | 講義 | ||||||
(開講年度・開講期) | 2025・前期 | ||||||
(配当学年) | 主として2回生 | ||||||
(対象学生) | 理系向 | ||||||
(曜時限) | 水3 |
||||||
(教室) | 共南11 | ||||||
(授業の概要・目的) | 多変数関数の微分積分学は,数学の諸分野のみならず,物理学,工学等の広い領域の共通の基礎である. この授業では,「微分積分学(講義・演義)A・B」および「線形代数学(講義・演義)A・B」,または「微分積分学A・B」および「線形代数学A・B」を前提として,多変数微分積分学の理解を深めると同時に,ベクトル解析の基本的概念を具体的な例と共に解説する. |
||||||
(到達目標) | 多変数関数の微分積分の理解を深める.また平面および空間のベクトル場の演算や線積分・面積分の意味を理解する.さらに,これらを活用する能力を身につける. | ||||||
(授業計画と内容) | 以下の各項目について講述する.各項目には,受講者の理解の程度を確認しながら,【 】で指示した週数を充てる.各項目・小項目の講義の順序は固定したものではなく,担当者の講義方針と受講者の背景や理解の状況に応じて,講義担当者が適切に決める.講義の進め方については適宜,指示をして,受講者が予習をできるように十分に配慮する. 以下の内容を,フィードバック回を含め(試験週を除く)全15回にて行う. 1.ユークリッド空間のベクトル場とポテンシャル【4〜5週】: ベクトルの演算(内積,外積) ベクトル場 ベクトル場の演算(勾配,回転,発散など) スカラーポテンシャル, ベクトルポテンシャル 2.線積分と面積分【6〜7週】: 曲線の長さ,曲面積 線積分,面積分 積分定理(ガウスの発散定理,グリーンの公式,ストークスの定理) なお上記の項目を学習する際には, 3.多変数関数の微積分【3〜5週】: 陰関数定理,逆関数定理 重積分,変数変換公式 について,必要な箇所で適宜説明を加えるものとする. |
||||||
(履修要件) |
「微分積分学(講義・演義)A・B」および「線形代数学(講義・演義)A・B」,または「微分積分学A・B」および「線形代数学A・B」の履修を前提とする。
|
||||||
(成績評価の方法・観点及び達成度) | 主として定期試験による(詳しくは担当教員毎に授業中に指示する)。 | ||||||
(教科書) |
担当教員ごとに指示する。
|
||||||
(参考書等) |
授業中に紹介する
|
||||||
(授業外学習(予習・復習)等) | 予習・復習とともに,演習問題を積極的に解いてみることが必要である. | ||||||
(その他(オフィスアワー等)) | |||||||
微分積分学続論I−ベクトル解析
2S1, 2S2, 2S3, 2S4 (科目名)
Advanced Calculus I - Vector Calculus
(英 訳)
|
|
||||||
(群) 自然 (分野(分類)) 数学(発展) (使用言語) 日本語 | |||||||
(旧群) B群 (単位数) 2 単位 (週コマ数) 1 コマ (授業形態) 講義 | |||||||
(開講年度・ 開講期) 2025・前期 (配当学年) 主として2回生 (対象学生) 理系向 |
|||||||
(曜時限)
水3 (教室) 共南11 |
|||||||
(授業の概要・目的)
多変数関数の微分積分学は,数学の諸分野のみならず,物理学,工学等の広い領域の共通の基礎である.
この授業では,「微分積分学(講義・演義)A・B」および「線形代数学(講義・演義)A・B」,または「微分積分学A・B」および「線形代数学A・B」を前提として,多変数微分積分学の理解を深めると同時に,ベクトル解析の基本的概念を具体的な例と共に解説する. |
|||||||
(到達目標)
多変数関数の微分積分の理解を深める.また平面および空間のベクトル場の演算や線積分・面積分の意味を理解する.さらに,これらを活用する能力を身につける.
|
|||||||
(授業計画と内容)
以下の各項目について講述する.各項目には,受講者の理解の程度を確認しながら,【 】で指示した週数を充てる.各項目・小項目の講義の順序は固定したものではなく,担当者の講義方針と受講者の背景や理解の状況に応じて,講義担当者が適切に決める.講義の進め方については適宜,指示をして,受講者が予習をできるように十分に配慮する. 以下の内容を,フィードバック回を含め(試験週を除く)全15回にて行う. 1.ユークリッド空間のベクトル場とポテンシャル【4〜5週】: ベクトルの演算(内積,外積) ベクトル場 ベクトル場の演算(勾配,回転,発散など) スカラーポテンシャル, ベクトルポテンシャル 2.線積分と面積分【6〜7週】: 曲線の長さ,曲面積 線積分,面積分 積分定理(ガウスの発散定理,グリーンの公式,ストークスの定理) なお上記の項目を学習する際には, 3.多変数関数の微積分【3〜5週】: 陰関数定理,逆関数定理 重積分,変数変換公式 について,必要な箇所で適宜説明を加えるものとする. |
|||||||
(履修要件)
「微分積分学(講義・演義)A・B」および「線形代数学(講義・演義)A・B」,または「微分積分学A・B」および「線形代数学A・B」の履修を前提とする。
|
|||||||
(成績評価の方法・観点及び達成度)
主として定期試験による(詳しくは担当教員毎に授業中に指示する)。
|
|||||||
(教科書)
担当教員ごとに指示する。
|
|||||||
(参考書等)
授業中に紹介する
|
|||||||
(授業外学習(予習・復習)等)
予習・復習とともに,演習問題を積極的に解いてみることが必要である.
|
|||||||
(その他(オフィスアワー等))
|
|||||||
授業の進捗状況や受講生の習熟度などによって「授業計画と内容」,「成績評価の方法」が変更になる場合があります。
(科目名) |
微分積分学続論II−微分方程式 2S5, 2S6, 2S7, 2S8
|
(英 訳) | Advanced Calculus II - Differential Equations | ||||
---|---|---|---|---|---|---|---|
(担当教員) |
|
||||||
(群) | 自然 | ||||||
(分野(分類)) | 数学(発展) | ||||||
(使用言語) | 日本語 | ||||||
(旧群) | B群 | ||||||
(単位数) | 2 単位 | ||||||
(週コマ数) | 1 コマ | ||||||
(授業形態) | 講義 | ||||||
(開講年度・開講期) | 2025・前期 | ||||||
(配当学年) | 主として2回生 | ||||||
(対象学生) | 理系向 | ||||||
(曜時限) | 水3 |
||||||
(教室) | 1共31 | ||||||
(授業の概要・目的) | 「微分積分学(講義・演義)A, B」および「線形代数学(講義・演義)A, B」,または「微分積分学A, B」および「線形代数学A, B」を前提として,様々な自然科学の学習において基礎知識として必要となる,常微分方程式の数学的基礎について講義をする.主に,定数係数線形常微分方程式をはじめとする初等的に解くことのできる微分方程式についての解法,一般の線形微分方程式の解空間構造などの基本的性質,常微分方程式の数学的理論の基盤となる解の存在と一意性とそれに関連する事項について講ずる. | ||||||
(到達目標) | ・定数係数線形常微分方程式をはじめとする初等的に解くことのできる微分方程式についての代表的な解法を修得する ・一般の線形常微分方程式の解空間の構造などの基本的性質について理解する ・常微分方程式の数学的理論の基盤となる解の存在と一意性とそれに関連する事項を理解する |
||||||
(授業計画と内容) | 以下の各項目について講述する.各項目には,受講者の理解の程度を確認しながら,【 】で指示した週数を充てる.各項目・小項目の講義の順序は固定したものではなく,担当者の講義方針と受講者の背景や理解の状況に応じて,講義担当者が適切に決める.講義の進め方については適宜,指示をして,受講者が予習をできるように十分に配慮する. 以下の内容を,フィードバック回を含め(試験週を除く)全15回にて行う. 1.導入【1週】 微分方程式とは何か,物理現象などに現れる微分方程式の具体例 2.初等解法【3週】 変数分離,一階線形微分方程式,定数変化法,全微分形,積分因子,級数解法の例 3.線形微分方程式【6〜7週】 線形微分方程式(変数係数を含む)の解の空間,基本解と基本行列,ロンスキー行列,定数変化法,線形微分方程式の解法,行列の指数関数とその計算(射影行列を含む),2次元定数係数線形微分方程式の相平面図 4.常微分方程式の基本定理【3〜4週】 連続関数全体の空間とその性質(ノルム空間,完備性),逐次近似法,常微分方程式の解の存在と一意性(コーシー・リプシッツの定理),初期値に対する連続性,解の延長 |
||||||
(履修要件) |
特になし
|
||||||
(成績評価の方法・観点及び達成度) | 主として定期試験による(詳しくは担当教員から授業中に指示する). | ||||||
(教科書) |
担当教員ごとに指示する.
|
||||||
(参考書等) |
授業中に紹介する
|
||||||
(授業外学習(予習・復習)等) | 予習・復習とともに,演習問題を積極的に解いてみることが必要である. | ||||||
(その他(オフィスアワー等)) | |||||||
微分積分学続論II−微分方程式
2S5, 2S6, 2S7, 2S8 (科目名)
Advanced Calculus II - Differential Equations
(英 訳)
|
|
||||||
(群) 自然 (分野(分類)) 数学(発展) (使用言語) 日本語 | |||||||
(旧群) B群 (単位数) 2 単位 (週コマ数) 1 コマ (授業形態) 講義 | |||||||
(開講年度・ 開講期) 2025・前期 (配当学年) 主として2回生 (対象学生) 理系向 |
|||||||
(曜時限)
水3 (教室) 1共31 |
|||||||
(授業の概要・目的)
「微分積分学(講義・演義)A, B」および「線形代数学(講義・演義)A, B」,または「微分積分学A, B」および「線形代数学A, B」を前提として,様々な自然科学の学習において基礎知識として必要となる,常微分方程式の数学的基礎について講義をする.主に,定数係数線形常微分方程式をはじめとする初等的に解くことのできる微分方程式についての解法,一般の線形微分方程式の解空間構造などの基本的性質,常微分方程式の数学的理論の基盤となる解の存在と一意性とそれに関連する事項について講ずる.
|
|||||||
(到達目標)
・定数係数線形常微分方程式をはじめとする初等的に解くことのできる微分方程式についての代表的な解法を修得する
・一般の線形常微分方程式の解空間の構造などの基本的性質について理解する ・常微分方程式の数学的理論の基盤となる解の存在と一意性とそれに関連する事項を理解する |
|||||||
(授業計画と内容)
以下の各項目について講述する.各項目には,受講者の理解の程度を確認しながら,【 】で指示した週数を充てる.各項目・小項目の講義の順序は固定したものではなく,担当者の講義方針と受講者の背景や理解の状況に応じて,講義担当者が適切に決める.講義の進め方については適宜,指示をして,受講者が予習をできるように十分に配慮する. 以下の内容を,フィードバック回を含め(試験週を除く)全15回にて行う. 1.導入【1週】 微分方程式とは何か,物理現象などに現れる微分方程式の具体例 2.初等解法【3週】 変数分離,一階線形微分方程式,定数変化法,全微分形,積分因子,級数解法の例 3.線形微分方程式【6〜7週】 線形微分方程式(変数係数を含む)の解の空間,基本解と基本行列,ロンスキー行列,定数変化法,線形微分方程式の解法,行列の指数関数とその計算(射影行列を含む),2次元定数係数線形微分方程式の相平面図 4.常微分方程式の基本定理【3〜4週】 連続関数全体の空間とその性質(ノルム空間,完備性),逐次近似法,常微分方程式の解の存在と一意性(コーシー・リプシッツの定理),初期値に対する連続性,解の延長 |
|||||||
(履修要件)
特になし
|
|||||||
(成績評価の方法・観点及び達成度)
主として定期試験による(詳しくは担当教員から授業中に指示する).
|
|||||||
(教科書)
担当教員ごとに指示する.
|
|||||||
(参考書等)
授業中に紹介する
|
|||||||
(授業外学習(予習・復習)等)
予習・復習とともに,演習問題を積極的に解いてみることが必要である.
|
|||||||
(その他(オフィスアワー等))
|
|||||||
授業の進捗状況や受講生の習熟度などによって「授業計画と内容」,「成績評価の方法」が変更になる場合があります。
(科目名) |
微分積分学(講義・演義)A 1H1, 1H2, 1H3, 1P1, 1P2
|
(英 訳) | Calculus with Exercises A | ||||
---|---|---|---|---|---|---|---|
(担当教員) |
|
||||||
(群) | 自然 | ||||||
(分野(分類)) | 数学(基礎) | ||||||
(使用言語) | 日本語 | ||||||
(旧群) | B群 | ||||||
(単位数) | 3 単位 | ||||||
(週コマ数) | 2 コマ | ||||||
(授業形態) | 講義 | ||||||
(開講年度・開講期) | 2025・前期 | ||||||
(配当学年) | 主として1回生 | ||||||
(対象学生) | 理系向 | ||||||
(曜時限) | 水3・木2 |
||||||
(教室) | 共南01 | ||||||
(授業の概要・目的) | 微分積分学は,線形代数学と共に現代の科学技術を支える数学の根幹をなす.この科目では,将来の応用に必要な微分積分学の基礎を解説する. 微分積分学(講義・演義)Aでは,高校で学んだ一変数関数の微分積分の理論的な基礎を固めるとともに,さらに進んだ数学的解析の手法を学ぶ. |
||||||
(到達目標) | 一変数関数の微分積分の理論的な基礎を理解すること,ならびに,それを用いた数学解析の手法を修得して応用できるようになることを目標とする. | ||||||
(授業計画と内容) | この科目は講義と演義とが一体として構成されている. 演義は原則として隔週で開講される.演義においては,受講者は問題演習や課題学習に積極的に取り組むことにより,それまでに講義で学んだ事柄の理解を深める. 以下に挙げるのは講義の計画・内容である.各項目には,受講者の理解の程度を確認しながら,【 】で指示した週数を充てる.各項目・小項目の講義の順序は固定したものではなく,担当者の講義方針と受講者の背景や理解の状況に応じて,講義担当者が適切に決める.講義の進め方については適宜,指示をして,受講者が予習をできるように十分に配慮する. 以下の内容を,フィードバック回を含め(試験週を除く)全15回にて行う. 1. 準備 【1週】: 数,集合・写像,論理 2. 実数,極限,連続関数【3〜4週】: 実数の連続性,数列の収束,無限級数* 関数の極限,連続関数とその性質(中間値の定理など) 3. 一変数関数の微分法【3〜4週】: 微分係数,一次近似,導関数,合成関数の微分 平均値の定理とその応用 高階導関数,テイラーの定理,無限小,近似値の計算* 4. 一変数関数の積分法【3〜4週】: リーマン積分,連続関数の積分可能性 微分積分学の基本定理,部分積分,置換積分 広義積分,曲線の長さ* なお 5. 重要な関数【3〜4週】: 指数関数,三角関数,対数関数 逆三角関数,ガンマ関数* については必要な箇所で適宜説明を加えるものとする. アステリスク * はオプション |
||||||
(履修要件) |
特になし
|
||||||
(成績評価の方法・観点及び達成度) | 演義担当教員によって平常点(演習への参加状況,課題への取組状況など)から得られた演義成績(30 点満点)をもとに,講義担当教員が期末試験を用いて,演義成績以上,100 点以下の範囲で 評価する. 教員によっては演義以外の平常点(レポート、中間試験などによるもの)を参考にすることもある.詳細は授業中に説明する. 本科目の評価が不合格であった履修者のうち,一定の基準以上の成績の者は再試験を受験できる.再試験の概要は KULASIS で履修者に通知する.なお再試験は9月末に実施予定である. |
||||||
(教科書) |
担当教員ごとに指示する.
|
||||||
(参考書等) |
授業中に紹介する
|
||||||
(授業外学習(予習・復習)等) | 予習,復習とともに,演習問題を積極的に解いてみることが必要である. | ||||||
(その他(オフィスアワー等)) | |||||||
微分積分学(講義・演義)A
1H1, 1H2, 1H3, 1P1, 1P2 (科目名)
Calculus with Exercises A
(英 訳)
|
|
||||||
(群) 自然 (分野(分類)) 数学(基礎) (使用言語) 日本語 | |||||||
(旧群) B群 (単位数) 3 単位 (週コマ数) 2 コマ (授業形態) 講義 | |||||||
(開講年度・ 開講期) 2025・前期 (配当学年) 主として1回生 (対象学生) 理系向 |
|||||||
(曜時限)
水3・木2 (教室) 共南01 |
|||||||
(授業の概要・目的)
微分積分学は,線形代数学と共に現代の科学技術を支える数学の根幹をなす.この科目では,将来の応用に必要な微分積分学の基礎を解説する.
