


授業の進捗状況や受講生の習熟度などによって「授業計画と内容」,「成績評価の方法」が変更になる場合があります。
(科目名) |
微分積分学(講義・演義)B 1T14
|
(英 訳) | Calculus with Exercises B | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
(担当教員) |
|
||||||||||||
(群) | 自然 | ||||||||||||
(分野(分類)) | 数学(基礎) | ||||||||||||
(使用言語) | 日本語 | ||||||||||||
(旧群) | B群 | ||||||||||||
(単位数) | 3 単位 | ||||||||||||
(週コマ数) | 2 コマ | ||||||||||||
(授業形態) | 講義 | ||||||||||||
(開講年度・開講期) | 2025・後期 | ||||||||||||
(配当学年) | 主として1回生 | ||||||||||||
(対象学生) | 理系向 | ||||||||||||
(曜時限) | 火3・金1 |
||||||||||||
(教室) | 共北37 | ||||||||||||
(授業の概要・目的) | 微分積分学は,線形代数学と共に現代の科学技術を支える数学の根幹をなす.この科目では,将来の応用に必要な微分積分学の基礎を解説する. 微分積分学(講義・演義)Bでは,微分積分学(講義・演義)Aに続いて一変数関数の微分積分の理解をさらに深めた後に,多変数関数の微分積分について学ぶ. |
||||||||||||
(到達目標) | 一変数および多変数関数の微分積分の理論的な基礎を理解すること,ならびに,それを用いた数学的解析の手法を修得して応用できるようになることを目標とする. | ||||||||||||
(授業計画と内容) | この科目は講義と演義とが一体となって構成されている. 演義は原則として隔週で開講される.演義においては,受講者は問題練習や課題学習に積極的に取り組むことにより,それまでに講義で学んだ事柄の理解を深める. 以下に挙げるのは講義の計画・内容である.各項目には,受講者の理解の程度を確認しながら,【 】で指示した週数を充てる.各項目・小項目の講義の順序は固定したものではなく,担当者の講義方針と受講者の背景や理解の状況に応じて,講義担当者が適切に決める.講義の進め方については適宜,指示をして,受講者が予習をできるように十分に配慮する. 以下の内容を,フィードバック回を含め(試験週を除く)全15回にて行う. 1.級数【3〜5週】: 無限級数(収束の判定法,絶対収束と条件収束) べき級数(収束半径,項別微積分) 関数列・関数項級数*(一様収束,項別微積分) 2.平面および空間の点集合【2週】: 距離,点列の収束,開集合・閉集合 連続関数 3.多変数関数の微分法【4〜5週】: 偏微分,微分(全微分)可能性,一次近似,接平面,勾配ベクトル 合成関数の微分(連鎖律),ヤコビ行列,ヤコビ行列式 テイラーの定理,極値問題 条件付き極値問題(陰関数定理) 4.多変数関数の積分法【4〜5週】: 重積分,累次積分,変数変換公式,面積・体積 広義積分,ガンマ関数とベータ関数 アステリスク * はオプション |
||||||||||||
(履修要件) |
特になし
|
||||||||||||
(成績評価の方法・観点及び達成度) | 演義担当教員によって平常点(演習への参加状況,課題への取組状況など)から得られた演義成績(30 点満点)をもとに,講義担当教員が期末試験を用いて,演義成績以上,100 点以下の範囲で 評価する. 教員によっては演義以外の平常点(レポート、中間試験などによるもの)を参考にすることもある.詳細は授業中に説明する. 本科目の評価が不合格であった履修者のうち,一定の基準以上の成績の者は再試験を受験できる.再試験の概要は KULASIS で履修者に通知する.なお再試験は3月末に実施予定である. |
||||||||||||
(教科書) |
担当教員毎に指示する.
|
||||||||||||
(参考書等) |
授業中に紹介する
|
||||||||||||
(授業外学習(予習・復習)等) | 予習,復習とともに,演習問題を積極的に解いてみることが必要である. | ||||||||||||
(その他(オフィスアワー等)) | 同一クラスにおいて前期開講の微分積分学(講義・演義)Aとの連続した履修を推奨する.また線形代数学(講義・演義)B を並行して受講することが望ましい. |
||||||||||||
微分積分学(講義・演義)B
1T14 (科目名)
Calculus with Exercises B
(英 訳)
|
|
|||||||||
(群) 自然 (分野(分類)) 数学(基礎) (使用言語) 日本語 | ||||||||||
(旧群) B群 (単位数) 3 単位 (週コマ数) 2 コマ (授業形態) 講義 | ||||||||||
(開講年度・ 開講期) 2025・後期 (配当学年) 主として1回生 (対象学生) 理系向 |
||||||||||
(曜時限)
火3・金1 (教室) 共北37 |
||||||||||
(授業の概要・目的)
微分積分学は,線形代数学と共に現代の科学技術を支える数学の根幹をなす.この科目では,将来の応用に必要な微分積分学の基礎を解説する.
微分積分学(講義・演義)Bでは,微分積分学(講義・演義)Aに続いて一変数関数の微分積分の理解をさらに深めた後に,多変数関数の微分積分について学ぶ. |
||||||||||
(到達目標)
一変数および多変数関数の微分積分の理論的な基礎を理解すること,ならびに,それを用いた数学的解析の手法を修得して応用できるようになることを目標とする.
|
||||||||||
(授業計画と内容)
この科目は講義と演義とが一体となって構成されている. 演義は原則として隔週で開講される.演義においては,受講者は問題練習や課題学習に積極的に取り組むことにより,それまでに講義で学んだ事柄の理解を深める. 以下に挙げるのは講義の計画・内容である.各項目には,受講者の理解の程度を確認しながら,【 】で指示した週数を充てる.各項目・小項目の講義の順序は固定したものではなく,担当者の講義方針と受講者の背景や理解の状況に応じて,講義担当者が適切に決める.講義の進め方については適宜,指示をして,受講者が予習をできるように十分に配慮する. 以下の内容を,フィードバック回を含め(試験週を除く)全15回にて行う. 1.級数【3〜5週】: 無限級数(収束の判定法,絶対収束と条件収束) べき級数(収束半径,項別微積分) 関数列・関数項級数*(一様収束,項別微積分) 2.平面および空間の点集合【2週】: 距離,点列の収束,開集合・閉集合 連続関数 3.多変数関数の微分法【4〜5週】: 偏微分,微分(全微分)可能性,一次近似,接平面,勾配ベクトル 合成関数の微分(連鎖律),ヤコビ行列,ヤコビ行列式 テイラーの定理,極値問題 条件付き極値問題(陰関数定理) 4.多変数関数の積分法【4〜5週】: 重積分,累次積分,変数変換公式,面積・体積 広義積分,ガンマ関数とベータ関数 アステリスク * はオプション |
||||||||||
(履修要件)
特になし
|
||||||||||
(成績評価の方法・観点及び達成度)
演義担当教員によって平常点(演習への参加状況,課題への取組状況など)から得られた演義成績(30 点満点)をもとに,講義担当教員が期末試験を用いて,演義成績以上,100 点以下の範囲で 評価する.
教員によっては演義以外の平常点(レポート、中間試験などによるもの)を参考にすることもある.詳細は授業中に説明する. 本科目の評価が不合格であった履修者のうち,一定の基準以上の成績の者は再試験を受験できる.再試験の概要は KULASIS で履修者に通知する.なお再試験は3月末に実施予定である. |
||||||||||
(教科書)
担当教員毎に指示する.
|
||||||||||
(参考書等)
授業中に紹介する
|
||||||||||
(授業外学習(予習・復習)等)
予習,復習とともに,演習問題を積極的に解いてみることが必要である.
|
||||||||||
(その他(オフィスアワー等))
同一クラスにおいて前期開講の微分積分学(講義・演義)Aとの連続した履修を推奨する.また線形代数学(講義・演義)B を並行して受講することが望ましい.
|
||||||||||
授業の進捗状況や受講生の習熟度などによって「授業計画と内容」,「成績評価の方法」が変更になる場合があります。
(科目名) |
微分積分学(講義・演義)B 1T16
|
(英 訳) | Calculus with Exercises B | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
(担当教員) |
|
||||||||||||
(群) | 自然 | ||||||||||||
(分野(分類)) | 数学(基礎) | ||||||||||||
(使用言語) | 日本語 | ||||||||||||
(旧群) | B群 | ||||||||||||
(単位数) | 3 単位 | ||||||||||||
(週コマ数) | 2 コマ | ||||||||||||
(授業形態) | 講義 | ||||||||||||
(開講年度・開講期) | 2025・後期 | ||||||||||||
(配当学年) | 主として1回生 | ||||||||||||
(対象学生) | 理系向 | ||||||||||||
(曜時限) | 火3・金2 |
||||||||||||
(教室) | 共北37 | ||||||||||||
(授業の概要・目的) | 微分積分学は,線形代数学と共に現代の科学技術を支える数学の根幹をなす.この科目では,将来の応用に必要な微分積分学の基礎を解説する. 微分積分学(講義・演義)Bでは,微分積分学(講義・演義)Aに続いて一変数関数の微分積分の理解をさらに深めた後に,多変数関数の微分積分について学ぶ. |
||||||||||||
(到達目標) | 一変数および多変数関数の微分積分の理論的な基礎を理解すること,ならびに,それを用いた数学的解析の手法を修得して応用できるようになることを目標とする. | ||||||||||||
(授業計画と内容) | この科目は講義と演義とが一体となって構成されている. 演義は原則として隔週で開講される.演義においては,受講者は問題練習や課題学習に積極的に取り組むことにより,それまでに講義で学んだ事柄の理解を深める. 以下に挙げるのは講義の計画・内容である.各項目には,受講者の理解の程度を確認しながら,【 】で指示した週数を充てる.各項目・小項目の講義の順序は固定したものではなく,担当者の講義方針と受講者の背景や理解の状況に応じて,講義担当者が適切に決める.講義の進め方については適宜,指示をして,受講者が予習をできるように十分に配慮する. 以下の内容を,フィードバック回を含め(試験週を除く)全15回にて行う. 1.級数【3〜5週】: 無限級数(収束の判定法,絶対収束と条件収束) べき級数(収束半径,項別微積分) 関数列・関数項級数*(一様収束,項別微積分) 2.平面および空間の点集合【2週】: 距離,点列の収束,開集合・閉集合 連続関数 3.多変数関数の微分法【4〜5週】: 偏微分,微分(全微分)可能性,一次近似,接平面,勾配ベクトル 合成関数の微分(連鎖律),ヤコビ行列,ヤコビ行列式 テイラーの定理,極値問題 条件付き極値問題(陰関数定理) 4.多変数関数の積分法【4〜5週】: 重積分,累次積分,変数変換公式,面積・体積 広義積分,ガンマ関数とベータ関数 アステリスク * はオプション |
||||||||||||
(履修要件) |
特になし
|
||||||||||||
(成績評価の方法・観点及び達成度) | 演義担当教員によって平常点(演習への参加状況,課題への取組状況など)から得られた演義成績(30 点満点)をもとに,講義担当教員が期末試験を用いて,演義成績以上,100 点以下の範囲で 評価する. 教員によっては演義以外の平常点(レポート、中間試験などによるもの)を参考にすることもある.詳細は授業中に説明する. 本科目の評価が不合格であった履修者のうち,一定の基準以上の成績の者は再試験を受験できる.再試験の概要は KULASIS で履修者に通知する.なお再試験は3月末に実施予定である. |
||||||||||||
(教科書) |
担当教員毎に指示する.
|
||||||||||||
(参考書等) |
授業中に紹介する
|
||||||||||||
(授業外学習(予習・復習)等) | 予習,復習とともに,演習問題を積極的に解いてみることが必要である. | ||||||||||||
(その他(オフィスアワー等)) | 同一クラスにおいて前期開講の微分積分学(講義・演義)Aとの連続した履修を推奨する.また線形代数学(講義・演義)B を並行して受講することが望ましい. |
||||||||||||
微分積分学(講義・演義)B
1T16 (科目名)
Calculus with Exercises B
(英 訳)
|
|
|||||||||
(群) 自然 (分野(分類)) 数学(基礎) (使用言語) 日本語 | ||||||||||
(旧群) B群 (単位数) 3 単位 (週コマ数) 2 コマ (授業形態) 講義 | ||||||||||
(開講年度・ 開講期) 2025・後期 (配当学年) 主として1回生 (対象学生) 理系向 |
||||||||||
(曜時限)
火3・金2 (教室) 共北37 |
||||||||||
(授業の概要・目的)
微分積分学は,線形代数学と共に現代の科学技術を支える数学の根幹をなす.この科目では,将来の応用に必要な微分積分学の基礎を解説する.
微分積分学(講義・演義)Bでは,微分積分学(講義・演義)Aに続いて一変数関数の微分積分の理解をさらに深めた後に,多変数関数の微分積分について学ぶ. |
||||||||||
(到達目標)
一変数および多変数関数の微分積分の理論的な基礎を理解すること,ならびに,それを用いた数学的解析の手法を修得して応用できるようになることを目標とする.
|
||||||||||
(授業計画と内容)
この科目は講義と演義とが一体となって構成されている. 演義は原則として隔週で開講される.演義においては,受講者は問題練習や課題学習に積極的に取り組むことにより,それまでに講義で学んだ事柄の理解を深める. 以下に挙げるのは講義の計画・内容である.各項目には,受講者の理解の程度を確認しながら,【 】で指示した週数を充てる.各項目・小項目の講義の順序は固定したものではなく,担当者の講義方針と受講者の背景や理解の状況に応じて,講義担当者が適切に決める.講義の進め方については適宜,指示をして,受講者が予習をできるように十分に配慮する. 以下の内容を,フィードバック回を含め(試験週を除く)全15回にて行う. 1.級数【3〜5週】: 無限級数(収束の判定法,絶対収束と条件収束) べき級数(収束半径,項別微積分) 関数列・関数項級数*(一様収束,項別微積分) 2.平面および空間の点集合【2週】: 距離,点列の収束,開集合・閉集合 連続関数 3.多変数関数の微分法【4〜5週】: 偏微分,微分(全微分)可能性,一次近似,接平面,勾配ベクトル 合成関数の微分(連鎖律),ヤコビ行列,ヤコビ行列式 テイラーの定理,極値問題 条件付き極値問題(陰関数定理) 4.多変数関数の積分法【4〜5週】: 重積分,累次積分,変数変換公式,面積・体積 広義積分,ガンマ関数とベータ関数 アステリスク * はオプション |
||||||||||
(履修要件)
特になし
|
||||||||||
(成績評価の方法・観点及び達成度)
演義担当教員によって平常点(演習への参加状況,課題への取組状況など)から得られた演義成績(30 点満点)をもとに,講義担当教員が期末試験を用いて,演義成績以上,100 点以下の範囲で 評価する.
教員によっては演義以外の平常点(レポート、中間試験などによるもの)を参考にすることもある.詳細は授業中に説明する. 本科目の評価が不合格であった履修者のうち,一定の基準以上の成績の者は再試験を受験できる.再試験の概要は KULASIS で履修者に通知する.なお再試験は3月末に実施予定である. |
||||||||||
(教科書)
担当教員毎に指示する.
|
||||||||||
(参考書等)
授業中に紹介する
|
||||||||||
(授業外学習(予習・復習)等)
予習,復習とともに,演習問題を積極的に解いてみることが必要である.
|
||||||||||
(その他(オフィスアワー等))
同一クラスにおいて前期開講の微分積分学(講義・演義)Aとの連続した履修を推奨する.また線形代数学(講義・演義)B を並行して受講することが望ましい.