微分積分学(講義・演義)Aでは,高校で学んだ一変数関数の微分積分の理論的な基礎を固めるとともに,さらに進んだ数学的解析の手法を学ぶ. |
|||||||
(到達目標)
一変数関数の微分積分の理論的な基礎を理解すること,ならびに,それを用いた数学解析の手法を修得して応用できるようになることを目標とする.
|
|||||||
(授業計画と内容)
この科目は講義と演義とが一体として構成されている. 演義は原則として隔週で開講される.演義においては,受講者は問題演習や課題学習に積極的に取り組むことにより,それまでに講義で学んだ事柄の理解を深める. 以下に挙げるのは講義の計画・内容である.各項目には,受講者の理解の程度を確認しながら,【 】で指示した週数を充てる.各項目・小項目の講義の順序は固定したものではなく,担当者の講義方針と受講者の背景や理解の状況に応じて,講義担当者が適切に決める.講義の進め方については適宜,指示をして,受講者が予習をできるように十分に配慮する. 以下の内容を,フィードバック回を含め(試験週を除く)全15回にて行う. 1. 準備 【1週】: 数,集合・写像,論理 2. 実数,極限,連続関数【3〜4週】: 実数の連続性,数列の収束,無限級数* 関数の極限,連続関数とその性質(中間値の定理など) 3. 一変数関数の微分法【3〜4週】: 微分係数,一次近似,導関数,合成関数の微分 平均値の定理とその応用 高階導関数,テイラーの定理,無限小,近似値の計算* 4. 一変数関数の積分法【3〜4週】: リーマン積分,連続関数の積分可能性 微分積分学の基本定理,部分積分,置換積分 広義積分,曲線の長さ* なお 5. 重要な関数【3〜4週】: 指数関数,三角関数,対数関数 逆三角関数,ガンマ関数* については必要な箇所で適宜説明を加えるものとする. アステリスク * はオプション |
|||||||
(履修要件)
特になし
|
|||||||
(成績評価の方法・観点及び達成度)
演義担当教員によって平常点(演習への参加状況,課題への取組状況など)から得られた演義成績(30 点満点)をもとに,講義担当教員が期末試験を用いて,演義成績以上,100 点以下の範囲で 評価する.
教員によっては演義以外の平常点(レポート、中間試験などによるもの)を参考にすることもある.詳細は授業中に説明する. 本科目の評価が不合格であった履修者のうち,一定の基準以上の成績の者は再試験を受験できる.再試験の概要は KULASIS で履修者に通知する.なお再試験は9月末に実施予定である. |
|||||||
(教科書)
担当教員ごとに指示する.
|
|||||||
(参考書等)
授業中に紹介する
|
|||||||
(授業外学習(予習・復習)等)
予習,復習とともに,演習問題を積極的に解いてみることが必要である.
|
|||||||
(その他(オフィスアワー等))
|
|||||||
授業の進捗状況や受講生の習熟度などによって「授業計画と内容」,「成績評価の方法」が変更になる場合があります。
(科目名) |
微分積分学(講義・演義)A 1T7
|
(英 訳) | Calculus with Exercises A | ||||
---|---|---|---|---|---|---|---|
(担当教員) |
|
||||||
(群) | 自然 | ||||||
(分野(分類)) | 数学(基礎) | ||||||
(使用言語) | 日本語 | ||||||
(旧群) | B群 | ||||||
(単位数) | 3 単位 | ||||||
(週コマ数) | 2 コマ | ||||||
(授業形態) | 講義 | ||||||
(開講年度・開講期) | 2025・前期 | ||||||
(配当学年) | 主として1回生 | ||||||
(対象学生) | 理系向 | ||||||
(曜時限) | 水3・金1 |
||||||
(教室) | 共北32 | ||||||
(授業の概要・目的) | 微分積分学は,線形代数学と共に現代の科学技術を支える数学の根幹をなす.この科目では,将来の応用に必要な微分積分学の基礎を解説する. 微分積分学(講義・演義)Aでは,高校で学んだ一変数関数の微分積分の理論的な基礎を固めるとともに,さらに進んだ数学的解析の手法を学ぶ. |
||||||
(到達目標) | 一変数関数の微分積分の理論的な基礎を理解すること,ならびに,それを用いた数学解析の手法を修得して応用できるようになることを目標とする. | ||||||
(授業計画と内容) | この科目は講義と演義とが一体として構成されている. 演義は原則として隔週で開講される.演義においては,受講者は問題演習や課題学習に積極的に取り組むことにより,それまでに講義で学んだ事柄の理解を深める. 以下に挙げるのは講義の計画・内容である.各項目には,受講者の理解の程度を確認しながら,【 】で指示した週数を充てる.各項目・小項目の講義の順序は固定したものではなく,担当者の講義方針と受講者の背景や理解の状況に応じて,講義担当者が適切に決める.講義の進め方については適宜,指示をして,受講者が予習をできるように十分に配慮する. 以下の内容を,フィードバック回を含め(試験週を除く)全15回にて行う. 1. 準備 【1週】: 数,集合・写像,論理 2. 実数,極限,連続関数【3〜4週】: 実数の連続性,数列の収束,無限級数* 関数の極限,連続関数とその性質(中間値の定理など) 3. 一変数関数の微分法【3〜4週】: 微分係数,一次近似,導関数,合成関数の微分 平均値の定理とその応用 高階導関数,テイラーの定理,無限小,近似値の計算* 4. 一変数関数の積分法【3〜4週】: リーマン積分,連続関数の積分可能性 微分積分学の基本定理,部分積分,置換積分 広義積分,曲線の長さ* なお 5. 重要な関数【3〜4週】: 指数関数,三角関数,対数関数 逆三角関数,ガンマ関数* については必要な箇所で適宜説明を加えるものとする. アステリスク * はオプション |
||||||
(履修要件) |
特になし
|
||||||
(成績評価の方法・観点及び達成度) | 演義担当教員によって平常点(演習への参加状況,課題への取組状況など)から得られた演義成績(30 点満点)をもとに,講義担当教員が期末試験を用いて,演義成績以上,100 点以下の範囲で 評価する. 教員によっては演義以外の平常点(レポート、中間試験などによるもの)を参考にすることもある.詳細は授業中に説明する. 本科目の評価が不合格であった履修者のうち,一定の基準以上の成績の者は再試験を受験できる.再試験の概要は KULASIS で履修者に通知する.なお再試験は9月末に実施予定である. |
||||||
(教科書) |
担当教員ごとに指示する.
|
||||||
(参考書等) |
授業中に紹介する
|
||||||
(授業外学習(予習・復習)等) | 予習,復習とともに,演習問題を積極的に解いてみることが必要である. | ||||||
(その他(オフィスアワー等)) | |||||||
微分積分学(講義・演義)A
1T7 (科目名)
Calculus with Exercises A
(英 訳)
|
|
||||||
(群) 自然 (分野(分類)) 数学(基礎) (使用言語) 日本語 | |||||||
(旧群) B群 (単位数) 3 単位 (週コマ数) 2 コマ (授業形態) 講義 | |||||||
(開講年度・ 開講期) 2025・前期 (配当学年) 主として1回生 (対象学生) 理系向 |
|||||||
(曜時限)
水3・金1 (教室) 共北32 |
|||||||
(授業の概要・目的)
微分積分学は,線形代数学と共に現代の科学技術を支える数学の根幹をなす.この科目では,将来の応用に必要な微分積分学の基礎を解説する.
微分積分学(講義・演義)Aでは,高校で学んだ一変数関数の微分積分の理論的な基礎を固めるとともに,さらに進んだ数学的解析の手法を学ぶ. |
|||||||
(到達目標)
一変数関数の微分積分の理論的な基礎を理解すること,ならびに,それを用いた数学解析の手法を修得して応用できるようになることを目標とする.
|
|||||||
(授業計画と内容)
この科目は講義と演義とが一体として構成されている. 演義は原則として隔週で開講される.演義においては,受講者は問題演習や課題学習に積極的に取り組むことにより,それまでに講義で学んだ事柄の理解を深める. 以下に挙げるのは講義の計画・内容である.各項目には,受講者の理解の程度を確認しながら,【 】で指示した週数を充てる.各項目・小項目の講義の順序は固定したものではなく,担当者の講義方針と受講者の背景や理解の状況に応じて,講義担当者が適切に決める.講義の進め方については適宜,指示をして,受講者が予習をできるように十分に配慮する. 以下の内容を,フィードバック回を含め(試験週を除く)全15回にて行う. 1. 準備 【1週】: 数,集合・写像,論理 2. 実数,極限,連続関数【3〜4週】: 実数の連続性,数列の収束,無限級数* 関数の極限,連続関数とその性質(中間値の定理など) 3. 一変数関数の微分法【3〜4週】: 微分係数,一次近似,導関数,合成関数の微分 平均値の定理とその応用 高階導関数,テイラーの定理,無限小,近似値の計算* 4. 一変数関数の積分法【3〜4週】: リーマン積分,連続関数の積分可能性 微分積分学の基本定理,部分積分,置換積分 広義積分,曲線の長さ* なお 5. 重要な関数【3〜4週】: 指数関数,三角関数,対数関数 逆三角関数,ガンマ関数* については必要な箇所で適宜説明を加えるものとする. アステリスク * はオプション |
|||||||
(履修要件)
特になし
|
|||||||
(成績評価の方法・観点及び達成度)
演義担当教員によって平常点(演習への参加状況,課題への取組状況など)から得られた演義成績(30 点満点)をもとに,講義担当教員が期末試験を用いて,演義成績以上,100 点以下の範囲で 評価する.
教員によっては演義以外の平常点(レポート、中間試験などによるもの)を参考にすることもある.詳細は授業中に説明する. 本科目の評価が不合格であった履修者のうち,一定の基準以上の成績の者は再試験を受験できる.再試験の概要は KULASIS で履修者に通知する.なお再試験は9月末に実施予定である. |
|||||||
(教科書)
担当教員ごとに指示する.
|
|||||||
(参考書等)
授業中に紹介する
|
|||||||
(授業外学習(予習・復習)等)
予習,復習とともに,演習問題を積極的に解いてみることが必要である.
|
|||||||
(その他(オフィスアワー等))
|
|||||||
授業の進捗状況や受講生の習熟度などによって「授業計画と内容」,「成績評価の方法」が変更になる場合があります。
(科目名) |
微分積分学(講義・演義)A 1T9
|
(英 訳) | Calculus with Exercises A | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
(担当教員) |
|
||||||||||||
(群) | 自然 | ||||||||||||
(分野(分類)) | 数学(基礎) | ||||||||||||
(使用言語) | 日本語 | ||||||||||||
(旧群) | B群 | ||||||||||||
(単位数) | 3 単位 | ||||||||||||
(週コマ数) | 2 コマ | ||||||||||||
(授業形態) | 講義 | ||||||||||||
(開講年度・開講期) | 2025・前期 | ||||||||||||
(配当学年) | 主として1回生 | ||||||||||||
(対象学生) | 理系向 | ||||||||||||
(曜時限) | 水3・金1 |
||||||||||||
(教室) | 共西31 | ||||||||||||
(授業の概要・目的) | 微分積分学は,線形代数学と共に現代の科学技術を支える数学の根幹をなす.この科目では,将来の応用に必要な微分積分学の基礎を解説する. 微分積分学(講義・演義)Aでは,高校で学んだ一変数関数の微分積分の理論的な基礎を固めるとともに,さらに進んだ数学的解析の手法を学ぶ. |
||||||||||||
(到達目標) | 一変数関数の微分積分の理論的な基礎を理解すること,ならびに,それを用いた数学解析の手法を修得して応用できるようになることを目標とする. | ||||||||||||
(授業計画と内容) | この科目は講義と演義とが一体として構成されている. 演義は原則として隔週で開講される.演義においては,受講者は問題演習や課題学習に積極的に取り組むことにより,それまでに講義で学んだ事柄の理解を深める. 以下に挙げるのは講義の計画・内容である.各項目には,受講者の理解の程度を確認しながら,【 】で指示した週数を充てる.各項目・小項目の講義の順序は固定したものではなく,担当者の講義方針と受講者の背景や理解の状況に応じて,講義担当者が適切に決める.講義の進め方については適宜,指示をして,受講者が予習をできるように十分に配慮する. 以下の内容を,フィードバック回を含め(試験週を除く)全15回にて行う. 1. 準備 【1週】: 数,集合・写像,論理 2. 実数,極限,連続関数【3〜4週】: 実数の連続性,数列の収束,無限級数* 関数の極限,連続関数とその性質(中間値の定理など) 3. 一変数関数の微分法【3〜4週】: 微分係数,一次近似,導関数,合成関数の微分 平均値の定理とその応用 高階導関数,テイラーの定理,無限小,近似値の計算* 4. 一変数関数の積分法【3〜4週】: リーマン積分,連続関数の積分可能性 微分積分学の基本定理,部分積分,置換積分 広義積分,曲線の長さ* なお 5. 重要な関数【3〜4週】: 指数関数,三角関数,対数関数 逆三角関数,ガンマ関数* については必要な箇所で適宜説明を加えるものとする. アステリスク * はオプション |
||||||||||||
(履修要件) |
特になし
|
||||||||||||
(成績評価の方法・観点及び達成度) | 演義担当教員によって平常点(演習への参加状況,課題への取組状況など)から得られた演義成績(30 点満点)をもとに,講義担当教員が期末試験を用いて,演義成績以上,100 点以下の範囲で 評価する. 教員によっては演義以外の平常点(レポート、中間試験などによるもの)を参考にすることもある.詳細は授業中に説明する. 本科目の評価が不合格であった履修者のうち,一定の基準以上の成績の者は再試験を受験できる.再試験の概要は KULASIS で履修者に通知する.なお再試験は9月末に実施予定である. |
||||||||||||
(教科書) |
担当教員ごとに指示する.
|
||||||||||||
(参考書等) |
授業中に紹介する
|
||||||||||||
(授業外学習(予習・復習)等) | 予習,復習とともに,演習問題を積極的に解いてみることが必要である. | ||||||||||||
(その他(オフィスアワー等)) | |||||||||||||
微分積分学(講義・演義)A
1T9 (科目名)
Calculus with Exercises A
(英 訳)
|
|
|||||||||
(群) 自然 (分野(分類)) 数学(基礎) (使用言語) 日本語 | ||||||||||
(旧群) B群 (単位数) 3 単位 (週コマ数) 2 コマ (授業形態) 講義 | ||||||||||
(開講年度・ 開講期) 2025・前期 (配当学年) 主として1回生 (対象学生) 理系向 |
||||||||||
(曜時限)
水3・金1 (教室) 共西31 |
||||||||||
(授業の概要・目的)
微分積分学は,線形代数学と共に現代の科学技術を支える数学の根幹をなす.この科目では,将来の応用に必要な微分積分学の基礎を解説する.
微分積分学(講義・演義)Aでは,高校で学んだ一変数関数の微分積分の理論的な基礎を固めるとともに,さらに進んだ数学的解析の手法を学ぶ. |
||||||||||
(到達目標)
一変数関数の微分積分の理論的な基礎を理解すること,ならびに,それを用いた数学解析の手法を修得して応用できるようになることを目標とする.
|
||||||||||
(授業計画と内容)
この科目は講義と演義とが一体として構成されている. 演義は原則として隔週で開講される.演義においては,受講者は問題演習や課題学習に積極的に取り組むことにより,それまでに講義で学んだ事柄の理解を深める. 以下に挙げるのは講義の計画・内容である.各項目には,受講者の理解の程度を確認しながら,【 】で指示した週数を充てる.各項目・小項目の講義の順序は固定したものではなく,担当者の講義方針と受講者の背景や理解の状況に応じて,講義担当者が適切に決める.講義の進め方については適宜,指示をして,受講者が予習をできるように十分に配慮する. 以下の内容を,フィードバック回を含め(試験週を除く)全15回にて行う. 1. 準備 【1週】: 数,集合・写像,論理 2. 実数,極限,連続関数【3〜4週】: 実数の連続性,数列の収束,無限級数* 関数の極限,連続関数とその性質(中間値の定理など) 3. 一変数関数の微分法【3〜4週】: 微分係数,一次近似,導関数,合成関数の微分 平均値の定理とその応用 高階導関数,テイラーの定理,無限小,近似値の計算* 4. 一変数関数の積分法【3〜4週】: リーマン積分,連続関数の積分可能性 微分積分学の基本定理,部分積分,置換積分 広義積分,曲線の長さ* なお 5. 重要な関数【3〜4週】: 指数関数,三角関数,対数関数 逆三角関数,ガンマ関数* については必要な箇所で適宜説明を加えるものとする. アステリスク * はオプション |
||||||||||
(履修要件)
特になし
|
||||||||||
(成績評価の方法・観点及び達成度)
演義担当教員によって平常点(演習への参加状況,課題への取組状況など)から得られた演義成績(30 点満点)をもとに,講義担当教員が期末試験を用いて,演義成績以上,100 点以下の範囲で 評価する.
教員によっては演義以外の平常点(レポート、中間試験などによるもの)を参考にすることもある.詳細は授業中に説明する. 本科目の評価が不合格であった履修者のうち,一定の基準以上の成績の者は再試験を受験できる.再試験の概要は KULASIS で履修者に通知する.なお再試験は9月末に実施予定である. |
||||||||||
(教科書)
担当教員ごとに指示する.
|
||||||||||
(参考書等)
授業中に紹介する
|
||||||||||
(授業外学習(予習・復習)等)
予習,復習とともに,演習問題を積極的に解いてみることが必要である.
|
||||||||||
(その他(オフィスアワー等))
|
||||||||||
授業の進捗状況や受講生の習熟度などによって「授業計画と内容」,「成績評価の方法」が変更になる場合があります。
(科目名) |
微分積分学(講義・演義)A 1T10
|
(英 訳) | Calculus with Exercises A | ||||
---|---|---|---|---|---|---|---|
(担当教員) |
|
||||||
(群) | 自然 | ||||||
(分野(分類)) | 数学(基礎) | ||||||
(使用言語) | 日本語 | ||||||
(旧群) | B群 | ||||||
(単位数) | 3 単位 | ||||||
(週コマ数) | 2 コマ | ||||||
(授業形態) | 講義 | ||||||
(開講年度・開講期) | 2025・前期 | ||||||
(配当学年) | 主として1回生 | ||||||
(対象学生) | 理系向 | ||||||
(曜時限) | 水3・金2 |
||||||
(教室) | 共北32 | ||||||
(授業の概要・目的) | 微分積分学は,線形代数学と共に現代の科学技術を支える数学の根幹をなす.この科目では,将来の応用に必要な微分積分学の基礎を解説する. 微分積分学(講義・演義)Aでは,高校で学んだ一変数関数の微分積分の理論的な基礎を固めるとともに,さらに進んだ数学的解析の手法を学ぶ. |
||||||
(到達目標) | 一変数関数の微分積分の理論的な基礎を理解すること,ならびに,それを用いた数学解析の手法を修得して応用できるようになることを目標とする. | ||||||
(授業計画と内容) | この科目は講義と演義とが一体として構成されている. 演義は原則として隔週で開講される.演義においては,受講者は問題演習や課題学習に積極的に取り組むことにより,それまでに講義で学んだ事柄の理解を深める. 以下に挙げるのは講義の計画・内容である.各項目には,受講者の理解の程度を確認しながら,【 】で指示した週数を充てる.各項目・小項目の講義の順序は固定したものではなく,担当者の講義方針と受講者の背景や理解の状況に応じて,講義担当者が適切に決める.講義の進め方については適宜,指示をして,受講者が予習をできるように十分に配慮する. 以下の内容を,フィードバック回を含め(試験週を除く)全15回にて行う. 1. 準備 【1週】: 数,集合・写像,論理 2. 実数,極限,連続関数【3〜4週】: 実数の連続性,数列の収束,無限級数* 関数の極限,連続関数とその性質(中間値の定理など) 3. 一変数関数の微分法【3〜4週】: 微分係数,一次近似,導関数,合成関数の微分 平均値の定理とその応用 高階導関数,テイラーの定理,無限小,近似値の計算* 4. 一変数関数の積分法【3〜4週】: リーマン積分,連続関数の積分可能性 微分積分学の基本定理,部分積分,置換積分 広義積分,曲線の長さ* なお 5. 重要な関数【3〜4週】: 指数関数,三角関数,対数関数 逆三角関数,ガンマ関数* については必要な箇所で適宜説明を加えるものとする. アステリスク * はオプション |
||||||
(履修要件) |
特になし
|
||||||
(成績評価の方法・観点及び達成度) | 演義担当教員によって平常点(演習への参加状況,課題への取組状況など)から得られた演義成績(30 点満点)をもとに,講義担当教員が期末試験を用いて,演義成績以上,100 点以下の範囲で 評価する. 教員によっては演義以外の平常点(レポート、中間試験などによるもの)を参考にすることもある.詳細は授業中に説明する. 本科目の評価が不合格であった履修者のうち,一定の基準以上の成績の者は再試験を受験できる.再試験の概要は KULASIS で履修者に通知する.なお再試験は9月末に実施予定である. |
||||||
(教科書) |
担当教員ごとに指示する.
|
||||||
(参考書等) |
授業中に紹介する
|
||||||
(授業外学習(予習・復習)等) | 予習,復習とともに,演習問題を積極的に解いてみることが必要である. | ||||||
(その他(オフィスアワー等)) | |||||||
微分積分学(講義・演義)A
1T10 (科目名)
Calculus with Exercises A
(英 訳)
|
|
||||||
(群) 自然 (分野(分類)) 数学(基礎) (使用言語) 日本語 | |||||||
(旧群) B群 (単位数) 3 単位 (週コマ数) 2 コマ (授業形態) 講義 | |||||||
(開講年度・ 開講期) 2025・前期 (配当学年) 主として1回生 (対象学生) 理系向 |
|||||||
(曜時限)
水3・金2 (教室) 共北32 |
|||||||
(授業の概要・目的)
微分積分学は,線形代数学と共に現代の科学技術を支える数学の根幹をなす.この科目では,将来の応用に必要な微分積分学の基礎を解説する.
微分積分学(講義・演義)Aでは,高校で学んだ一変数関数の微分積分の理論的な基礎を固めるとともに,さらに進んだ数学的解析の手法を学ぶ. |
|||||||
(到達目標)
一変数関数の微分積分の理論的な基礎を理解すること,ならびに,それを用いた数学解析の手法を修得して応用できるようになることを目標とする.
|
|||||||
(授業計画と内容)
この科目は講義と演義とが一体として構成されている. 演義は原則として隔週で開講される.演義においては,受講者は問題演習や課題学習に積極的に取り組むことにより,それまでに講義で学んだ事柄の理解を深める. 以下に挙げるのは講義の計画・内容である.各項目には,受講者の理解の程度を確認しながら,【 】で指示した週数を充てる.各項目・小項目の講義の順序は固定したものではなく,担当者の講義方針と受講者の背景や理解の状況に応じて,講義担当者が適切に決める.講義の進め方については適宜,指示をして,受講者が予習をできるように十分に配慮する. 以下の内容を,フィードバック回を含め(試験週を除く)全15回にて行う. 1. 準備 【1週】: 数,集合・写像,論理 2. 実数,極限,連続関数【3〜4週】: 実数の連続性,数列の収束,無限級数* 関数の極限,連続関数とその性質(中間値の定理など) 3. 一変数関数の微分法【3〜4週】: 微分係数,一次近似,導関数,合成関数の微分 平均値の定理とその応用 高階導関数,テイラーの定理,無限小,近似値の計算* 4. 一変数関数の積分法【3〜4週】: リーマン積分,連続関数の積分可能性 微分積分学の基本定理,部分積分,置換積分 広義積分,曲線の長さ* なお 5. 重要な関数【3〜4週】: 指数関数,三角関数,対数関数 逆三角関数,ガンマ関数* については必要な箇所で適宜説明を加えるものとする. アステリスク * はオプション |
|||||||
(履修要件)
特になし
|
|||||||
(成績評価の方法・観点及び達成度)
演義担当教員によって平常点(演習への参加状況,課題への取組状況など)から得られた演義成績(30 点満点)をもとに,講義担当教員が期末試験を用いて,演義成績以上,100 点以下の範囲で 評価する.
教員によっては演義以外の平常点(レポート、中間試験などによるもの)を参考にすることもある.詳細は授業中に説明する. 本科目の評価が不合格であった履修者のうち,一定の基準以上の成績の者は再試験を受験できる.再試験の概要は KULASIS で履修者に通知する.なお再試験は9月末に実施予定である. |
|||||||
(教科書)
担当教員ごとに指示する.
|
|||||||
(参考書等)
授業中に紹介する
|
|||||||
(授業外学習(予習・復習)等)
予習,復習とともに,演習問題を積極的に解いてみることが必要である.
|
|||||||
(その他(オフィスアワー等))
|
|||||||
授業の進捗状況や受講生の習熟度などによって「授業計画と内容」,「成績評価の方法」が変更になる場合があります。
(科目名) |
微分積分学(講義・演義)A 1T12
|
(英 訳) | Calculus with Exercises A | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
(担当教員) |
|
||||||||||||
(群) | 自然 | ||||||||||||
(分野(分類)) | 数学(基礎) | ||||||||||||
(使用言語) | 日本語 | ||||||||||||
(旧群) | B群 | ||||||||||||
(単位数) | 3 単位 | ||||||||||||
(週コマ数) | 2 コマ | ||||||||||||
(授業形態) | 講義 | ||||||||||||
(開講年度・開講期) | 2025・前期 | ||||||||||||
(配当学年) | 主として1回生 | ||||||||||||
(対象学生) | 理系向 | ||||||||||||
(曜時限) | 水3・金2 |
||||||||||||
(教室) | 共西31 | ||||||||||||
(授業の概要・目的) | 微分積分学は,線形代数学と共に現代の科学技術を支える数学の根幹をなす.この科目では,将来の応用に必要な微分積分学の基礎を解説する. 微分積分学(講義・演義)Aでは,高校で学んだ一変数関数の微分積分の理論的な基礎を固めるとともに,さらに進んだ数学的解析の手法を学ぶ. |
||||||||||||
(到達目標) | 一変数関数の微分積分の理論的な基礎を理解すること,ならびに,それを用いた数学解析の手法を修得して応用できるようになることを目標とする. | ||||||||||||
(授業計画と内容) | この科目は講義と演義とが一体として構成されている. 演義は原則として隔週で開講される.演義においては,受講者は問題演習や課題学習に積極的に取り組むことにより,それまでに講義で学んだ事柄の理解を深める. 以下に挙げるのは講義の計画・内容である.各項目には,受講者の理解の程度を確認しながら,【 】で指示した週数を充てる.各項目・小項目の講義の順序は固定したものではなく,担当者の講義方針と受講者の背景や理解の状況に応じて,講義担当者が適切に決める.講義の進め方については適宜,指示をして,受講者が予習をできるように十分に配慮する. 以下の内容を,フィードバック回を含め(試験週を除く)全15回にて行う. 1. 準備 【1週】: 数,集合・写像,論理 2. 実数,極限,連続関数【3〜4週】: 実数の連続性,数列の収束,無限級数* 関数の極限,連続関数とその性質(中間値の定理など) 3. 一変数関数の微分法【3〜4週】: 微分係数,一次近似,導関数,合成関数の微分 平均値の定理とその応用 高階導関数,テイラーの定理,無限小,近似値の計算* 4. 一変数関数の積分法【3〜4週】: リーマン積分,連続関数の積分可能性 微分積分学の基本定理,部分積分,置換積分 広義積分,曲線の長さ* なお 5. 重要な関数【3〜4週】: 指数関数,三角関数,対数関数 逆三角関数,ガンマ関数* については必要な箇所で適宜説明を加えるものとする. アステリスク * はオプション |
||||||||||||
(履修要件) |
特になし
|
||||||||||||
(成績評価の方法・観点及び達成度) | 演義担当教員によって平常点(演習への参加状況,課題への取組状況など)から得られた演義成績(30 点満点)をもとに,講義担当教員が期末試験を用いて,演義成績以上,100 点以下の範囲で 評価する. 教員によっては演義以外の平常点(レポート、中間試験などによるもの)を参考にすることもある.詳細は授業中に説明する. 本科目の評価が不合格であった履修者のうち,一定の基準以上の成績の者は再試験を受験できる.再試験の概要は KULASIS で履修者に通知する.なお再試験は9月末に実施予定である. |
||||||||||||
(教科書) |
担当教員ごとに指示する.
|
||||||||||||
(参考書等) |
授業中に紹介する
|
||||||||||||
(授業外学習(予習・復習)等) | 予習,復習とともに,演習問題を積極的に解いてみることが必要である. | ||||||||||||
(その他(オフィスアワー等)) | |||||||||||||
微分積分学(講義・演義)A
1T12 (科目名)
Calculus with Exercises A
(英 訳)
|
|
|||||||||
(群) 自然 (分野(分類)) 数学(基礎) (使用言語) 日本語 | ||||||||||
(旧群) B群 (単位数) 3 単位 (週コマ数) 2 コマ (授業形態) 講義 | ||||||||||
(開講年度・ 開講期) 2025・前期 (配当学年) 主として1回生 (対象学生) 理系向 |
||||||||||
(曜時限)
水3・金2 (教室) 共西31 |
||||||||||
(授業の概要・目的)
微分積分学は,線形代数学と共に現代の科学技術を支える数学の根幹をなす.この科目では,将来の応用に必要な微分積分学の基礎を解説する.