|
||||||||||
授業の進捗状況や受講生の習熟度などによって「授業計画と内容」,「成績評価の方法」が変更になる場合があります。
(科目名) |
線形代数学(講義・演義)B 1T7
|
(英 訳) | Linear Algebra with Exercises B | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
(担当教員) |
|
||||||||||||
(群) | 自然 | ||||||||||||
(分野(分類)) | 数学(基礎) | ||||||||||||
(使用言語) | 日本語 | ||||||||||||
(旧群) | B群 | ||||||||||||
(単位数) | 3 単位 | ||||||||||||
(週コマ数) | 2 コマ | ||||||||||||
(授業形態) | 講義 | ||||||||||||
(開講年度・開講期) | 2025・後期 | ||||||||||||
(配当学年) | 主として1回生 | ||||||||||||
(対象学生) | 理系向 | ||||||||||||
(曜時限) | 火3・金1 |
||||||||||||
(教室) | 共北32 | ||||||||||||
(授業の概要・目的) | 線形代数学は,微分積分学と共に現代の科学技術を支える数学の根幹をなす.この科目では,将来の応用に必要な線形代数学の基礎を解説する. 線形代数学(講義・演義)Bでは,ベクトル空間,線形写像などの基礎概念を体系的に学ぶと共に,それらの概念を行列に応用してさらに理解を深める. |
||||||||||||
(到達目標) | ベクトル空間,線形写像などの抽象概念を体系的に理解すること,ならびにそれを通してベクトル,行列の理論的な基礎を固めることを目標とする.その際には,ベクトルや行列等のより進んだ取り扱いに習熟することも目指す. | ||||||||||||
(授業計画と内容) | この科目は講義と演義とが一体として構成されている. 演義は原則として隔週で開講される.演義においては,受講者は問題演習や課題学習に積極的に取り組むことにより,それまでに講義で学んだ事柄の理解を深める. 以下に挙げるのは講義の計画、内容である.各項目には,受講者の理解の程度を確認しながら,【 】で指示した週数を充てる.各項目・小項目の講義の順序は固定したものではなく,担当者の講義方針と受講者の背景や理解の状況に応じて,講義担当者が適切に決める.講義の進め方については適宜,指示をして,受講者が予習をできるように十分に配慮する. 以下の内容を,フィードバック回を含め(試験週を除く)全15回にて行う. 1. 抽象ベクトル空間【5〜6週】: 一次結合,一次独立,基底,次元,部分空間,線形写像,核と像 線形写像と行列,基底の変換,直和 2. 計量ベクトル空間【3〜4週】: 内積,正規直交基底,直交行列,ユニタリ行列,直交補空間 3. 固有値と行列の対角化【5〜6週】: 固有値と固有ベクトル,固有多項式,固有空間 行列の対角化,行列の上三角化,ケーリー.ハミルトンの定理 対称行列の直交行列による対角化 二次形式* エルミート行列のユニタリ行列による対角化* アステリスク * はオプション |
||||||||||||
(履修要件) |
特になし
|
||||||||||||
(成績評価の方法・観点及び達成度) | 演義担当教員によって平常点(演習への参加状況,課題への取組状況など)から得られた演義成績(30 点満点)をもとに,講義担当教員が期末試験を用いて,演義成績以上,100 点以下の範囲で 評価する. 教員によっては演義以外の平常点(レポート、中間試験などによるもの)を参考にすることもある.詳細は授業中に説明する. 本科目の評価が不合格であった履修者のうち,一定の基準以上の成績の者は再試験を受験できる.再試験の概要は KULASIS で履修者に通知する.なお再試験は3月末に実施予定である. |
||||||||||||
(教科書) |
担当教員毎に指示する.
|
||||||||||||
(参考書等) |
授業中に紹介する
|
||||||||||||
(授業外学習(予習・復習)等) | 予習,復習とともに,演習問題を積極的に解いてみることが必要である. | ||||||||||||
(その他(オフィスアワー等)) | 同一クラスにおいて前期開講の線形代数学(講義・演義)Aとの連続した履修を推奨する.また微分積分学(講義・演義)B を並行して受講することが望ましい. |
||||||||||||
線形代数学(講義・演義)B
1T7 (科目名)
Linear Algebra with Exercises B
(英 訳)
|
|
|||||||||
(群) 自然 (分野(分類)) 数学(基礎) (使用言語) 日本語 | ||||||||||
(旧群) B群 (単位数) 3 単位 (週コマ数) 2 コマ (授業形態) 講義 | ||||||||||
(開講年度・ 開講期) 2025・後期 (配当学年) 主として1回生 (対象学生) 理系向 |
||||||||||
(曜時限)
火3・金1 (教室) 共北32 |
||||||||||
(授業の概要・目的)
線形代数学は,微分積分学と共に現代の科学技術を支える数学の根幹をなす.この科目では,将来の応用に必要な線形代数学の基礎を解説する.
線形代数学(講義・演義)Bでは,ベクトル空間,線形写像などの基礎概念を体系的に学ぶと共に,それらの概念を行列に応用してさらに理解を深める. |
||||||||||
(到達目標)
ベクトル空間,線形写像などの抽象概念を体系的に理解すること,ならびにそれを通してベクトル,行列の理論的な基礎を固めることを目標とする.その際には,ベクトルや行列等のより進んだ取り扱いに習熟することも目指す.
|
||||||||||
(授業計画と内容)
この科目は講義と演義とが一体として構成されている. 演義は原則として隔週で開講される.演義においては,受講者は問題演習や課題学習に積極的に取り組むことにより,それまでに講義で学んだ事柄の理解を深める. 以下に挙げるのは講義の計画、内容である.各項目には,受講者の理解の程度を確認しながら,【 】で指示した週数を充てる.各項目・小項目の講義の順序は固定したものではなく,担当者の講義方針と受講者の背景や理解の状況に応じて,講義担当者が適切に決める.講義の進め方については適宜,指示をして,受講者が予習をできるように十分に配慮する. 以下の内容を,フィードバック回を含め(試験週を除く)全15回にて行う. 1. 抽象ベクトル空間【5〜6週】: 一次結合,一次独立,基底,次元,部分空間,線形写像,核と像 線形写像と行列,基底の変換,直和 2. 計量ベクトル空間【3〜4週】: 内積,正規直交基底,直交行列,ユニタリ行列,直交補空間 3. 固有値と行列の対角化【5〜6週】: 固有値と固有ベクトル,固有多項式,固有空間 行列の対角化,行列の上三角化,ケーリー.ハミルトンの定理 対称行列の直交行列による対角化 二次形式* エルミート行列のユニタリ行列による対角化* アステリスク * はオプション |
||||||||||
(履修要件)
特になし
|
||||||||||
(成績評価の方法・観点及び達成度)
演義担当教員によって平常点(演習への参加状況,課題への取組状況など)から得られた演義成績(30 点満点)をもとに,講義担当教員が期末試験を用いて,演義成績以上,100 点以下の範囲で 評価する.
教員によっては演義以外の平常点(レポート、中間試験などによるもの)を参考にすることもある.詳細は授業中に説明する. 本科目の評価が不合格であった履修者のうち,一定の基準以上の成績の者は再試験を受験できる.再試験の概要は KULASIS で履修者に通知する.なお再試験は3月末に実施予定である. |
||||||||||
(教科書)
担当教員毎に指示する.
|
||||||||||
(参考書等)
授業中に紹介する
|
||||||||||
(授業外学習(予習・復習)等)
予習,復習とともに,演習問題を積極的に解いてみることが必要である.
|
||||||||||
(その他(オフィスアワー等))
同一クラスにおいて前期開講の線形代数学(講義・演義)Aとの連続した履修を推奨する.また微分積分学(講義・演義)B を並行して受講することが望ましい.
|
||||||||||
授業の進捗状況や受講生の習熟度などによって「授業計画と内容」,「成績評価の方法」が変更になる場合があります。
(科目名) |
線形代数学(講義・演義)B 1T9
|
(英 訳) | Linear Algebra with Exercises B | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
(担当教員) |
|
||||||||||||
(群) | 自然 | ||||||||||||
(分野(分類)) | 数学(基礎) | ||||||||||||
(使用言語) | 日本語 | ||||||||||||
(旧群) | B群 | ||||||||||||
(単位数) | 3 単位 | ||||||||||||
(週コマ数) | 2 コマ | ||||||||||||
(授業形態) | 講義 | ||||||||||||
(開講年度・開講期) | 2025・後期 | ||||||||||||
(配当学年) | 主として1回生 | ||||||||||||
(対象学生) | 理系向 | ||||||||||||
(曜時限) | 火3・金1 |
||||||||||||
(教室) | 共西31 | ||||||||||||
(授業の概要・目的) | 線形代数学は,微分積分学と共に現代の科学技術を支える数学の根幹をなす.この科目では,将来の応用に必要な線形代数学の基礎を解説する. 線形代数学(講義・演義)Bでは,ベクトル空間,線形写像などの基礎概念を体系的に学ぶと共に,それらの概念を行列に応用してさらに理解を深める. |
||||||||||||
(到達目標) | ベクトル空間,線形写像などの抽象概念を体系的に理解すること,ならびにそれを通してベクトル,行列の理論的な基礎を固めることを目標とする.その際には,ベクトルや行列等のより進んだ取り扱いに習熟することも目指す. | ||||||||||||
(授業計画と内容) | この科目は講義と演義とが一体として構成されている. 演義は原則として隔週で開講される.演義においては,受講者は問題演習や課題学習に積極的に取り組むことにより,それまでに講義で学んだ事柄の理解を深める. 以下に挙げるのは講義の計画、内容である.各項目には,受講者の理解の程度を確認しながら,【 】で指示した週数を充てる.各項目・小項目の講義の順序は固定したものではなく,担当者の講義方針と受講者の背景や理解の状況に応じて,講義担当者が適切に決める.講義の進め方については適宜,指示をして,受講者が予習をできるように十分に配慮する. 以下の内容を,フィードバック回を含め(試験週を除く)全15回にて行う. 1. 抽象ベクトル空間【5〜6週】: 一次結合,一次独立,基底,次元,部分空間,線形写像,核と像 線形写像と行列,基底の変換,直和 2. 計量ベクトル空間【3〜4週】: 内積,正規直交基底,直交行列,ユニタリ行列,直交補空間 3. 固有値と行列の対角化【5〜6週】: 固有値と固有ベクトル,固有多項式,固有空間 行列の対角化,行列の上三角化,ケーリー.ハミルトンの定理 対称行列の直交行列による対角化 二次形式* エルミート行列のユニタリ行列による対角化* アステリスク * はオプション |
||||||||||||
(履修要件) |
特になし
|
||||||||||||
(成績評価の方法・観点及び達成度) | 演義担当教員によって平常点(演習への参加状況,課題への取組状況など)から得られた演義成績(30 点満点)をもとに,講義担当教員が期末試験を用いて,演義成績以上,100 点以下の範囲で 評価する. 教員によっては演義以外の平常点(レポート、中間試験などによるもの)を参考にすることもある.詳細は授業中に説明する. 本科目の評価が不合格であった履修者のうち,一定の基準以上の成績の者は再試験を受験できる.再試験の概要は KULASIS で履修者に通知する.なお再試験は3月末に実施予定である. |
||||||||||||
(教科書) |
担当教員毎に指示する.
|
||||||||||||
(参考書等) |
授業中に紹介する
|
||||||||||||
(授業外学習(予習・復習)等) | 予習,復習とともに,演習問題を積極的に解いてみることが必要である. | ||||||||||||
(その他(オフィスアワー等)) | 同一クラスにおいて前期開講の線形代数学(講義・演義)Aとの連続した履修を推奨する.また微分積分学(講義・演義)B を並行して受講することが望ましい. |
||||||||||||
線形代数学(講義・演義)B
1T9 (科目名)
Linear Algebra with Exercises B
(英 訳)
|
|
|||||||||
(群) 自然 (分野(分類)) 数学(基礎) (使用言語) 日本語 | ||||||||||
(旧群) B群 (単位数) 3 単位 (週コマ数) 2 コマ (授業形態) 講義 | ||||||||||
(開講年度・ 開講期) 2025・後期 (配当学年) 主として1回生 (対象学生) 理系向 |
||||||||||
(曜時限)
火3・金1 (教室) 共西31 |
||||||||||
(授業の概要・目的)
線形代数学は,微分積分学と共に現代の科学技術を支える数学の根幹をなす.この科目では,将来の応用に必要な線形代数学の基礎を解説する.
線形代数学(講義・演義)Bでは,ベクトル空間,線形写像などの基礎概念を体系的に学ぶと共に,それらの概念を行列に応用してさらに理解を深める. |
||||||||||
(到達目標)
ベクトル空間,線形写像などの抽象概念を体系的に理解すること,ならびにそれを通してベクトル,行列の理論的な基礎を固めることを目標とする.その際には,ベクトルや行列等のより進んだ取り扱いに習熟することも目指す.
|
||||||||||
(授業計画と内容)
この科目は講義と演義とが一体として構成されている. 演義は原則として隔週で開講される.演義においては,受講者は問題演習や課題学習に積極的に取り組むことにより,それまでに講義で学んだ事柄の理解を深める. 以下に挙げるのは講義の計画、内容である.各項目には,受講者の理解の程度を確認しながら,【 】で指示した週数を充てる.各項目・小項目の講義の順序は固定したものではなく,担当者の講義方針と受講者の背景や理解の状況に応じて,講義担当者が適切に決める.講義の進め方については適宜,指示をして,受講者が予習をできるように十分に配慮する. 以下の内容を,フィードバック回を含め(試験週を除く)全15回にて行う. 1. 抽象ベクトル空間【5〜6週】: 一次結合,一次独立,基底,次元,部分空間,線形写像,核と像 線形写像と行列,基底の変換,直和 2. 計量ベクトル空間【3〜4週】: 内積,正規直交基底,直交行列,ユニタリ行列,直交補空間 3. 固有値と行列の対角化【5〜6週】: 固有値と固有ベクトル,固有多項式,固有空間 行列の対角化,行列の上三角化,ケーリー.ハミルトンの定理 対称行列の直交行列による対角化 二次形式* エルミート行列のユニタリ行列による対角化* アステリスク * はオプション |
||||||||||
(履修要件)
特になし
|
||||||||||
(成績評価の方法・観点及び達成度)
演義担当教員によって平常点(演習への参加状況,課題への取組状況など)から得られた演義成績(30 点満点)をもとに,講義担当教員が期末試験を用いて,演義成績以上,100 点以下の範囲で 評価する.
教員によっては演義以外の平常点(レポート、中間試験などによるもの)を参考にすることもある.詳細は授業中に説明する. 本科目の評価が不合格であった履修者のうち,一定の基準以上の成績の者は再試験を受験できる.再試験の概要は KULASIS で履修者に通知する.なお再試験は3月末に実施予定である. |
||||||||||
(教科書)
担当教員毎に指示する.
|
||||||||||
(参考書等)
授業中に紹介する
|
||||||||||
(授業外学習(予習・復習)等)
予習,復習とともに,演習問題を積極的に解いてみることが必要である.
|
||||||||||
(その他(オフィスアワー等))
同一クラスにおいて前期開講の線形代数学(講義・演義)Aとの連続した履修を推奨する.また微分積分学(講義・演義)B を並行して受講することが望ましい.
|
||||||||||
授業の進捗状況や受講生の習熟度などによって「授業計画と内容」,「成績評価の方法」が変更になる場合があります。
(科目名) |
線形代数学(講義・演義)B 1T10
|
(英 訳) | Linear Algebra with Exercises B | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
(担当教員) |
|
||||||||||||
(群) | 自然 | ||||||||||||
(分野(分類)) | 数学(基礎) | ||||||||||||
(使用言語) | 日本語 | ||||||||||||
(旧群) | B群 | ||||||||||||
(単位数) | 3 単位 | ||||||||||||
(週コマ数) | 2 コマ | ||||||||||||
(授業形態) | 講義 | ||||||||||||
(開講年度・開講期) | 2025・後期 | ||||||||||||
(配当学年) | 主として1回生 | ||||||||||||
(対象学生) | 理系向 | ||||||||||||
(曜時限) | 火3・金2 |
||||||||||||
(教室) | 共北32 | ||||||||||||
(授業の概要・目的) | 線形代数学は,微分積分学と共に現代の科学技術を支える数学の根幹をなす.この科目では,将来の応用に必要な線形代数学の基礎を解説する. 線形代数学(講義・演義)Bでは,ベクトル空間,線形写像などの基礎概念を体系的に学ぶと共に,それらの概念を行列に応用してさらに理解を深める. |
||||||||||||
(到達目標) | ベクトル空間,線形写像などの抽象概念を体系的に理解すること,ならびにそれを通してベクトル,行列の理論的な基礎を固めることを目標とする.その際には,ベクトルや行列等のより進んだ取り扱いに習熟することも目指す. | ||||||||||||
(授業計画と内容) | この科目は講義と演義とが一体として構成されている. 演義は原則として隔週で開講される.演義においては,受講者は問題演習や課題学習に積極的に取り組むことにより,それまでに講義で学んだ事柄の理解を深める. 以下に挙げるのは講義の計画、内容である.各項目には,受講者の理解の程度を確認しながら,【 】で指示した週数を充てる.各項目・小項目の講義の順序は固定したものではなく,担当者の講義方針と受講者の背景や理解の状況に応じて,講義担当者が適切に決める.講義の進め方については適宜,指示をして,受講者が予習をできるように十分に配慮する. 以下の内容を,フィードバック回を含め(試験週を除く)全15回にて行う. 1. 抽象ベクトル空間【5〜6週】: 一次結合,一次独立,基底,次元,部分空間,線形写像,核と像 線形写像と行列,基底の変換,直和 2. 計量ベクトル空間【3〜4週】: 内積,正規直交基底,直交行列,ユニタリ行列,直交補空間 3. 固有値と行列の対角化【5〜6週】: 固有値と固有ベクトル,固有多項式,固有空間 行列の対角化,行列の上三角化,ケーリー.ハミルトンの定理 対称行列の直交行列による対角化 二次形式* エルミート行列のユニタリ行列による対角化* アステリスク * はオプション |
||||||||||||
(履修要件) |
特になし
|
||||||||||||
(成績評価の方法・観点及び達成度) | 演義担当教員によって平常点(演習への参加状況,課題への取組状況など)から得られた演義成績(30 点満点)をもとに,講義担当教員が期末試験を用いて,演義成績以上,100 点以下の範囲で 評価する. 教員によっては演義以外の平常点(レポート、中間試験などによるもの)を参考にすることもある.詳細は授業中に説明する. 本科目の評価が不合格であった履修者のうち,一定の基準以上の成績の者は再試験を受験できる.再試験の概要は KULASIS で履修者に通知する.なお再試験は3月末に実施予定である. |
||||||||||||
(教科書) |
担当教員毎に指示する.