微分積分学(講義・演義)Aでは,高校で学んだ一変数関数の微分積分の理論的な基礎を固めるとともに,さらに進んだ数学的解析の手法を学ぶ. |
||||||||||
(到達目標)
一変数関数の微分積分の理論的な基礎を理解すること,ならびに,それを用いた数学解析の手法を修得して応用できるようになることを目標とする.
|
||||||||||
(授業計画と内容)
この科目は講義と演義とが一体として構成されている. 演義は原則として隔週で開講される.演義においては,受講者は問題演習や課題学習に積極的に取り組むことにより,それまでに講義で学んだ事柄の理解を深める. 以下に挙げるのは講義の計画・内容である.各項目には,受講者の理解の程度を確認しながら,【 】で指示した週数を充てる.各項目・小項目の講義の順序は固定したものではなく,担当者の講義方針と受講者の背景や理解の状況に応じて,講義担当者が適切に決める.講義の進め方については適宜,指示をして,受講者が予習をできるように十分に配慮する. 以下の内容を,フィードバック回を含め(試験週を除く)全15回にて行う. 1. 準備 【1週】: 数,集合・写像,論理 2. 実数,極限,連続関数【3〜4週】: 実数の連続性,数列の収束,無限級数* 関数の極限,連続関数とその性質(中間値の定理など) 3. 一変数関数の微分法【3〜4週】: 微分係数,一次近似,導関数,合成関数の微分 平均値の定理とその応用 高階導関数,テイラーの定理,無限小,近似値の計算* 4. 一変数関数の積分法【3〜4週】: リーマン積分,連続関数の積分可能性 微分積分学の基本定理,部分積分,置換積分 広義積分,曲線の長さ* なお 5. 重要な関数【3〜4週】: 指数関数,三角関数,対数関数 逆三角関数,ガンマ関数* については必要な箇所で適宜説明を加えるものとする. アステリスク * はオプション |
||||||||||
(履修要件)
特になし
|
||||||||||
(成績評価の方法・観点及び達成度)
演義担当教員によって平常点(演習への参加状況,課題への取組状況など)から得られた演義成績(30 点満点)をもとに,講義担当教員が期末試験を用いて,演義成績以上,100 点以下の範囲で 評価する.
教員によっては演義以外の平常点(レポート、中間試験などによるもの)を参考にすることもある.詳細は授業中に説明する. 本科目の評価が不合格であった履修者のうち,一定の基準以上の成績の者は再試験を受験できる.再試験の概要は KULASIS で履修者に通知する.なお再試験は9月末に実施予定である. |
||||||||||
(教科書)
担当教員ごとに指示する.
|
||||||||||
(参考書等)
授業中に紹介する
|
||||||||||
(授業外学習(予習・復習)等)
予習,復習とともに,演習問題を積極的に解いてみることが必要である.
|
||||||||||
(その他(オフィスアワー等))
|
||||||||||
授業の進捗状況や受講生の習熟度などによって「授業計画と内容」,「成績評価の方法」が変更になる場合があります。
(科目名) |
微分積分学(講義・演義)A 1T13
|
(英 訳) | Calculus with Exercises A | ||||
---|---|---|---|---|---|---|---|
(担当教員) |
|
||||||
(群) | 自然 | ||||||
(分野(分類)) | 数学(基礎) | ||||||
(使用言語) | 日本語 | ||||||
(旧群) | B群 | ||||||
(単位数) | 3 単位 | ||||||
(週コマ数) | 2 コマ | ||||||
(授業形態) | 講義 | ||||||
(開講年度・開講期) | 2025・前期 | ||||||
(配当学年) | 主として1回生 | ||||||
(対象学生) | 理系向 | ||||||
(曜時限) | 水3・金1 |
||||||
(教室) | 共北25 | ||||||
(授業の概要・目的) | 微分積分学は,線形代数学と共に現代の科学技術を支える数学の根幹をなす.この科目では,将来の応用に必要な微分積分学の基礎を解説する. 微分積分学(講義・演義)Aでは,高校で学んだ一変数関数の微分積分の理論的な基礎を固めるとともに,さらに進んだ数学的解析の手法を学ぶ. |
||||||
(到達目標) | 一変数関数の微分積分の理論的な基礎を理解すること,ならびに,それを用いた数学解析の手法を修得して応用できるようになることを目標とする. | ||||||
(授業計画と内容) | この科目は講義と演義とが一体として構成されている. 演義は原則として隔週で開講される.演義においては,受講者は問題演習や課題学習に積極的に取り組むことにより,それまでに講義で学んだ事柄の理解を深める. 以下に挙げるのは講義の計画・内容である.各項目には,受講者の理解の程度を確認しながら,【 】で指示した週数を充てる.各項目・小項目の講義の順序は固定したものではなく,担当者の講義方針と受講者の背景や理解の状況に応じて,講義担当者が適切に決める.講義の進め方については適宜,指示をして,受講者が予習をできるように十分に配慮する. 以下の内容を,フィードバック回を含め(試験週を除く)全15回にて行う. 1. 準備 【1週】: 数,集合・写像,論理 2. 実数,極限,連続関数【3〜4週】: 実数の連続性,数列の収束,無限級数* 関数の極限,連続関数とその性質(中間値の定理など) 3. 一変数関数の微分法【3〜4週】: 微分係数,一次近似,導関数,合成関数の微分 平均値の定理とその応用 高階導関数,テイラーの定理,無限小,近似値の計算* 4. 一変数関数の積分法【3〜4週】: リーマン積分,連続関数の積分可能性 微分積分学の基本定理,部分積分,置換積分 広義積分,曲線の長さ* なお 5. 重要な関数【3〜4週】: 指数関数,三角関数,対数関数 逆三角関数,ガンマ関数* については必要な箇所で適宜説明を加えるものとする. アステリスク * はオプション |
||||||
(履修要件) |
特になし
|
||||||
(成績評価の方法・観点及び達成度) | 演義担当教員によって平常点(演習への参加状況,課題への取組状況など)から得られた演義成績(30 点満点)をもとに,講義担当教員が期末試験を用いて,演義成績以上,100 点以下の範囲で 評価する. 教員によっては演義以外の平常点(レポート、中間試験などによるもの)を参考にすることもある.詳細は授業中に説明する. 本科目の評価が不合格であった履修者のうち,一定の基準以上の成績の者は再試験を受験できる.再試験の概要は KULASIS で履修者に通知する.なお再試験は9月末に実施予定である. |
||||||
(教科書) |
担当教員ごとに指示する.
|
||||||
(参考書等) |
授業中に紹介する
|
||||||
(授業外学習(予習・復習)等) | 予習,復習とともに,演習問題を積極的に解いてみることが必要である. | ||||||
(その他(オフィスアワー等)) | |||||||
微分積分学(講義・演義)A
1T13 (科目名)
Calculus with Exercises A
(英 訳)
|
|
||||||
(群) 自然 (分野(分類)) 数学(基礎) (使用言語) 日本語 | |||||||
(旧群) B群 (単位数) 3 単位 (週コマ数) 2 コマ (授業形態) 講義 | |||||||
(開講年度・ 開講期) 2025・前期 (配当学年) 主として1回生 (対象学生) 理系向 |
|||||||
(曜時限)
水3・金1 (教室) 共北25 |
|||||||
(授業の概要・目的)
微分積分学は,線形代数学と共に現代の科学技術を支える数学の根幹をなす.この科目では,将来の応用に必要な微分積分学の基礎を解説する.
微分積分学(講義・演義)Aでは,高校で学んだ一変数関数の微分積分の理論的な基礎を固めるとともに,さらに進んだ数学的解析の手法を学ぶ. |
|||||||
(到達目標)
一変数関数の微分積分の理論的な基礎を理解すること,ならびに,それを用いた数学解析の手法を修得して応用できるようになることを目標とする.
|
|||||||
(授業計画と内容)
この科目は講義と演義とが一体として構成されている. 演義は原則として隔週で開講される.演義においては,受講者は問題演習や課題学習に積極的に取り組むことにより,それまでに講義で学んだ事柄の理解を深める. 以下に挙げるのは講義の計画・内容である.各項目には,受講者の理解の程度を確認しながら,【 】で指示した週数を充てる.各項目・小項目の講義の順序は固定したものではなく,担当者の講義方針と受講者の背景や理解の状況に応じて,講義担当者が適切に決める.講義の進め方については適宜,指示をして,受講者が予習をできるように十分に配慮する. 以下の内容を,フィードバック回を含め(試験週を除く)全15回にて行う. 1. 準備 【1週】: 数,集合・写像,論理 2. 実数,極限,連続関数【3〜4週】: 実数の連続性,数列の収束,無限級数* 関数の極限,連続関数とその性質(中間値の定理など) 3. 一変数関数の微分法【3〜4週】: 微分係数,一次近似,導関数,合成関数の微分 平均値の定理とその応用 高階導関数,テイラーの定理,無限小,近似値の計算* 4. 一変数関数の積分法【3〜4週】: リーマン積分,連続関数の積分可能性 微分積分学の基本定理,部分積分,置換積分 広義積分,曲線の長さ* なお 5. 重要な関数【3〜4週】: 指数関数,三角関数,対数関数 逆三角関数,ガンマ関数* については必要な箇所で適宜説明を加えるものとする. アステリスク * はオプション |
|||||||
(履修要件)
特になし
|
|||||||
(成績評価の方法・観点及び達成度)
演義担当教員によって平常点(演習への参加状況,課題への取組状況など)から得られた演義成績(30 点満点)をもとに,講義担当教員が期末試験を用いて,演義成績以上,100 点以下の範囲で 評価する.
教員によっては演義以外の平常点(レポート、中間試験などによるもの)を参考にすることもある.詳細は授業中に説明する. 本科目の評価が不合格であった履修者のうち,一定の基準以上の成績の者は再試験を受験できる.再試験の概要は KULASIS で履修者に通知する.なお再試験は9月末に実施予定である. |
|||||||
(教科書)
担当教員ごとに指示する.
|
|||||||
(参考書等)
授業中に紹介する
|
|||||||
(授業外学習(予習・復習)等)
予習,復習とともに,演習問題を積極的に解いてみることが必要である.
|
|||||||
(その他(オフィスアワー等))
|
|||||||
授業の進捗状況や受講生の習熟度などによって「授業計画と内容」,「成績評価の方法」が変更になる場合があります。
(科目名) |
微分積分学(講義・演義)A 1T15
|
(英 訳) | Calculus with Exercises A | ||||
---|---|---|---|---|---|---|---|
(担当教員) |
|
||||||
(群) | 自然 | ||||||
(分野(分類)) | 数学(基礎) | ||||||
(使用言語) | 日本語 | ||||||
(旧群) | B群 | ||||||
(単位数) | 3 単位 | ||||||
(週コマ数) | 2 コマ | ||||||
(授業形態) | 講義 | ||||||
(開講年度・開講期) | 2025・前期 | ||||||
(配当学年) | 主として1回生 | ||||||
(対象学生) | 理系向 | ||||||
(曜時限) | 水3・金2 |
||||||
(教室) | 共北25 | ||||||
(授業の概要・目的) | 微分積分学は,線形代数学と共に現代の科学技術を支える数学の根幹をなす.この科目では,将来の応用に必要な微分積分学の基礎を解説する. 微分積分学(講義・演義)Aでは,高校で学んだ一変数関数の微分積分の理論的な基礎を固めるとともに,さらに進んだ数学的解析の手法を学ぶ. |
||||||
(到達目標) | 一変数関数の微分積分の理論的な基礎を理解すること,ならびに,それを用いた数学解析の手法を修得して応用できるようになることを目標とする. | ||||||
(授業計画と内容) | この科目は講義と演義とが一体として構成されている. 演義は原則として隔週で開講される.演義においては,受講者は問題演習や課題学習に積極的に取り組むことにより,それまでに講義で学んだ事柄の理解を深める. 以下に挙げるのは講義の計画・内容である.各項目には,受講者の理解の程度を確認しながら,【 】で指示した週数を充てる.各項目・小項目の講義の順序は固定したものではなく,担当者の講義方針と受講者の背景や理解の状況に応じて,講義担当者が適切に決める.講義の進め方については適宜,指示をして,受講者が予習をできるように十分に配慮する. 以下の内容を,フィードバック回を含め(試験週を除く)全15回にて行う. 1. 準備 【1週】: 数,集合・写像,論理 2. 実数,極限,連続関数【3〜4週】: 実数の連続性,数列の収束,無限級数* 関数の極限,連続関数とその性質(中間値の定理など) 3. 一変数関数の微分法【3〜4週】: 微分係数,一次近似,導関数,合成関数の微分 平均値の定理とその応用 高階導関数,テイラーの定理,無限小,近似値の計算* 4. 一変数関数の積分法【3〜4週】: リーマン積分,連続関数の積分可能性 微分積分学の基本定理,部分積分,置換積分 広義積分,曲線の長さ* なお 5. 重要な関数【3〜4週】: 指数関数,三角関数,対数関数 逆三角関数,ガンマ関数* については必要な箇所で適宜説明を加えるものとする. アステリスク * はオプション |
||||||
(履修要件) |
特になし
|
||||||
(成績評価の方法・観点及び達成度) | 演義担当教員によって平常点(演習への参加状況,課題への取組状況など)から得られた演義成績(30 点満点)をもとに,講義担当教員が期末試験を用いて,演義成績以上,100 点以下の範囲で 評価する. 教員によっては演義以外の平常点(レポート、中間試験などによるもの)を参考にすることもある.詳細は授業中に説明する. 本科目の評価が不合格であった履修者のうち,一定の基準以上の成績の者は再試験を受験できる.再試験の概要は KULASIS で履修者に通知する.なお再試験は9月末に実施予定である. |
||||||
(教科書) |
担当教員ごとに指示する.
|
||||||
(参考書等) |
授業中に紹介する
|
||||||
(授業外学習(予習・復習)等) | 予習,復習とともに,演習問題を積極的に解いてみることが必要である. | ||||||
(その他(オフィスアワー等)) | |||||||
微分積分学(講義・演義)A
1T15 (科目名)
Calculus with Exercises A
(英 訳)
|
|
||||||
(群) 自然 (分野(分類)) 数学(基礎) (使用言語) 日本語 | |||||||
(旧群) B群 (単位数) 3 単位 (週コマ数) 2 コマ (授業形態) 講義 | |||||||
(開講年度・ 開講期) 2025・前期 (配当学年) 主として1回生 (対象学生) 理系向 |
|||||||
(曜時限)
水3・金2 (教室) 共北25 |
|||||||
(授業の概要・目的)
微分積分学は,線形代数学と共に現代の科学技術を支える数学の根幹をなす.この科目では,将来の応用に必要な微分積分学の基礎を解説する.