|
||||||||||||
(参考書等) |
授業中に紹介する
|
||||||||||||
(授業外学習(予習・復習)等) | 予習,復習とともに,演習問題を積極的に解いてみることが必要である. | ||||||||||||
(その他(オフィスアワー等)) | 同一クラスにおいて前期開講の線形代数学(講義・演義)Aとの連続した履修を推奨する.また微分積分学(講義・演義)B を並行して受講することが望ましい. |
||||||||||||
線形代数学(講義・演義)B
1T10 (科目名)
Linear Algebra with Exercises B
(英 訳)
|
|
|||||||||
(群) 自然 (分野(分類)) 数学(基礎) (使用言語) 日本語 | ||||||||||
(旧群) B群 (単位数) 3 単位 (週コマ数) 2 コマ (授業形態) 講義 | ||||||||||
(開講年度・ 開講期) 2025・後期 (配当学年) 主として1回生 (対象学生) 理系向 |
||||||||||
(曜時限)
火3・金2 (教室) 共北32 |
||||||||||
(授業の概要・目的)
線形代数学は,微分積分学と共に現代の科学技術を支える数学の根幹をなす.この科目では,将来の応用に必要な線形代数学の基礎を解説する.
線形代数学(講義・演義)Bでは,ベクトル空間,線形写像などの基礎概念を体系的に学ぶと共に,それらの概念を行列に応用してさらに理解を深める. |
||||||||||
(到達目標)
ベクトル空間,線形写像などの抽象概念を体系的に理解すること,ならびにそれを通してベクトル,行列の理論的な基礎を固めることを目標とする.その際には,ベクトルや行列等のより進んだ取り扱いに習熟することも目指す.
|
||||||||||
(授業計画と内容)
この科目は講義と演義とが一体として構成されている. 演義は原則として隔週で開講される.演義においては,受講者は問題演習や課題学習に積極的に取り組むことにより,それまでに講義で学んだ事柄の理解を深める. 以下に挙げるのは講義の計画、内容である.各項目には,受講者の理解の程度を確認しながら,【 】で指示した週数を充てる.各項目・小項目の講義の順序は固定したものではなく,担当者の講義方針と受講者の背景や理解の状況に応じて,講義担当者が適切に決める.講義の進め方については適宜,指示をして,受講者が予習をできるように十分に配慮する. 以下の内容を,フィードバック回を含め(試験週を除く)全15回にて行う. 1. 抽象ベクトル空間【5〜6週】: 一次結合,一次独立,基底,次元,部分空間,線形写像,核と像 線形写像と行列,基底の変換,直和 2. 計量ベクトル空間【3〜4週】: 内積,正規直交基底,直交行列,ユニタリ行列,直交補空間 3. 固有値と行列の対角化【5〜6週】: 固有値と固有ベクトル,固有多項式,固有空間 行列の対角化,行列の上三角化,ケーリー.ハミルトンの定理 対称行列の直交行列による対角化 二次形式* エルミート行列のユニタリ行列による対角化* アステリスク * はオプション |
||||||||||
(履修要件)
特になし
|
||||||||||
(成績評価の方法・観点及び達成度)
演義担当教員によって平常点(演習への参加状況,課題への取組状況など)から得られた演義成績(30 点満点)をもとに,講義担当教員が期末試験を用いて,演義成績以上,100 点以下の範囲で 評価する.
教員によっては演義以外の平常点(レポート、中間試験などによるもの)を参考にすることもある.詳細は授業中に説明する. 本科目の評価が不合格であった履修者のうち,一定の基準以上の成績の者は再試験を受験できる.再試験の概要は KULASIS で履修者に通知する.なお再試験は3月末に実施予定である. |
||||||||||
(教科書)
担当教員毎に指示する.
|
||||||||||
(参考書等)
授業中に紹介する
|
||||||||||
(授業外学習(予習・復習)等)
予習,復習とともに,演習問題を積極的に解いてみることが必要である.
|
||||||||||
(その他(オフィスアワー等))
同一クラスにおいて前期開講の線形代数学(講義・演義)Aとの連続した履修を推奨する.また微分積分学(講義・演義)B を並行して受講することが望ましい.
|
||||||||||
授業の進捗状況や受講生の習熟度などによって「授業計画と内容」,「成績評価の方法」が変更になる場合があります。
(科目名) |
線形代数学(講義・演義)B 1T12
|
(英 訳) | Linear Algebra with Exercises B | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
(担当教員) |
|
||||||||||||
(群) | 自然 | ||||||||||||
(分野(分類)) | 数学(基礎) | ||||||||||||
(使用言語) | 日本語 | ||||||||||||
(旧群) | B群 | ||||||||||||
(単位数) | 3 単位 | ||||||||||||
(週コマ数) | 2 コマ | ||||||||||||
(授業形態) | 講義 | ||||||||||||
(開講年度・開講期) | 2025・後期 | ||||||||||||
(配当学年) | 主として1回生 | ||||||||||||
(対象学生) | 理系向 | ||||||||||||
(曜時限) | 火3・金2 |
||||||||||||
(教室) | 共西31 | ||||||||||||
(授業の概要・目的) | 線形代数学は,微分積分学と共に現代の科学技術を支える数学の根幹をなす.この科目では,将来の応用に必要な線形代数学の基礎を解説する. 線形代数学(講義・演義)Bでは,ベクトル空間,線形写像などの基礎概念を体系的に学ぶと共に,それらの概念を行列に応用してさらに理解を深める. |
||||||||||||
(到達目標) | ベクトル空間,線形写像などの抽象概念を体系的に理解すること,ならびにそれを通してベクトル,行列の理論的な基礎を固めることを目標とする.その際には,ベクトルや行列等のより進んだ取り扱いに習熟することも目指す. | ||||||||||||
(授業計画と内容) | この科目は講義と演義とが一体として構成されている. 演義は原則として隔週で開講される.演義においては,受講者は問題演習や課題学習に積極的に取り組むことにより,それまでに講義で学んだ事柄の理解を深める. 以下に挙げるのは講義の計画、内容である.各項目には,受講者の理解の程度を確認しながら,【 】で指示した週数を充てる.各項目・小項目の講義の順序は固定したものではなく,担当者の講義方針と受講者の背景や理解の状況に応じて,講義担当者が適切に決める.講義の進め方については適宜,指示をして,受講者が予習をできるように十分に配慮する. 以下の内容を,フィードバック回を含め(試験週を除く)全15回にて行う. 1. 抽象ベクトル空間【5〜6週】: 一次結合,一次独立,基底,次元,部分空間,線形写像,核と像 線形写像と行列,基底の変換,直和 2. 計量ベクトル空間【3〜4週】: 内積,正規直交基底,直交行列,ユニタリ行列,直交補空間 3. 固有値と行列の対角化【5〜6週】: 固有値と固有ベクトル,固有多項式,固有空間 行列の対角化,行列の上三角化,ケーリー.ハミルトンの定理 対称行列の直交行列による対角化 二次形式* エルミート行列のユニタリ行列による対角化* アステリスク * はオプション |
||||||||||||
(履修要件) |
特になし
|
||||||||||||
(成績評価の方法・観点及び達成度) | 演義担当教員によって平常点(演習への参加状況,課題への取組状況など)から得られた演義成績(30 点満点)をもとに,講義担当教員が期末試験を用いて,演義成績以上,100 点以下の範囲で 評価する. 教員によっては演義以外の平常点(レポート、中間試験などによるもの)を参考にすることもある.詳細は授業中に説明する. 本科目の評価が不合格であった履修者のうち,一定の基準以上の成績の者は再試験を受験できる.再試験の概要は KULASIS で履修者に通知する.なお再試験は3月末に実施予定である. |
||||||||||||
(教科書) |
担当教員毎に指示する.
|
||||||||||||
(参考書等) |
授業中に紹介する
|
||||||||||||
(授業外学習(予習・復習)等) | 予習,復習とともに,演習問題を積極的に解いてみることが必要である. | ||||||||||||
(その他(オフィスアワー等)) | 同一クラスにおいて前期開講の線形代数学(講義・演義)Aとの連続した履修を推奨する.また微分積分学(講義・演義)B を並行して受講することが望ましい. |
||||||||||||
線形代数学(講義・演義)B
1T12 (科目名)
Linear Algebra with Exercises B
(英 訳)
|
|
|||||||||
(群) 自然 (分野(分類)) 数学(基礎) (使用言語) 日本語 | ||||||||||
(旧群) B群 (単位数) 3 単位 (週コマ数) 2 コマ (授業形態) 講義 | ||||||||||
(開講年度・ 開講期) 2025・後期 (配当学年) 主として1回生 (対象学生) 理系向 |
||||||||||
(曜時限)
火3・金2 (教室) 共西31 |
||||||||||
(授業の概要・目的)
線形代数学は,微分積分学と共に現代の科学技術を支える数学の根幹をなす.この科目では,将来の応用に必要な線形代数学の基礎を解説する.
線形代数学(講義・演義)Bでは,ベクトル空間,線形写像などの基礎概念を体系的に学ぶと共に,それらの概念を行列に応用してさらに理解を深める. |
||||||||||
(到達目標)
ベクトル空間,線形写像などの抽象概念を体系的に理解すること,ならびにそれを通してベクトル,行列の理論的な基礎を固めることを目標とする.その際には,ベクトルや行列等のより進んだ取り扱いに習熟することも目指す.
|
||||||||||
(授業計画と内容)
この科目は講義と演義とが一体として構成されている. 演義は原則として隔週で開講される.演義においては,受講者は問題演習や課題学習に積極的に取り組むことにより,それまでに講義で学んだ事柄の理解を深める. 以下に挙げるのは講義の計画、内容である.各項目には,受講者の理解の程度を確認しながら,【 】で指示した週数を充てる.各項目・小項目の講義の順序は固定したものではなく,担当者の講義方針と受講者の背景や理解の状況に応じて,講義担当者が適切に決める.講義の進め方については適宜,指示をして,受講者が予習をできるように十分に配慮する. 以下の内容を,フィードバック回を含め(試験週を除く)全15回にて行う. 1. 抽象ベクトル空間【5〜6週】: 一次結合,一次独立,基底,次元,部分空間,線形写像,核と像 線形写像と行列,基底の変換,直和 2. 計量ベクトル空間【3〜4週】: 内積,正規直交基底,直交行列,ユニタリ行列,直交補空間 3. 固有値と行列の対角化【5〜6週】: 固有値と固有ベクトル,固有多項式,固有空間 行列の対角化,行列の上三角化,ケーリー.ハミルトンの定理 対称行列の直交行列による対角化 二次形式* エルミート行列のユニタリ行列による対角化* アステリスク * はオプション |
||||||||||
(履修要件)
特になし
|
||||||||||
(成績評価の方法・観点及び達成度)
演義担当教員によって平常点(演習への参加状況,課題への取組状況など)から得られた演義成績(30 点満点)をもとに,講義担当教員が期末試験を用いて,演義成績以上,100 点以下の範囲で 評価する.
教員によっては演義以外の平常点(レポート、中間試験などによるもの)を参考にすることもある.詳細は授業中に説明する. 本科目の評価が不合格であった履修者のうち,一定の基準以上の成績の者は再試験を受験できる.再試験の概要は KULASIS で履修者に通知する.なお再試験は3月末に実施予定である. |
||||||||||
(教科書)
担当教員毎に指示する.
|
||||||||||
(参考書等)
授業中に紹介する
|
||||||||||
(授業外学習(予習・復習)等)
予習,復習とともに,演習問題を積極的に解いてみることが必要である.
|
||||||||||
(その他(オフィスアワー等))
同一クラスにおいて前期開講の線形代数学(講義・演義)Aとの連続した履修を推奨する.また微分積分学(講義・演義)B を並行して受講することが望ましい.
|
||||||||||
授業の進捗状況や受講生の習熟度などによって「授業計画と内容」,「成績評価の方法」が変更になる場合があります。
(科目名) |
線形代数学(講義・演義)B 1T13
|
(英 訳) | Linear Algebra with Exercises B | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
(担当教員) |
|
||||||||||||
(群) | 自然 | ||||||||||||
(分野(分類)) | 数学(基礎) | ||||||||||||
(使用言語) | 日本語 | ||||||||||||
(旧群) | B群 | ||||||||||||
(単位数) | 3 単位 | ||||||||||||
(週コマ数) | 2 コマ | ||||||||||||
(授業形態) | 講義 | ||||||||||||
(開講年度・開講期) | 2025・後期 | ||||||||||||
(配当学年) | 主として1回生 | ||||||||||||
(対象学生) | 理系向 | ||||||||||||
(曜時限) | 火3・金1 |
||||||||||||
(教室) | 共北25 | ||||||||||||
(授業の概要・目的) | 線形代数学は,微分積分学と共に現代の科学技術を支える数学の根幹をなす.この科目では,将来の応用に必要な線形代数学の基礎を解説する. 線形代数学(講義・演義)Bでは,ベクトル空間,線形写像などの基礎概念を体系的に学ぶと共に,それらの概念を行列に応用してさらに理解を深める. |
||||||||||||
(到達目標) | ベクトル空間,線形写像などの抽象概念を体系的に理解すること,ならびにそれを通してベクトル,行列の理論的な基礎を固めることを目標とする.その際には,ベクトルや行列等のより進んだ取り扱いに習熟することも目指す. | ||||||||||||
(授業計画と内容) | この科目は講義と演義とが一体として構成されている. 演義は原則として隔週で開講される.演義においては,受講者は問題演習や課題学習に積極的に取り組むことにより,それまでに講義で学んだ事柄の理解を深める. 以下に挙げるのは講義の計画、内容である.各項目には,受講者の理解の程度を確認しながら,【 】で指示した週数を充てる.各項目・小項目の講義の順序は固定したものではなく,担当者の講義方針と受講者の背景や理解の状況に応じて,講義担当者が適切に決める.講義の進め方については適宜,指示をして,受講者が予習をできるように十分に配慮する. 以下の内容を,フィードバック回を含め(試験週を除く)全15回にて行う. 1. 抽象ベクトル空間【5〜6週】: 一次結合,一次独立,基底,次元,部分空間,線形写像,核と像 線形写像と行列,基底の変換,直和 2. 計量ベクトル空間【3〜4週】: 内積,正規直交基底,直交行列,ユニタリ行列,直交補空間 3. 固有値と行列の対角化【5〜6週】: 固有値と固有ベクトル,固有多項式,固有空間 行列の対角化,行列の上三角化,ケーリー.ハミルトンの定理 対称行列の直交行列による対角化 二次形式* エルミート行列のユニタリ行列による対角化* アステリスク * はオプション |
||||||||||||
(履修要件) |
特になし
|
||||||||||||
(成績評価の方法・観点及び達成度) | 演義担当教員によって平常点(演習への参加状況,課題への取組状況など)から得られた演義成績(30 点満点)をもとに,講義担当教員が期末試験を用いて,演義成績以上,100 点以下の範囲で 評価する. 教員によっては演義以外の平常点(レポート、中間試験などによるもの)を参考にすることもある.詳細は授業中に説明する. 本科目の評価が不合格であった履修者のうち,一定の基準以上の成績の者は再試験を受験できる.再試験の概要は KULASIS で履修者に通知する.なお再試験は3月末に実施予定である. |
||||||||||||
(教科書) |
担当教員毎に指示する.
|
||||||||||||
(参考書等) |
授業中に紹介する
|
||||||||||||
(授業外学習(予習・復習)等) | 予習,復習とともに,演習問題を積極的に解いてみることが必要である. | ||||||||||||
(その他(オフィスアワー等)) | 同一クラスにおいて前期開講の線形代数学(講義・演義)Aとの連続した履修を推奨する.また微分積分学(講義・演義)B を並行して受講することが望ましい. |
||||||||||||
線形代数学(講義・演義)B
1T13 (科目名)
Linear Algebra with Exercises B
(英 訳)
|
|
|||||||||
(群) 自然 (分野(分類)) 数学(基礎) (使用言語) 日本語 | ||||||||||
(旧群) B群 (単位数) 3 単位 (週コマ数) 2 コマ (授業形態) 講義 | ||||||||||
(開講年度・ 開講期) 2025・後期 (配当学年) 主として1回生 (対象学生) 理系向 |
||||||||||
(曜時限)
火3・金1 (教室) 共北25 |
||||||||||
(授業の概要・目的)
線形代数学は,微分積分学と共に現代の科学技術を支える数学の根幹をなす.この科目では,将来の応用に必要な線形代数学の基礎を解説する.