微分積分学(講義・演義)Aでは,高校で学んだ一変数関数の微分積分の理論的な基礎を固めるとともに,さらに進んだ数学的解析の手法を学ぶ. |
|||||||
(到達目標)
一変数関数の微分積分の理論的な基礎を理解すること,ならびに,それを用いた数学解析の手法を修得して応用できるようになることを目標とする.
|
|||||||
(授業計画と内容)
この科目は講義と演義とが一体として構成されている. 演義は原則として隔週で開講される.演義においては,受講者は問題演習や課題学習に積極的に取り組むことにより,それまでに講義で学んだ事柄の理解を深める. 以下に挙げるのは講義の計画・内容である.各項目には,受講者の理解の程度を確認しながら,【 】で指示した週数を充てる.各項目・小項目の講義の順序は固定したものではなく,担当者の講義方針と受講者の背景や理解の状況に応じて,講義担当者が適切に決める.講義の進め方については適宜,指示をして,受講者が予習をできるように十分に配慮する. 以下の内容を,フィードバック回を含め(試験週を除く)全15回にて行う. 1. 準備 【1週】: 数,集合・写像,論理 2. 実数,極限,連続関数【3〜4週】: 実数の連続性,数列の収束,無限級数* 関数の極限,連続関数とその性質(中間値の定理など) 3. 一変数関数の微分法【3〜4週】: 微分係数,一次近似,導関数,合成関数の微分 平均値の定理とその応用 高階導関数,テイラーの定理,無限小,近似値の計算* 4. 一変数関数の積分法【3〜4週】: リーマン積分,連続関数の積分可能性 微分積分学の基本定理,部分積分,置換積分 広義積分,曲線の長さ* なお 5. 重要な関数【3〜4週】: 指数関数,三角関数,対数関数 逆三角関数,ガンマ関数* については必要な箇所で適宜説明を加えるものとする. アステリスク * はオプション |
|||||||
(履修要件)
特になし
|
|||||||
(成績評価の方法・観点及び達成度)
演義担当教員によって平常点(演習への参加状況,課題への取組状況など)から得られた演義成績(30 点満点)をもとに,講義担当教員が期末試験を用いて,演義成績以上,100 点以下の範囲で 評価する.
教員によっては演義以外の平常点(レポート、中間試験などによるもの)を参考にすることもある.詳細は授業中に説明する. 本科目の評価が不合格であった履修者のうち,一定の基準以上の成績の者は再試験を受験できる.再試験の概要は KULASIS で履修者に通知する.なお再試験は9月末に実施予定である. |
|||||||
(教科書)
担当教員ごとに指示する.
|
|||||||
(参考書等)
授業中に紹介する
|
|||||||
(授業外学習(予習・復習)等)
予習,復習とともに,演習問題を積極的に解いてみることが必要である.
|
|||||||
(その他(オフィスアワー等))
|
|||||||
授業の進捗状況や受講生の習熟度などによって「授業計画と内容」,「成績評価の方法」が変更になる場合があります。
(科目名) |
線形代数学(講義・演義)A 1T8
|
(英 訳) | Linear Algebra with Exercises A | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
(担当教員) |
|
||||||||||||
(群) | 自然 | ||||||||||||
(分野(分類)) | 数学(基礎) | ||||||||||||
(使用言語) | 日本語 | ||||||||||||
(旧群) | B群 | ||||||||||||
(単位数) | 3 単位 | ||||||||||||
(週コマ数) | 2 コマ | ||||||||||||
(授業形態) | 講義 | ||||||||||||
(開講年度・開講期) | 2025・前期 | ||||||||||||
(配当学年) | 主として1回生 | ||||||||||||
(対象学生) | 理系向 | ||||||||||||
(曜時限) | 水3・金1 |
||||||||||||
(教室) | 共北26 | ||||||||||||
(授業の概要・目的) | 線形代数学は,微分積分学と共に現代の科学技術を支える数学の根幹をなす.この科目では将来の応用に必要な線形代数学の基礎を解説する. 線形代数学(講義・演義)Aでは行列や連立一次方程式の具体的な取り扱いに習熟することを目的とする. |
||||||||||||
(到達目標) | ベクトル,行列や連立一次方程式の具体的な取り扱いに習熟することを目標とする. | ||||||||||||
(授業計画と内容) | この科目は講義と演義とが一体となって構成されている. 演義は原則として隔週で開講される.演義においては,受講者は問題演習や課題学習に積極的に取り組むことにより,それまでに講義で学んだ事柄の理解を深める. 以下に挙げるのは講義の計画・内容である.各項目には,受講者の理解の程度を確認しながら,【 】で指示した週数を充てる.各項目・小項目の講義の順序は固定したものではなく,担当者の講義方針と受講者の背景や理解の状況に応じて,講義担当者が適切に決める.講義の進め方については適宜,指示をして,受講者が予習をできるように十分に配慮する. 以下の内容を,フィードバック回を含め(試験週を除く)全15回にて行う. 1. 準備【1週】: 数,集合・写像,論理 2.平面ベクトルと2次行列【2週】: ベクトルと行列の計算,逆行列,ケーリー・ハミルトンの定理 平面の一次変換(回転,折り返しなど)と行列 連立一次方程式と行列 3.数ベクトル空間と行列【5〜7週】: (i) 数ベクトル,数ベクトルの演算,一次結合 (ii) 行列,行列の演算(和,スカラー倍,積) (iii) 行列の例 (iv) 行列の基本変形,階数,正則行列,逆行列 (v) 連立一次方程式の解法,解の構造* うち (i)-(iii) を2〜3週,(iv),(v) を3〜4週で扱う. 4.行列式【4〜6週】: (i) 置換と符号,行列式の定義と性質(基本変形,積,転置との関係など) (ii) 行列式の展開,クラメルの公式,行列式と体積 うち (i) を3〜4週,(ii) を1〜2週で扱う. アステリスク * はオプション |
||||||||||||
(履修要件) |
特になし
|
||||||||||||
(成績評価の方法・観点及び達成度) | 演義担当教員によって平常点(演習への参加状況,課題への取組状況など)から得られた演義成績(30 点満点)をもとに,講義担当教員が期末試験を用いて,演義成績以上,100 点以下の範囲で 評価する. 教員によっては演義以外の平常点(レポート、中間試験などによるもの)を参考にすることもある.詳細は授業中に説明する. 本科目の評価が不合格であった履修者のうち,一定の基準以上の成績の者は再試験を受験できる.再試験の概要は KULASIS で履修者に通知する.なお再試験は9月末に実施予定である. |
||||||||||||
(教科書) |
担当教員ごとに指示する.
|
||||||||||||
(参考書等) |
授業中に紹介する
|
||||||||||||
(授業外学習(予習・復習)等) | 予習,復習とともに,演習問題を積極的に解いてみることが必要である. | ||||||||||||
(その他(オフィスアワー等)) | |||||||||||||
線形代数学(講義・演義)A
1T8 (科目名)
Linear Algebra with Exercises A
(英 訳)
|
|
|||||||||
(群) 自然 (分野(分類)) 数学(基礎) (使用言語) 日本語 | ||||||||||
(旧群) B群 (単位数) 3 単位 (週コマ数) 2 コマ (授業形態) 講義 | ||||||||||
(開講年度・ 開講期) 2025・前期 (配当学年) 主として1回生 (対象学生) 理系向 |
||||||||||
(曜時限)
水3・金1 (教室) 共北26 |
||||||||||
(授業の概要・目的)
線形代数学は,微分積分学と共に現代の科学技術を支える数学の根幹をなす.この科目では将来の応用に必要な線形代数学の基礎を解説する.
線形代数学(講義・演義)Aでは行列や連立一次方程式の具体的な取り扱いに習熟することを目的とする. |
||||||||||
(到達目標)
ベクトル,行列や連立一次方程式の具体的な取り扱いに習熟することを目標とする.
|
||||||||||
(授業計画と内容)
この科目は講義と演義とが一体となって構成されている. 演義は原則として隔週で開講される.演義においては,受講者は問題演習や課題学習に積極的に取り組むことにより,それまでに講義で学んだ事柄の理解を深める. 以下に挙げるのは講義の計画・内容である.各項目には,受講者の理解の程度を確認しながら,【 】で指示した週数を充てる.各項目・小項目の講義の順序は固定したものではなく,担当者の講義方針と受講者の背景や理解の状況に応じて,講義担当者が適切に決める.講義の進め方については適宜,指示をして,受講者が予習をできるように十分に配慮する. 以下の内容を,フィードバック回を含め(試験週を除く)全15回にて行う. 1. 準備【1週】: 数,集合・写像,論理 2.平面ベクトルと2次行列【2週】: ベクトルと行列の計算,逆行列,ケーリー・ハミルトンの定理 平面の一次変換(回転,折り返しなど)と行列 連立一次方程式と行列 3.数ベクトル空間と行列【5〜7週】: (i) 数ベクトル,数ベクトルの演算,一次結合 (ii) 行列,行列の演算(和,スカラー倍,積) (iii) 行列の例 (iv) 行列の基本変形,階数,正則行列,逆行列 (v) 連立一次方程式の解法,解の構造* うち (i)-(iii) を2〜3週,(iv),(v) を3〜4週で扱う. 4.行列式【4〜6週】: (i) 置換と符号,行列式の定義と性質(基本変形,積,転置との関係など) (ii) 行列式の展開,クラメルの公式,行列式と体積 うち (i) を3〜4週,(ii) を1〜2週で扱う. アステリスク * はオプション |
||||||||||
(履修要件)
特になし
|
||||||||||
(成績評価の方法・観点及び達成度)
演義担当教員によって平常点(演習への参加状況,課題への取組状況など)から得られた演義成績(30 点満点)をもとに,講義担当教員が期末試験を用いて,演義成績以上,100 点以下の範囲で 評価する.
教員によっては演義以外の平常点(レポート、中間試験などによるもの)を参考にすることもある.詳細は授業中に説明する. 本科目の評価が不合格であった履修者のうち,一定の基準以上の成績の者は再試験を受験できる.再試験の概要は KULASIS で履修者に通知する.なお再試験は9月末に実施予定である. |
||||||||||
(教科書)
担当教員ごとに指示する.
|
||||||||||
(参考書等)
授業中に紹介する
|
||||||||||
(授業外学習(予習・復習)等)
予習,復習とともに,演習問題を積極的に解いてみることが必要である.
|
||||||||||
(その他(オフィスアワー等))
|
||||||||||
授業の進捗状況や受講生の習熟度などによって「授業計画と内容」,「成績評価の方法」が変更になる場合があります。
(科目名) |
線形代数学(講義・演義)A 1T11
|
(英 訳) | Linear Algebra with Exercises A | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
(担当教員) |
|
||||||||||||
(群) | 自然 | ||||||||||||
(分野(分類)) | 数学(基礎) | ||||||||||||
(使用言語) | 日本語 | ||||||||||||
(旧群) | B群 | ||||||||||||
(単位数) | 3 単位 | ||||||||||||
(週コマ数) | 2 コマ | ||||||||||||
(授業形態) | 講義 | ||||||||||||
(開講年度・開講期) | 2025・前期 | ||||||||||||
(配当学年) | 主として1回生 | ||||||||||||
(対象学生) | 理系向 | ||||||||||||
(曜時限) | 水3・金2 |
||||||||||||
(教室) | 共北26 | ||||||||||||
(授業の概要・目的) | 線形代数学は,微分積分学と共に現代の科学技術を支える数学の根幹をなす.この科目では将来の応用に必要な線形代数学の基礎を解説する. 線形代数学(講義・演義)Aでは行列や連立一次方程式の具体的な取り扱いに習熟することを目的とする. |
||||||||||||
(到達目標) | ベクトル,行列や連立一次方程式の具体的な取り扱いに習熟することを目標とする. | ||||||||||||
(授業計画と内容) | この科目は講義と演義とが一体となって構成されている. 演義は原則として隔週で開講される.演義においては,受講者は問題演習や課題学習に積極的に取り組むことにより,それまでに講義で学んだ事柄の理解を深める. 以下に挙げるのは講義の計画・内容である.各項目には,受講者の理解の程度を確認しながら,【 】で指示した週数を充てる.各項目・小項目の講義の順序は固定したものではなく,担当者の講義方針と受講者の背景や理解の状況に応じて,講義担当者が適切に決める.講義の進め方については適宜,指示をして,受講者が予習をできるように十分に配慮する. 以下の内容を,フィードバック回を含め(試験週を除く)全15回にて行う. 1. 準備【1週】: 数,集合・写像,論理 2.平面ベクトルと2次行列【2週】: ベクトルと行列の計算,逆行列,ケーリー・ハミルトンの定理 平面の一次変換(回転,折り返しなど)と行列 連立一次方程式と行列 3.数ベクトル空間と行列【5〜7週】: (i) 数ベクトル,数ベクトルの演算,一次結合 (ii) 行列,行列の演算(和,スカラー倍,積) (iii) 行列の例 (iv) 行列の基本変形,階数,正則行列,逆行列 (v) 連立一次方程式の解法,解の構造* うち (i)-(iii) を2〜3週,(iv),(v) を3〜4週で扱う. 4.行列式【4〜6週】: (i) 置換と符号,行列式の定義と性質(基本変形,積,転置との関係など) (ii) 行列式の展開,クラメルの公式,行列式と体積 うち (i) を3〜4週,(ii) を1〜2週で扱う. アステリスク * はオプション |
||||||||||||
(履修要件) |
特になし
|
||||||||||||
(成績評価の方法・観点及び達成度) | 演義担当教員によって平常点(演習への参加状況,課題への取組状況など)から得られた演義成績(30 点満点)をもとに,講義担当教員が期末試験を用いて,演義成績以上,100 点以下の範囲で 評価する. 教員によっては演義以外の平常点(レポート、中間試験などによるもの)を参考にすることもある.詳細は授業中に説明する. 本科目の評価が不合格であった履修者のうち,一定の基準以上の成績の者は再試験を受験できる.再試験の概要は KULASIS で履修者に通知する.なお再試験は9月末に実施予定である. |
||||||||||||
(教科書) |
担当教員ごとに指示する.
|
||||||||||||
(参考書等) |
授業中に紹介する
|
||||||||||||
(授業外学習(予習・復習)等) | 予習,復習とともに,演習問題を積極的に解いてみることが必要である. | ||||||||||||
(その他(オフィスアワー等)) | |||||||||||||
線形代数学(講義・演義)A
1T11 (科目名)
Linear Algebra with Exercises A
(英 訳)
|
|
|||||||||
(群) 自然 (分野(分類)) 数学(基礎) (使用言語) 日本語 | ||||||||||
(旧群) B群 (単位数) 3 単位 (週コマ数) 2 コマ (授業形態) 講義 | ||||||||||
(開講年度・ 開講期) 2025・前期 (配当学年) 主として1回生 (対象学生) 理系向 |
||||||||||
(曜時限)
水3・金2 (教室) 共北26 |
||||||||||
(授業の概要・目的)
線形代数学は,微分積分学と共に現代の科学技術を支える数学の根幹をなす.この科目では将来の応用に必要な線形代数学の基礎を解説する.