線形代数学(講義・演義)Bでは,ベクトル空間,線形写像などの基礎概念を体系的に学ぶと共に,それらの概念を行列に応用してさらに理解を深める. |
||||||||||
(到達目標)
ベクトル空間,線形写像などの抽象概念を体系的に理解すること,ならびにそれを通してベクトル,行列の理論的な基礎を固めることを目標とする.その際には,ベクトルや行列等のより進んだ取り扱いに習熟することも目指す.
|
||||||||||
(授業計画と内容)
この科目は講義と演義とが一体として構成されている. 演義は原則として隔週で開講される.演義においては,受講者は問題演習や課題学習に積極的に取り組むことにより,それまでに講義で学んだ事柄の理解を深める. 以下に挙げるのは講義の計画、内容である.各項目には,受講者の理解の程度を確認しながら,【 】で指示した週数を充てる.各項目・小項目の講義の順序は固定したものではなく,担当者の講義方針と受講者の背景や理解の状況に応じて,講義担当者が適切に決める.講義の進め方については適宜,指示をして,受講者が予習をできるように十分に配慮する. 以下の内容を,フィードバック回を含め(試験週を除く)全15回にて行う. 1. 抽象ベクトル空間【5〜6週】: 一次結合,一次独立,基底,次元,部分空間,線形写像,核と像 線形写像と行列,基底の変換,直和 2. 計量ベクトル空間【3〜4週】: 内積,正規直交基底,直交行列,ユニタリ行列,直交補空間 3. 固有値と行列の対角化【5〜6週】: 固有値と固有ベクトル,固有多項式,固有空間 行列の対角化,行列の上三角化,ケーリー.ハミルトンの定理 対称行列の直交行列による対角化 二次形式* エルミート行列のユニタリ行列による対角化* アステリスク * はオプション |
||||||||||
(履修要件)
特になし
|
||||||||||
(成績評価の方法・観点及び達成度)
演義担当教員によって平常点(演習への参加状況,課題への取組状況など)から得られた演義成績(30 点満点)をもとに,講義担当教員が期末試験を用いて,演義成績以上,100 点以下の範囲で 評価する.
教員によっては演義以外の平常点(レポート、中間試験などによるもの)を参考にすることもある.詳細は授業中に説明する. 本科目の評価が不合格であった履修者のうち,一定の基準以上の成績の者は再試験を受験できる.再試験の概要は KULASIS で履修者に通知する.なお再試験は3月末に実施予定である. |
||||||||||
(教科書)
担当教員毎に指示する.
|
||||||||||
(参考書等)
授業中に紹介する
|
||||||||||
(授業外学習(予習・復習)等)
予習,復習とともに,演習問題を積極的に解いてみることが必要である.
|
||||||||||
(その他(オフィスアワー等))
同一クラスにおいて前期開講の線形代数学(講義・演義)Aとの連続した履修を推奨する.また微分積分学(講義・演義)B を並行して受講することが望ましい.
|
||||||||||
授業の進捗状況や受講生の習熟度などによって「授業計画と内容」,「成績評価の方法」が変更になる場合があります。
(科目名) |
線形代数学(講義・演義)B 1T15
|
(英 訳) | Linear Algebra with Exercises B | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
(担当教員) |
|
||||||||||||
(群) | 自然 | ||||||||||||
(分野(分類)) | 数学(基礎) | ||||||||||||
(使用言語) | 日本語 | ||||||||||||
(旧群) | B群 | ||||||||||||
(単位数) | 3 単位 | ||||||||||||
(週コマ数) | 2 コマ | ||||||||||||
(授業形態) | 講義 | ||||||||||||
(開講年度・開講期) | 2025・後期 | ||||||||||||
(配当学年) | 主として1回生 | ||||||||||||
(対象学生) | 理系向 | ||||||||||||
(曜時限) | 火3・金2 |
||||||||||||
(教室) | 共北25 | ||||||||||||
(授業の概要・目的) | 線形代数学は,微分積分学と共に現代の科学技術を支える数学の根幹をなす.この科目では,将来の応用に必要な線形代数学の基礎を解説する. 線形代数学(講義・演義)Bでは,ベクトル空間,線形写像などの基礎概念を体系的に学ぶと共に,それらの概念を行列に応用してさらに理解を深める. |
||||||||||||
(到達目標) | ベクトル空間,線形写像などの抽象概念を体系的に理解すること,ならびにそれを通してベクトル,行列の理論的な基礎を固めることを目標とする.その際には,ベクトルや行列等のより進んだ取り扱いに習熟することも目指す. | ||||||||||||
(授業計画と内容) | この科目は講義と演義とが一体として構成されている. 演義は原則として隔週で開講される.演義においては,受講者は問題演習や課題学習に積極的に取り組むことにより,それまでに講義で学んだ事柄の理解を深める. 以下に挙げるのは講義の計画、内容である.各項目には,受講者の理解の程度を確認しながら,【 】で指示した週数を充てる.各項目・小項目の講義の順序は固定したものではなく,担当者の講義方針と受講者の背景や理解の状況に応じて,講義担当者が適切に決める.講義の進め方については適宜,指示をして,受講者が予習をできるように十分に配慮する. 以下の内容を,フィードバック回を含め(試験週を除く)全15回にて行う. 1. 抽象ベクトル空間【5〜6週】: 一次結合,一次独立,基底,次元,部分空間,線形写像,核と像 線形写像と行列,基底の変換,直和 2. 計量ベクトル空間【3〜4週】: 内積,正規直交基底,直交行列,ユニタリ行列,直交補空間 3. 固有値と行列の対角化【5〜6週】: 固有値と固有ベクトル,固有多項式,固有空間 行列の対角化,行列の上三角化,ケーリー.ハミルトンの定理 対称行列の直交行列による対角化 二次形式* エルミート行列のユニタリ行列による対角化* アステリスク * はオプション |
||||||||||||
(履修要件) |
特になし
|
||||||||||||
(成績評価の方法・観点及び達成度) | 演義担当教員によって平常点(演習への参加状況,課題への取組状況など)から得られた演義成績(30 点満点)をもとに,講義担当教員が期末試験を用いて,演義成績以上,100 点以下の範囲で 評価する. 教員によっては演義以外の平常点(レポート、中間試験などによるもの)を参考にすることもある.詳細は授業中に説明する. 本科目の評価が不合格であった履修者のうち,一定の基準以上の成績の者は再試験を受験できる.再試験の概要は KULASIS で履修者に通知する.なお再試験は3月末に実施予定である. |
||||||||||||
(教科書) |
担当教員毎に指示する.
|
||||||||||||
(参考書等) |
授業中に紹介する
|
||||||||||||
(授業外学習(予習・復習)等) | 予習,復習とともに,演習問題を積極的に解いてみることが必要である. | ||||||||||||
(その他(オフィスアワー等)) | 同一クラスにおいて前期開講の線形代数学(講義・演義)Aとの連続した履修を推奨する.また微分積分学(講義・演義)B を並行して受講することが望ましい. |
||||||||||||
線形代数学(講義・演義)B
1T15 (科目名)
Linear Algebra with Exercises B
(英 訳)
|
|
|||||||||
(群) 自然 (分野(分類)) 数学(基礎) (使用言語) 日本語 | ||||||||||
(旧群) B群 (単位数) 3 単位 (週コマ数) 2 コマ (授業形態) 講義 | ||||||||||
(開講年度・ 開講期) 2025・後期 (配当学年) 主として1回生 (対象学生) 理系向 |
||||||||||
(曜時限)
火3・金2 (教室) 共北25 |
||||||||||
(授業の概要・目的)
線形代数学は,微分積分学と共に現代の科学技術を支える数学の根幹をなす.この科目では,将来の応用に必要な線形代数学の基礎を解説する.