線形代数学(講義・演義)Aでは行列や連立一次方程式の具体的な取り扱いに習熟することを目的とする. |
||||||||||
(到達目標)
ベクトル,行列や連立一次方程式の具体的な取り扱いに習熟することを目標とする.
|
||||||||||
(授業計画と内容)
この科目は講義と演義とが一体となって構成されている. 演義は原則として隔週で開講される.演義においては,受講者は問題演習や課題学習に積極的に取り組むことにより,それまでに講義で学んだ事柄の理解を深める. 以下に挙げるのは講義の計画・内容である.各項目には,受講者の理解の程度を確認しながら,【 】で指示した週数を充てる.各項目・小項目の講義の順序は固定したものではなく,担当者の講義方針と受講者の背景や理解の状況に応じて,講義担当者が適切に決める.講義の進め方については適宜,指示をして,受講者が予習をできるように十分に配慮する. 以下の内容を,フィードバック回を含め(試験週を除く)全15回にて行う. 1. 準備【1週】: 数,集合・写像,論理 2.平面ベクトルと2次行列【2週】: ベクトルと行列の計算,逆行列,ケーリー・ハミルトンの定理 平面の一次変換(回転,折り返しなど)と行列 連立一次方程式と行列 3.数ベクトル空間と行列【5〜7週】: (i) 数ベクトル,数ベクトルの演算,一次結合 (ii) 行列,行列の演算(和,スカラー倍,積) (iii) 行列の例 (iv) 行列の基本変形,階数,正則行列,逆行列 (v) 連立一次方程式の解法,解の構造* うち (i)-(iii) を2〜3週,(iv),(v) を3〜4週で扱う. 4.行列式【4〜6週】: (i) 置換と符号,行列式の定義と性質(基本変形,積,転置との関係など) (ii) 行列式の展開,クラメルの公式,行列式と体積 うち (i) を3〜4週,(ii) を1〜2週で扱う. アステリスク * はオプション |
||||||||||
(履修要件)
特になし
|
||||||||||
(成績評価の方法・観点及び達成度)
演義担当教員によって平常点(演習への参加状況,課題への取組状況など)から得られた演義成績(30 点満点)をもとに,講義担当教員が期末試験を用いて,演義成績以上,100 点以下の範囲で 評価する.
教員によっては演義以外の平常点(レポート、中間試験などによるもの)を参考にすることもある.詳細は授業中に説明する. 本科目の評価が不合格であった履修者のうち,一定の基準以上の成績の者は再試験を受験できる.再試験の概要は KULASIS で履修者に通知する.なお再試験は9月末に実施予定である. |
||||||||||
(教科書)
担当教員ごとに指示する.
|
||||||||||
(参考書等)
授業中に紹介する
|
||||||||||
(授業外学習(予習・復習)等)
予習,復習とともに,演習問題を積極的に解いてみることが必要である.
|
||||||||||
(その他(オフィスアワー等))
|
||||||||||
授業の進捗状況や受講生の習熟度などによって「授業計画と内容」,「成績評価の方法」が変更になる場合があります。
(科目名) |
線形代数学(講義・演義)A 1T14
|
(英 訳) | Linear Algebra with Exercises A | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
(担当教員) |
|
||||||||||||
(群) | 自然 | ||||||||||||
(分野(分類)) | 数学(基礎) | ||||||||||||
(使用言語) | 日本語 | ||||||||||||
(旧群) | B群 | ||||||||||||
(単位数) | 3 単位 | ||||||||||||
(週コマ数) | 2 コマ | ||||||||||||
(授業形態) | 講義 | ||||||||||||
(開講年度・開講期) | 2025・前期 | ||||||||||||
(配当学年) | 主として1回生 | ||||||||||||
(対象学生) | 理系向 | ||||||||||||
(曜時限) | 水3・金1 |
||||||||||||
(教室) | 共北37 | ||||||||||||
(授業の概要・目的) | 線形代数学は,微分積分学と共に現代の科学技術を支える数学の根幹をなす.この科目では将来の応用に必要な線形代数学の基礎を解説する. 線形代数学(講義・演義)Aでは行列や連立一次方程式の具体的な取り扱いに習熟することを目的とする. |
||||||||||||
(到達目標) | ベクトル,行列や連立一次方程式の具体的な取り扱いに習熟することを目標とする. | ||||||||||||
(授業計画と内容) | この科目は講義と演義とが一体となって構成されている. 演義は原則として隔週で開講される.演義においては,受講者は問題演習や課題学習に積極的に取り組むことにより,それまでに講義で学んだ事柄の理解を深める. 以下に挙げるのは講義の計画・内容である.各項目には,受講者の理解の程度を確認しながら,【 】で指示した週数を充てる.各項目・小項目の講義の順序は固定したものではなく,担当者の講義方針と受講者の背景や理解の状況に応じて,講義担当者が適切に決める.講義の進め方については適宜,指示をして,受講者が予習をできるように十分に配慮する. 以下の内容を,フィードバック回を含め(試験週を除く)全15回にて行う. 1. 準備【1週】: 数,集合・写像,論理 2.平面ベクトルと2次行列【2週】: ベクトルと行列の計算,逆行列,ケーリー・ハミルトンの定理 平面の一次変換(回転,折り返しなど)と行列 連立一次方程式と行列 3.数ベクトル空間と行列【5〜7週】: (i) 数ベクトル,数ベクトルの演算,一次結合 (ii) 行列,行列の演算(和,スカラー倍,積) (iii) 行列の例 (iv) 行列の基本変形,階数,正則行列,逆行列 (v) 連立一次方程式の解法,解の構造* うち (i)-(iii) を2〜3週,(iv),(v) を3〜4週で扱う. 4.行列式【4〜6週】: (i) 置換と符号,行列式の定義と性質(基本変形,積,転置との関係など) (ii) 行列式の展開,クラメルの公式,行列式と体積 うち (i) を3〜4週,(ii) を1〜2週で扱う. アステリスク * はオプション |
||||||||||||
(履修要件) |
特になし
|
||||||||||||
(成績評価の方法・観点及び達成度) | 演義担当教員によって平常点(演習への参加状況,課題への取組状況など)から得られた演義成績(30 点満点)をもとに,講義担当教員が期末試験を用いて,演義成績以上,100 点以下の範囲で 評価する. 教員によっては演義以外の平常点(レポート、中間試験などによるもの)を参考にすることもある.詳細は授業中に説明する. 本科目の評価が不合格であった履修者のうち,一定の基準以上の成績の者は再試験を受験できる.再試験の概要は KULASIS で履修者に通知する.なお再試験は9月末に実施予定である. |
||||||||||||
(教科書) |
担当教員ごとに指示する.
|
||||||||||||
(参考書等) |
授業中に紹介する
|
||||||||||||
(授業外学習(予習・復習)等) | 予習,復習とともに,演習問題を積極的に解いてみることが必要である. | ||||||||||||
(その他(オフィスアワー等)) | |||||||||||||
線形代数学(講義・演義)A
1T14 (科目名)
Linear Algebra with Exercises A
(英 訳)
|
|
|||||||||
(群) 自然 (分野(分類)) 数学(基礎) (使用言語) 日本語 | ||||||||||
(旧群) B群 (単位数) 3 単位 (週コマ数) 2 コマ (授業形態) 講義 | ||||||||||
(開講年度・ 開講期) 2025・前期 (配当学年) 主として1回生 (対象学生) 理系向 |
||||||||||
(曜時限)
水3・金1 (教室) 共北37 |
||||||||||
(授業の概要・目的)
線形代数学は,微分積分学と共に現代の科学技術を支える数学の根幹をなす.この科目では将来の応用に必要な線形代数学の基礎を解説する.
線形代数学(講義・演義)Aでは行列や連立一次方程式の具体的な取り扱いに習熟することを目的とする. |
||||||||||
(到達目標)
ベクトル,行列や連立一次方程式の具体的な取り扱いに習熟することを目標とする.
|
||||||||||
(授業計画と内容)
この科目は講義と演義とが一体となって構成されている. 演義は原則として隔週で開講される.演義においては,受講者は問題演習や課題学習に積極的に取り組むことにより,それまでに講義で学んだ事柄の理解を深める. 以下に挙げるのは講義の計画・内容である.各項目には,受講者の理解の程度を確認しながら,【 】で指示した週数を充てる.各項目・小項目の講義の順序は固定したものではなく,担当者の講義方針と受講者の背景や理解の状況に応じて,講義担当者が適切に決める.講義の進め方については適宜,指示をして,受講者が予習をできるように十分に配慮する. 以下の内容を,フィードバック回を含め(試験週を除く)全15回にて行う. 1. 準備【1週】: 数,集合・写像,論理 2.平面ベクトルと2次行列【2週】: ベクトルと行列の計算,逆行列,ケーリー・ハミルトンの定理 平面の一次変換(回転,折り返しなど)と行列 連立一次方程式と行列 3.数ベクトル空間と行列【5〜7週】: (i) 数ベクトル,数ベクトルの演算,一次結合 (ii) 行列,行列の演算(和,スカラー倍,積) (iii) 行列の例 (iv) 行列の基本変形,階数,正則行列,逆行列 (v) 連立一次方程式の解法,解の構造* うち (i)-(iii) を2〜3週,(iv),(v) を3〜4週で扱う. 4.行列式【4〜6週】: (i) 置換と符号,行列式の定義と性質(基本変形,積,転置との関係など) (ii) 行列式の展開,クラメルの公式,行列式と体積 うち (i) を3〜4週,(ii) を1〜2週で扱う. アステリスク * はオプション |
||||||||||
(履修要件)
特になし
|
||||||||||
(成績評価の方法・観点及び達成度)
演義担当教員によって平常点(演習への参加状況,課題への取組状況など)から得られた演義成績(30 点満点)をもとに,講義担当教員が期末試験を用いて,演義成績以上,100 点以下の範囲で 評価する.
教員によっては演義以外の平常点(レポート、中間試験などによるもの)を参考にすることもある.詳細は授業中に説明する. 本科目の評価が不合格であった履修者のうち,一定の基準以上の成績の者は再試験を受験できる.再試験の概要は KULASIS で履修者に通知する.なお再試験は9月末に実施予定である. |
||||||||||
(教科書)
担当教員ごとに指示する.
|
||||||||||
(参考書等)
授業中に紹介する
|
||||||||||
(授業外学習(予習・復習)等)
予習,復習とともに,演習問題を積極的に解いてみることが必要である.
|
||||||||||
(その他(オフィスアワー等))
|
||||||||||
授業の進捗状況や受講生の習熟度などによって「授業計画と内容」,「成績評価の方法」が変更になる場合があります。
(科目名) |
線形代数学(講義・演義)A 1T16
|
(英 訳) | Linear Algebra with Exercises A | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
(担当教員) |
|
||||||||||||
(群) | 自然 | ||||||||||||
(分野(分類)) | 数学(基礎) | ||||||||||||
(使用言語) | 日本語 | ||||||||||||
(旧群) | B群 | ||||||||||||
(単位数) | 3 単位 | ||||||||||||
(週コマ数) | 2 コマ | ||||||||||||
(授業形態) | 講義 | ||||||||||||
(開講年度・開講期) | 2025・前期 | ||||||||||||
(配当学年) | 主として1回生 | ||||||||||||
(対象学生) | 理系向 | ||||||||||||
(曜時限) | 水3・金2 |
||||||||||||
(教室) | 共北37 | ||||||||||||
(授業の概要・目的) | 線形代数学は,微分積分学と共に現代の科学技術を支える数学の根幹をなす.この科目では将来の応用に必要な線形代数学の基礎を解説する. 線形代数学(講義・演義)Aでは行列や連立一次方程式の具体的な取り扱いに習熟することを目的とする. |
||||||||||||
(到達目標) | ベクトル,行列や連立一次方程式の具体的な取り扱いに習熟することを目標とする. | ||||||||||||
(授業計画と内容) | この科目は講義と演義とが一体となって構成されている. 演義は原則として隔週で開講される.演義においては,受講者は問題演習や課題学習に積極的に取り組むことにより,それまでに講義で学んだ事柄の理解を深める. 以下に挙げるのは講義の計画・内容である.各項目には,受講者の理解の程度を確認しながら,【 】で指示した週数を充てる.各項目・小項目の講義の順序は固定したものではなく,担当者の講義方針と受講者の背景や理解の状況に応じて,講義担当者が適切に決める.講義の進め方については適宜,指示をして,受講者が予習をできるように十分に配慮する. 以下の内容を,フィードバック回を含め(試験週を除く)全15回にて行う. 1. 準備【1週】: 数,集合・写像,論理 2.平面ベクトルと2次行列【2週】: ベクトルと行列の計算,逆行列,ケーリー・ハミルトンの定理 平面の一次変換(回転,折り返しなど)と行列 連立一次方程式と行列 3.数ベクトル空間と行列【5〜7週】: (i) 数ベクトル,数ベクトルの演算,一次結合 (ii) 行列,行列の演算(和,スカラー倍,積) (iii) 行列の例 (iv) 行列の基本変形,階数,正則行列,逆行列 (v) 連立一次方程式の解法,解の構造* うち (i)-(iii) を2〜3週,(iv),(v) を3〜4週で扱う. 4.行列式【4〜6週】: (i) 置換と符号,行列式の定義と性質(基本変形,積,転置との関係など) (ii) 行列式の展開,クラメルの公式,行列式と体積 うち (i) を3〜4週,(ii) を1〜2週で扱う. アステリスク * はオプション |
||||||||||||
(履修要件) |
特になし
|
||||||||||||
(成績評価の方法・観点及び達成度) | 演義担当教員によって平常点(演習への参加状況,課題への取組状況など)から得られた演義成績(30 点満点)をもとに,講義担当教員が期末試験を用いて,演義成績以上,100 点以下の範囲で 評価する. 教員によっては演義以外の平常点(レポート、中間試験などによるもの)を参考にすることもある.詳細は授業中に説明する. 本科目の評価が不合格であった履修者のうち,一定の基準以上の成績の者は再試験を受験できる.再試験の概要は KULASIS で履修者に通知する.なお再試験は9月末に実施予定である. |
||||||||||||
(教科書) |
担当教員ごとに指示する.
|
||||||||||||
(参考書等) |
授業中に紹介する
|
||||||||||||
(授業外学習(予習・復習)等) | 予習,復習とともに,演習問題を積極的に解いてみることが必要である. | ||||||||||||
(その他(オフィスアワー等)) | |||||||||||||
線形代数学(講義・演義)A
1T16 (科目名)
Linear Algebra with Exercises A
(英 訳)
|
|
|||||||||
(群) 自然 (分野(分類)) 数学(基礎) (使用言語) 日本語 | ||||||||||
(旧群) B群 (単位数) 3 単位 (週コマ数) 2 コマ (授業形態) 講義 | ||||||||||
(開講年度・ 開講期) 2025・前期 (配当学年) 主として1回生 (対象学生) 理系向 |
||||||||||
(曜時限)
水3・金2 (教室) 共北37 |
||||||||||
(授業の概要・目的)
線形代数学は,微分積分学と共に現代の科学技術を支える数学の根幹をなす.この科目では将来の応用に必要な線形代数学の基礎を解説する.
線形代数学(講義・演義)Aでは行列や連立一次方程式の具体的な取り扱いに習熟することを目的とする. |
||||||||||
(到達目標)
ベクトル,行列や連立一次方程式の具体的な取り扱いに習熟することを目標とする.
|
||||||||||
(授業計画と内容)
この科目は講義と演義とが一体となって構成されている. 演義は原則として隔週で開講される.演義においては,受講者は問題演習や課題学習に積極的に取り組むことにより,それまでに講義で学んだ事柄の理解を深める. 以下に挙げるのは講義の計画・内容である.各項目には,受講者の理解の程度を確認しながら,【 】で指示した週数を充てる.各項目・小項目の講義の順序は固定したものではなく,担当者の講義方針と受講者の背景や理解の状況に応じて,講義担当者が適切に決める.講義の進め方については適宜,指示をして,受講者が予習をできるように十分に配慮する. 以下の内容を,フィードバック回を含め(試験週を除く)全15回にて行う. 1. 準備【1週】: 数,集合・写像,論理 2.平面ベクトルと2次行列【2週】: ベクトルと行列の計算,逆行列,ケーリー・ハミルトンの定理 平面の一次変換(回転,折り返しなど)と行列 連立一次方程式と行列 3.数ベクトル空間と行列【5〜7週】: (i) 数ベクトル,数ベクトルの演算,一次結合 (ii) 行列,行列の演算(和,スカラー倍,積) (iii) 行列の例 (iv) 行列の基本変形,階数,正則行列,逆行列 (v) 連立一次方程式の解法,解の構造* うち (i)-(iii) を2〜3週,(iv),(v) を3〜4週で扱う. 4.行列式【4〜6週】: (i) 置換と符号,行列式の定義と性質(基本変形,積,転置との関係など) (ii) 行列式の展開,クラメルの公式,行列式と体積 うち (i) を3〜4週,(ii) を1〜2週で扱う. アステリスク * はオプション |
||||||||||
(履修要件)
特になし
|
||||||||||
(成績評価の方法・観点及び達成度)
演義担当教員によって平常点(演習への参加状況,課題への取組状況など)から得られた演義成績(30 点満点)をもとに,講義担当教員が期末試験を用いて,演義成績以上,100 点以下の範囲で 評価する.
教員によっては演義以外の平常点(レポート、中間試験などによるもの)を参考にすることもある.詳細は授業中に説明する. 本科目の評価が不合格であった履修者のうち,一定の基準以上の成績の者は再試験を受験できる.再試験の概要は KULASIS で履修者に通知する.なお再試験は9月末に実施予定である. |
||||||||||
(教科書)
担当教員ごとに指示する.
|
||||||||||
(参考書等)
授業中に紹介する
|
||||||||||
(授業外学習(予習・復習)等)
予習,復習とともに,演習問題を積極的に解いてみることが必要である.
|
||||||||||
(その他(オフィスアワー等))
|
||||||||||
授業の進捗状況や受講生の習熟度などによって「授業計画と内容」,「成績評価の方法」が変更になる場合があります。
(科目名) |
微分積分学続論I−ベクトル解析 2T17, 2T18, 2T19
|
(英 訳) | Advanced Calculus I - Vector Calculus | ||||
---|---|---|---|---|---|---|---|
(担当教員) |
|
||||||
(群) | 自然 | ||||||
(分野(分類)) | 数学(発展) | ||||||
(使用言語) | 日本語 | ||||||
(旧群) | B群 | ||||||
(単位数) | 2 単位 | ||||||
(週コマ数) | 1 コマ | ||||||
(授業形態) | 講義 | ||||||
(開講年度・開講期) | 2025・前期 | ||||||
(配当学年) | 主として2回生 | ||||||
(対象学生) | 理系向 | ||||||
(曜時限) | 水4 |
||||||
(教室) | 共東31 | ||||||
(授業の概要・目的) | 多変数関数の微分積分学は,数学の諸分野のみならず,物理学,工学等の広い領域の共通の基礎である. この授業では,「微分積分学(講義・演義)A・B」および「線形代数学(講義・演義)A・B」,または「微分積分学A・B」および「線形代数学A・B」を前提として,多変数微分積分学の理解を深めると同時に,ベクトル解析の基本的概念を具体的な例と共に解説する. |
||||||
(到達目標) | 多変数関数の微分積分の理解を深める.また平面および空間のベクトル場の演算や線積分・面積分の意味を理解する.さらに,これらを活用する能力を身につける. | ||||||
(授業計画と内容) | 以下の各項目について講述する.各項目には,受講者の理解の程度を確認しながら,【 】で指示した週数を充てる.各項目・小項目の講義の順序は固定したものではなく,担当者の講義方針と受講者の背景や理解の状況に応じて,講義担当者が適切に決める.講義の進め方については適宜,指示をして,受講者が予習をできるように十分に配慮する. 以下の内容を,フィードバック回を含め(試験週を除く)全15回にて行う. 1.ユークリッド空間のベクトル場とポテンシャル【4〜5週】: ベクトルの演算(内積,外積) ベクトル場 ベクトル場の演算(勾配,回転,発散など) スカラーポテンシャル, ベクトルポテンシャル 2.線積分と面積分【6〜7週】: 曲線の長さ,曲面積 線積分,面積分 積分定理(ガウスの発散定理,グリーンの公式,ストークスの定理) なお上記の項目を学習する際には, 3.多変数関数の微積分【3〜5週】: 陰関数定理,逆関数定理 重積分,変数変換公式 について,必要な箇所で適宜説明を加えるものとする. |
||||||
(履修要件) |
「微分積分学(講義・演義)A・B」および「線形代数学(講義・演義)A・B」,または「微分積分学A・B」および「線形代数学A・B」の履修を前提とする。
|
||||||
(成績評価の方法・観点及び達成度) | 主として定期試験による(詳しくは担当教員毎に授業中に指示する)。 | ||||||
(教科書) |
担当教員ごとに指示する。
|
||||||
(参考書等) |
授業中に紹介する
|
||||||
(授業外学習(予習・復習)等) | 予習・復習とともに,演習問題を積極的に解いてみることが必要である. | ||||||
(その他(オフィスアワー等)) | |||||||
微分積分学続論I−ベクトル解析
2T17, 2T18, 2T19 (科目名)
Advanced Calculus I - Vector Calculus
(英 訳)
|
|
||||||
(群) 自然 (分野(分類)) 数学(発展) (使用言語) 日本語 | |||||||
(旧群) B群 (単位数) 2 単位 (週コマ数) 1 コマ (授業形態) 講義 | |||||||
(開講年度・ 開講期) 2025・前期 (配当学年) 主として2回生 (対象学生) 理系向 |
|||||||
(曜時限)
水4 (教室) 共東31 |
|||||||
(授業の概要・目的)
多変数関数の微分積分学は,数学の諸分野のみならず,物理学,工学等の広い領域の共通の基礎である.
この授業では,「微分積分学(講義・演義)A・B」および「線形代数学(講義・演義)A・B」,または「微分積分学A・B」および「線形代数学A・B」を前提として,多変数微分積分学の理解を深めると同時に,ベクトル解析の基本的概念を具体的な例と共に解説する. |
|||||||
(到達目標)
多変数関数の微分積分の理解を深める.また平面および空間のベクトル場の演算や線積分・面積分の意味を理解する.さらに,これらを活用する能力を身につける.
|
|||||||
(授業計画と内容)
以下の各項目について講述する.各項目には,受講者の理解の程度を確認しながら,【 】で指示した週数を充てる.各項目・小項目の講義の順序は固定したものではなく,担当者の講義方針と受講者の背景や理解の状況に応じて,講義担当者が適切に決める.講義の進め方については適宜,指示をして,受講者が予習をできるように十分に配慮する. 以下の内容を,フィードバック回を含め(試験週を除く)全15回にて行う. 1.ユークリッド空間のベクトル場とポテンシャル【4〜5週】: ベクトルの演算(内積,外積) ベクトル場 ベクトル場の演算(勾配,回転,発散など) スカラーポテンシャル, ベクトルポテンシャル 2.線積分と面積分【6〜7週】: 曲線の長さ,曲面積 線積分,面積分 積分定理(ガウスの発散定理,グリーンの公式,ストークスの定理) なお上記の項目を学習する際には, 3.多変数関数の微積分【3〜5週】: 陰関数定理,逆関数定理 重積分,変数変換公式 について,必要な箇所で適宜説明を加えるものとする. |
|||||||
(履修要件)
「微分積分学(講義・演義)A・B」および「線形代数学(講義・演義)A・B」,または「微分積分学A・B」および「線形代数学A・B」の履修を前提とする。
|
|||||||
(成績評価の方法・観点及び達成度)
主として定期試験による(詳しくは担当教員毎に授業中に指示する)。
|
|||||||
(教科書)
担当教員ごとに指示する。
|
|||||||
(参考書等)
授業中に紹介する
|
|||||||
(授業外学習(予習・復習)等)
予習・復習とともに,演習問題を積極的に解いてみることが必要である.
|
|||||||
(その他(オフィスアワー等))
|
|||||||
授業の進捗状況や受講生の習熟度などによって「授業計画と内容」,「成績評価の方法」が変更になる場合があります。
(科目名) |
微分積分学(講義・演義)A 1H1, 1H2, 1H3
|
(英 訳) | Calculus with Exercises A | ||||
---|---|---|---|---|---|---|---|
(担当教員) |
|
||||||
(群) | 自然 | ||||||
(分野(分類)) | 数学(基礎) | ||||||
(使用言語) | 日本語 | ||||||
(旧群) | B群 | ||||||
(単位数) | 3 単位 | ||||||
(週コマ数) | 2 コマ | ||||||
(授業形態) | 講義 | ||||||
(開講年度・開講期) | 2025・前期 | ||||||
(配当学年) | 主として1回生 | ||||||
(対象学生) | 理系向 | ||||||
(曜時限) | 水4・木2 |
||||||
(教室) | 共南01 | ||||||
(授業の概要・目的) | 微分積分学は,線形代数学と共に現代の科学技術を支える数学の根幹をなす.この科目では,将来の応用に必要な微分積分学の基礎を解説する. 微分積分学(講義・演義)Aでは,高校で学んだ一変数関数の微分積分の理論的な基礎を固めるとともに,さらに進んだ数学的解析の手法を学ぶ. |
||||||
(到達目標) | 一変数関数の微分積分の理論的な基礎を理解すること,ならびに,それを用いた数学解析の手法を修得して応用できるようになることを目標とする. | ||||||
(授業計画と内容) | この科目は講義と演義とが一体として構成されている. 演義は原則として隔週で開講される.演義においては,受講者は問題演習や課題学習に積極的に取り組むことにより,それまでに講義で学んだ事柄の理解を深める. 以下に挙げるのは講義の計画・内容である.各項目には,受講者の理解の程度を確認しながら,【 】で指示した週数を充てる.各項目・小項目の講義の順序は固定したものではなく,担当者の講義方針と受講者の背景や理解の状況に応じて,講義担当者が適切に決める.講義の進め方については適宜,指示をして,受講者が予習をできるように十分に配慮する. 以下の内容を,フィードバック回を含め(試験週を除く)全15回にて行う. 1. 準備 【1週】: 数,集合・写像,論理 2. 実数,極限,連続関数【3〜4週】: 実数の連続性,数列の収束,無限級数* 関数の極限,連続関数とその性質(中間値の定理など) 3. 一変数関数の微分法【3〜4週】: 微分係数,一次近似,導関数,合成関数の微分 平均値の定理とその応用 高階導関数,テイラーの定理,無限小,近似値の計算* 4. 一変数関数の積分法【3〜4週】: リーマン積分,連続関数の積分可能性 微分積分学の基本定理,部分積分,置換積分 広義積分,曲線の長さ* なお 5. 重要な関数【3〜4週】: 指数関数,三角関数,対数関数 逆三角関数,ガンマ関数* については必要な箇所で適宜説明を加えるものとする. アステリスク * はオプション |
||||||
(履修要件) |
特になし
|
||||||
(成績評価の方法・観点及び達成度) | 演義担当教員によって平常点(演習への参加状況,課題への取組状況など)から得られた演義成績(30 点満点)をもとに,講義担当教員が期末試験を用いて,演義成績以上,100 点以下の範囲で 評価する. 教員によっては演義以外の平常点(レポート、中間試験などによるもの)を参考にすることもある.詳細は授業中に説明する. 本科目の評価が不合格であった履修者のうち,一定の基準以上の成績の者は再試験を受験できる.再試験の概要は KULASIS で履修者に通知する.なお再試験は9月末に実施予定である. |
||||||
(教科書) |
担当教員ごとに指示する.
|
||||||
(参考書等) |
授業中に紹介する
|
||||||
(授業外学習(予習・復習)等) | 予習,復習とともに,演習問題を積極的に解いてみることが必要である. | ||||||
(その他(オフィスアワー等)) | |||||||
微分積分学(講義・演義)A
1H1, 1H2, 1H3 (科目名)
Calculus with Exercises A
(英 訳)
|
|
||||||
(群) 自然 (分野(分類)) 数学(基礎) (使用言語) 日本語 | |||||||
(旧群) B群 (単位数) 3 単位 (週コマ数) 2 コマ (授業形態) 講義 | |||||||
(開講年度・ 開講期) 2025・前期 (配当学年) 主として1回生 (対象学生) 理系向 |
|||||||
(曜時限)
水4・木2 (教室) 共南01 |
|||||||
(授業の概要・目的)
微分積分学は,線形代数学と共に現代の科学技術を支える数学の根幹をなす.この科目では,将来の応用に必要な微分積分学の基礎を解説する.
微分積分学(講義・演義)Aでは,高校で学んだ一変数関数の微分積分の理論的な基礎を固めるとともに,さらに進んだ数学的解析の手法を学ぶ. |
|||||||
(到達目標)
一変数関数の微分積分の理論的な基礎を理解すること,ならびに,それを用いた数学解析の手法を修得して応用できるようになることを目標とする.
|
|||||||
(授業計画と内容)
この科目は講義と演義とが一体として構成されている. 演義は原則として隔週で開講される.演義においては,受講者は問題演習や課題学習に積極的に取り組むことにより,それまでに講義で学んだ事柄の理解を深める. 以下に挙げるのは講義の計画・内容である.各項目には,受講者の理解の程度を確認しながら,【 】で指示した週数を充てる.各項目・小項目の講義の順序は固定したものではなく,担当者の講義方針と受講者の背景や理解の状況に応じて,講義担当者が適切に決める.講義の進め方については適宜,指示をして,受講者が予習をできるように十分に配慮する. 以下の内容を,フィードバック回を含め(試験週を除く)全15回にて行う. 1. 準備 【1週】: 数,集合・写像,論理 2. 実数,極限,連続関数【3〜4週】: 実数の連続性,数列の収束,無限級数* 関数の極限,連続関数とその性質(中間値の定理など) 3. 一変数関数の微分法【3〜4週】: 微分係数,一次近似,導関数,合成関数の微分 平均値の定理とその応用 高階導関数,テイラーの定理,無限小,近似値の計算* 4. 一変数関数の積分法【3〜4週】: リーマン積分,連続関数の積分可能性 微分積分学の基本定理,部分積分,置換積分 広義積分,曲線の長さ* なお 5. 重要な関数【3〜4週】: 指数関数,三角関数,対数関数 逆三角関数,ガンマ関数* については必要な箇所で適宜説明を加えるものとする. アステリスク * はオプション |
|||||||
(履修要件)
特になし
|
|||||||
(成績評価の方法・観点及び達成度)
演義担当教員によって平常点(演習への参加状況,課題への取組状況など)から得られた演義成績(30 点満点)をもとに,講義担当教員が期末試験を用いて,演義成績以上,100 点以下の範囲で 評価する.
教員によっては演義以外の平常点(レポート、中間試験などによるもの)を参考にすることもある.詳細は授業中に説明する. 本科目の評価が不合格であった履修者のうち,一定の基準以上の成績の者は再試験を受験できる.再試験の概要は KULASIS で履修者に通知する.なお再試験は9月末に実施予定である. |
|||||||
(教科書)
担当教員ごとに指示する.
|
|||||||
(参考書等)
授業中に紹介する
|
|||||||
(授業外学習(予習・復習)等)
予習,復習とともに,演習問題を積極的に解いてみることが必要である.
|
|||||||
(その他(オフィスアワー等))
|
|||||||
授業の進捗状況や受講生の習熟度などによって「授業計画と内容」,「成績評価の方法」が変更になる場合があります。
(科目名) |
自然現象と数学 1T13, 1T14
|
(英 訳) | Mathematical Description of Natural Phenomena | ||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
(担当教員) |
|
||||||||||||||||||
(群) | 自然 | ||||||||||||||||||
(分野(分類)) | 数学(基礎) | ||||||||||||||||||
(使用言語) | 日本語 | ||||||||||||||||||
(旧群) | B群 | ||||||||||||||||||
(単位数) | 2 単位 | ||||||||||||||||||
(週コマ数) | 1 コマ | ||||||||||||||||||
(授業形態) | 講義 | ||||||||||||||||||
(開講年度・開講期) | 2025・前期 | ||||||||||||||||||
(配当学年) | 主として1回生 | ||||||||||||||||||
(対象学生) | 理系向 | ||||||||||||||||||
(曜時限) | 水5 |
||||||||||||||||||
(教室) | 工学部電気総合館1階大講義室(電総大),総合研究9号館1階N1講義室,同2階N2講義室 | ||||||||||||||||||
(授業の概要・目的) | 近年の高等学校の数学教育カリキュラム改訂に伴い,高校の数学と大学に入ってから学ぶ数学との間に以前より大きなギャップが生じている.そのため,工学で必要となる対象の把握やその根底にある原理の把握がより困難になってきている.微分方程式による自然現象の把握と解析などはその重要な一例である.このような事情を踏まえて,本科目ではまず高校の数学と大学の数学との間にある基本的な考え方や手法の差を埋めることを目的とし,さらに工学に現れる現象がいかに微分方程式を用いて有用に記述,解析され得るかを学習する. 具体例として電気電子工学分野の基本である電気回路を主に用いる.正弦波外力に対する線形システムの応答を解析するための複素振幅(フェーザ)に関して詳しく述べる.クラス別講義,演習,実験,少人数ディスカッションなどを組み合わせて理解を深める. |
||||||||||||||||||
(到達目標) | ・1階の線形微分方程式の解としての指数関数を理解する. ・2階の線形微分方程式とニュートンの運動方程式の関係を理解し,その解である三角関数とばねの振動や回転運動との関連について理解する. ・コイル,コンデンサ,抵抗と電源からなる電気回路が線形微分方程式で記述できることを理解し,それを解く方法を習得する. ・正弦波を外力とする線形微分方程式の,過渡解と正弦波定常解について理解する. ・複素振幅(フェーザ)・複素インピーダンス・複素電力について理解する. |
||||||||||||||||||
(授業計画と内容) | 上記の目標を達成するため,以下の内容について講義する. 1.集合と写像 2.微積分の考え方 3.自然対数の底 e とは 4.複素数と指数関数,対数関数,三角関数 5.微分方程式と現象のモデル化 具体的な授業計画は以下のとおりである. ◆微分方程式と指数関数:(3回) 漸化式を連続化することで微分方程式を導入する.最も基本的な1階の線形微分方程式の解として指数関数が現れることを示し,いくつかの自然現象との関連を調べる.自然対数の底 e の意味についても考える.つぎに、2階の線形微分方程式とニュートンの運動方程式の関係を述べ,その解である三角関数とばねの振動や回転運動との関連づけを行う.複素数を引数にもつ指数関数 exp(iωt) と三角関数が本質的に同じものであることを学ぶ.そこでの鍵となるオイラーの公式についても学ぶ. ◆電気回路と微分方程式:(2回) コイル,コンデンサ,抵抗と電源からなる回路が線形微分方程式で記述できることを示す.いくつかの簡単な回路に関して,微分方程式を立て,それを解く方法を習得する. ◆卓上測定器を用いた微分方程式に関する実験:(3回) 信号発生器やオシロスコープなどの機能を兼ね備えた卓上測定器 Analog Discovery 2 を用いた実験を行う.抵抗・コンデンサ・コイルからなるRC回路およびRL回路の過渡応答や定常応答などの特性を測定し、微分方程式と物理現象の関係を理解するとともに基本的な電気回路の計測法を修得する. ◆非同次線形微分方程式:(2回) 非同次の微分方程式に対する同次解,特解,一般解などの考え方について学ぶ. ◆正弦波を外力とする線形微分方程式:(1回) 理論上,応用上非常に重要な役割をはたす正弦波を外力にもつ微分方程式を扱う.過渡解と正弦波定常解について理解し,後者を扱う手法として複素振幅(フェーザ)を導入する. ◆複素振幅・複素インピーダンス,複素電力:(3回) 複素振幅の導入によって微分方程式が代数的な式に置き換えられ,直流回路と同じような扱い方が可能になることを知る.複素インピーダンスや複素電力の考え方を学習する. ◆フィードバック:(1回) |
||||||||||||||||||
(履修要件) |
特になし
|
||||||||||||||||||
(成績評価の方法・観点及び達成度) | ・授業は教員による講義ならびに各自の演習と,レポート提出ならびに討論を隔週に繰り返す. ・演習については,なによりもまず参加することが重要であるので,毎回出席の確認を行なう. [成績評価]:「レポート提出(60%)」・「討論(40%)」 ・レポートをすべて提出しても欠席や遅刻が多いと不合格とする. ・提出時の討論によって自分で解答を作成していないと認められたレポートは受理しない. |
||||||||||||||||||
(教科書) |
『自然現象と数学(工学部電気電子工学科)』
|
||||||||||||||||||
(参考書等) |
『エース 電気電子回路理論入門』
(朝倉書店)
ISBN:4-254-22746-9
|
||||||||||||||||||
(授業外学習(予習・復習)等) | ・授業前に,教科書の該当範囲を予習すること. ・特に,「測定」については、教科書を用いて事前準備を行うこと. ・授業の際に指定する問題についてレポートを作成して提出し、TAの指導をうけること. |
||||||||||||||||||
(その他(オフィスアワー等)) | ・全体(電気電子工学科・1回生クラス)を2クラスに再編成し、さらに3〜4名の班を構成して授業を実施する.教室が週によって変わるので注意すること. ・初回にスケジュールや班の割り当てについて説明するが,不明な場合は工学部電気電子工学科事務室に尋ねること. ・実験及び演習の際にノートPCを使用する.実験データの処理をするため,表作成ソフト(Excelなど)がインストールされていることが望ましい.他のソフト(Matlab, Octave, Pythonなど)の利用を希望する場合は,それらもインストールしておくとよい. |
||||||||||||||||||
自然現象と数学
1T13, 1T14 (科目名)
Mathematical Description of Natural Phenomena
(英 訳)
|
|
||||||||||||
(群) 自然 (分野(分類)) 数学(基礎) (使用言語) 日本語 | |||||||||||||
(旧群) B群 (単位数) 2 単位 (週コマ数) 1 コマ (授業形態) 講義 | |||||||||||||
(開講年度・ 開講期) 2025・前期 (配当学年) 主として1回生 (対象学生) 理系向 |
|||||||||||||
(曜時限)
水5 (教室) 工学部電気総合館1階大講義室(電総大),総合研究9号館1階N1講義室,同2階N2講義室 |
|||||||||||||
(授業の概要・目的)
近年の高等学校の数学教育カリキュラム改訂に伴い,高校の数学と大学に入ってから学ぶ数学との間に以前より大きなギャップが生じている.そのため,工学で必要となる対象の把握やその根底にある原理の把握がより困難になってきている.微分方程式による自然現象の把握と解析などはその重要な一例である.このような事情を踏まえて,本科目ではまず高校の数学と大学の数学との間にある基本的な考え方や手法の差を埋めることを目的とし,さらに工学に現れる現象がいかに微分方程式を用いて有用に記述,解析され得るかを学習する.
具体例として電気電子工学分野の基本である電気回路を主に用いる.正弦波外力に対する線形システムの応答を解析するための複素振幅(フェーザ)に関して詳しく述べる.クラス別講義,演習,実験,少人数ディスカッションなどを組み合わせて理解を深める. |
|||||||||||||
(到達目標)
・1階の線形微分方程式の解としての指数関数を理解する.
・2階の線形微分方程式とニュートンの運動方程式の関係を理解し,その解である三角関数とばねの振動や回転運動との関連について理解する. ・コイル,コンデンサ,抵抗と電源からなる電気回路が線形微分方程式で記述できることを理解し,それを解く方法を習得する. ・正弦波を外力とする線形微分方程式の,過渡解と正弦波定常解について理解する. ・複素振幅(フェーザ)・複素インピーダンス・複素電力について理解する. |
|||||||||||||
(授業計画と内容)
上記の目標を達成するため,以下の内容について講義する. 1.集合と写像 2.微積分の考え方 3.自然対数の底 e とは 4.複素数と指数関数,対数関数,三角関数 5.微分方程式と現象のモデル化 具体的な授業計画は以下のとおりである. ◆微分方程式と指数関数:(3回) 漸化式を連続化することで微分方程式を導入する.最も基本的な1階の線形微分方程式の解として指数関数が現れることを示し,いくつかの自然現象との関連を調べる.自然対数の底 e の意味についても考える.つぎに、2階の線形微分方程式とニュートンの運動方程式の関係を述べ,その解である三角関数とばねの振動や回転運動との関連づけを行う.複素数を引数にもつ指数関数 exp(iωt) と三角関数が本質的に同じものであることを学ぶ.そこでの鍵となるオイラーの公式についても学ぶ. ◆電気回路と微分方程式:(2回) コイル,コンデンサ,抵抗と電源からなる回路が線形微分方程式で記述できることを示す.いくつかの簡単な回路に関して,微分方程式を立て,それを解く方法を習得する. ◆卓上測定器を用いた微分方程式に関する実験:(3回) 信号発生器やオシロスコープなどの機能を兼ね備えた卓上測定器 Analog Discovery 2 を用いた実験を行う.抵抗・コンデンサ・コイルからなるRC回路およびRL回路の過渡応答や定常応答などの特性を測定し、微分方程式と物理現象の関係を理解するとともに基本的な電気回路の計測法を修得する. ◆非同次線形微分方程式:(2回) 非同次の微分方程式に対する同次解,特解,一般解などの考え方について学ぶ. ◆正弦波を外力とする線形微分方程式:(1回) 理論上,応用上非常に重要な役割をはたす正弦波を外力にもつ微分方程式を扱う.過渡解と正弦波定常解について理解し,後者を扱う手法として複素振幅(フェーザ)を導入する. ◆複素振幅・複素インピーダンス,複素電力:(3回) 複素振幅の導入によって微分方程式が代数的な式に置き換えられ,直流回路と同じような扱い方が可能になることを知る.複素インピーダンスや複素電力の考え方を学習する. ◆フィードバック:(1回) |
|||||||||||||
(履修要件)
特になし
|
|||||||||||||
(成績評価の方法・観点及び達成度)
・授業は教員による講義ならびに各自の演習と,レポート提出ならびに討論を隔週に繰り返す.
・演習については,なによりもまず参加することが重要であるので,毎回出席の確認を行なう. [成績評価]:「レポート提出(60%)」・「討論(40%)」 ・レポートをすべて提出しても欠席や遅刻が多いと不合格とする. ・提出時の討論によって自分で解答を作成していないと認められたレポートは受理しない. |
|||||||||||||
(教科書)
『自然現象と数学(工学部電気電子工学科)』
|
|||||||||||||
(参考書等)
『エース 電気電子回路理論入門』
(朝倉書店)
ISBN:4-254-22746-9
|
|||||||||||||
(授業外学習(予習・復習)等)
・授業前に,教科書の該当範囲を予習すること.
・特に,「測定」については、教科書を用いて事前準備を行うこと. ・授業の際に指定する問題についてレポートを作成して提出し、TAの指導をうけること. |
|||||||||||||
(その他(オフィスアワー等))
・全体(電気電子工学科・1回生クラス)を2クラスに再編成し、さらに3〜4名の班を構成して授業を実施する.教室が週によって変わるので注意すること.
・初回にスケジュールや班の割り当てについて説明するが,不明な場合は工学部電気電子工学科事務室に尋ねること. ・実験及び演習の際にノートPCを使用する.実験データの処理をするため,表作成ソフト(Excelなど)がインストールされていることが望ましい.他のソフト(Matlab, Octave, Pythonなど)の利用を希望する場合は,それらもインストールしておくとよい. |
|||||||||||||