線形代数学(講義・演義)Bでは,ベクトル空間,線形写像などの基礎概念を体系的に学ぶと共に,それらの概念を行列に応用してさらに理解を深める. |
||||||||||
(到達目標)
ベクトル空間,線形写像などの抽象概念を体系的に理解すること,ならびにそれを通してベクトル,行列の理論的な基礎を固めることを目標とする.その際には,ベクトルや行列等のより進んだ取り扱いに習熟することも目指す.
|
||||||||||
(授業計画と内容)
この科目は講義と演義とが一体として構成されている. 演義は原則として隔週で開講される.演義においては,受講者は問題演習や課題学習に積極的に取り組むことにより,それまでに講義で学んだ事柄の理解を深める. 以下に挙げるのは講義の計画、内容である.各項目には,受講者の理解の程度を確認しながら,【 】で指示した週数を充てる.各項目・小項目の講義の順序は固定したものではなく,担当者の講義方針と受講者の背景や理解の状況に応じて,講義担当者が適切に決める.講義の進め方については適宜,指示をして,受講者が予習をできるように十分に配慮する. 以下の内容を,フィードバック回を含め(試験週を除く)全15回にて行う. 1. 抽象ベクトル空間【5〜6週】: 一次結合,一次独立,基底,次元,部分空間,線形写像,核と像 線形写像と行列,基底の変換,直和 2. 計量ベクトル空間【3〜4週】: 内積,正規直交基底,直交行列,ユニタリ行列,直交補空間 3. 固有値と行列の対角化【5〜6週】: 固有値と固有ベクトル,固有多項式,固有空間 行列の対角化,行列の上三角化,ケーリー.ハミルトンの定理 対称行列の直交行列による対角化 二次形式* エルミート行列のユニタリ行列による対角化* アステリスク * はオプション |
||||||||||
(履修要件)
特になし
|
||||||||||
(成績評価の方法・観点及び達成度)
演義担当教員によって平常点(演習への参加状況,課題への取組状況など)から得られた演義成績(30 点満点)をもとに,講義担当教員が期末試験を用いて,演義成績以上,100 点以下の範囲で 評価する.
教員によっては演義以外の平常点(レポート、中間試験などによるもの)を参考にすることもある.詳細は授業中に説明する. 本科目の評価が不合格であった履修者のうち,一定の基準以上の成績の者は再試験を受験できる.再試験の概要は KULASIS で履修者に通知する.なお再試験は3月末に実施予定である. |
||||||||||
(教科書)
担当教員毎に指示する.
|
||||||||||
(参考書等)
授業中に紹介する
|
||||||||||
(授業外学習(予習・復習)等)
予習,復習とともに,演習問題を積極的に解いてみることが必要である.
|
||||||||||
(その他(オフィスアワー等))
同一クラスにおいて前期開講の線形代数学(講義・演義)Aとの連続した履修を推奨する.また微分積分学(講義・演義)B を並行して受講することが望ましい.
|
||||||||||
授業の進捗状況や受講生の習熟度などによって「授業計画と内容」,「成績評価の方法」が変更になる場合があります。
(科目名) |
Honors Mathematics A-E2
|
(英 訳) | Honors Mathematics A-E2 | ||||
---|---|---|---|---|---|---|---|
(担当教員) |
|
||||||
(群) | 自然 | ||||||
(分野(分類)) | 数学(発展) | ||||||
(使用言語) | 英語 | ||||||
(旧群) | B群 | ||||||
(単位数) | 2 単位 | ||||||
(週コマ数) | 1 コマ | ||||||
(授業形態) | 講義 | ||||||
(開講年度・開講期) | 2025・後期 | ||||||
(配当学年) | 主として1回生 | ||||||
(対象学生) | 理系向 | ||||||
(曜時限) | 火3 |
||||||
(教室) | 4共40 | ||||||
(授業の概要・目的) | This course provides opportunities to learn mathematics in more depth for highly motivated students. It supplements and combines Calculus A and Linear Algebra A, while takes these basic courses as starting point to treat more advanced related topics. | ||||||
(到達目標) | In addition to learning advanced mathematics and proofs, students can learn how to discuss and present mathematical topics in English through this course. | ||||||
(授業計画と内容) | Below is a list of themes that may be covered. The actual topics of the lecture will be determined upon investigating the interests and level of the participating students. The selected topics will be covered during 15 lectures, including one feedback session. 1. Topics on set theory (tentatively 6 ~ 8 weeks) 1.1 Sets and their operations 1.2 Sets and maps 1.3 Order Relations 1.4 Equinumerous sets and cardinality 2. Fundamental fractional calculus (tentatively 3 ~ 5 weeks) 2.1 Some special functions and their properties 2.2 Riemann-Liouville integral operator 2.3 Caputo and Riemann-Liouville derivatives 3. Numerical linear algebra (tentatively 3 ~ 5 weeks) 3.1 Normed linear spaces and matrix norms 3.2 QR decomposition and singular value decomposition 3.3 Linear least square problems |
||||||
(履修要件) |
Calculus A and Linear Algebra A. Students are strongly encouraged to take Calculus B and Linear Algebra B in parallel (or prior) to this course.
|
||||||
(成績評価の方法・観点及び達成度) | The evaluation of the course will take into account the following criteria: (1) homework and presentation of students during the lectures (about 50%) (2) final examination (about 50%) The method of evaluation will be made precise at the first lecture. |
||||||
(教科書) |
使用しない
|
||||||
(参考書等) |
『Naive set theory』
(Springer, 1974)
ISBN:978-0-387-90092-6
Other references will be announced during the class according to the selected topics.
|
||||||
(授業外学習(予習・復習)等) | As in every mathematics courses, students should read notes carefully and repeatedly after the class, solve exercise problems and try to find alternative proofs, counterexamples, etc. After many hours of such practice, one may get an intuitive understanding of the materials covered. | ||||||
(その他(オフィスアワー等)) | Students are welcome to ask questions during or at the end of the class. There are no fixed office hours. If you wish to have a consultation, please feel free to contact the lecturer. |
||||||
Honors Mathematics A-E2
(科目名)
Honors Mathematics A-E2
(英 訳)
|
|
||||||
(群) 自然 (分野(分類)) 数学(発展) (使用言語) 英語 | |||||||
(旧群) B群 (単位数) 2 単位 (週コマ数) 1 コマ (授業形態) 講義 | |||||||
(開講年度・ 開講期) 2025・後期 (配当学年) 主として1回生 (対象学生) 理系向 |
|||||||
(曜時限)
火3 (教室) 4共40 |
|||||||
(授業の概要・目的)
This course provides opportunities to learn mathematics in more depth for highly motivated students. It supplements and combines Calculus A and Linear Algebra A, while takes these basic courses as starting point to treat more advanced related topics.
|
|||||||
(到達目標)
In addition to learning advanced mathematics and proofs, students can learn how to discuss and present mathematical topics in English through this course.
|
|||||||
(授業計画と内容)
Below is a list of themes that may be covered. The actual topics of the lecture will be determined upon investigating the interests and level of the participating students. The selected topics will be covered during 15 lectures, including one feedback session. 1. Topics on set theory (tentatively 6 ~ 8 weeks) 1.1 Sets and their operations 1.2 Sets and maps 1.3 Order Relations 1.4 Equinumerous sets and cardinality 2. Fundamental fractional calculus (tentatively 3 ~ 5 weeks) 2.1 Some special functions and their properties 2.2 Riemann-Liouville integral operator 2.3 Caputo and Riemann-Liouville derivatives 3. Numerical linear algebra (tentatively 3 ~ 5 weeks) 3.1 Normed linear spaces and matrix norms 3.2 QR decomposition and singular value decomposition 3.3 Linear least square problems |
|||||||
(履修要件)
Calculus A and Linear Algebra A. Students are strongly encouraged to take Calculus B and Linear Algebra B in parallel (or prior) to this course.
|
|||||||
(成績評価の方法・観点及び達成度)
The evaluation of the course will take into account the following criteria:
(1) homework and presentation of students during the lectures (about 50%) (2) final examination (about 50%) The method of evaluation will be made precise at the first lecture. |
|||||||
(教科書)
使用しない
|
|||||||
(参考書等)
『Naive set theory』
(Springer, 1974)
ISBN:978-0-387-90092-6
Other references will be announced during the class according to the selected topics.
|
|||||||
(授業外学習(予習・復習)等)
As in every mathematics courses, students should read notes carefully and repeatedly after the class, solve exercise problems and try to find alternative proofs, counterexamples, etc. After many hours of such practice, one may get an intuitive understanding of the materials covered.
|
|||||||
(その他(オフィスアワー等))
Students are welcome to ask questions during or at the end of the class.
There are no fixed office hours. If you wish to have a consultation, please feel free to contact the lecturer. |
|||||||
授業の進捗状況や受講生の習熟度などによって「授業計画と内容」,「成績評価の方法」が変更になる場合があります。
(科目名) |
数学基礎B [文系] 1H1, 1H2, 1H3
|
(英 訳) | Basic Mathematics B [For liberal arts students] | ||||
---|---|---|---|---|---|---|---|
(担当教員) |
|
||||||
(群) | 自然 | ||||||
(分野(分類)) | 数学(基礎) | ||||||
(使用言語) | 日本語 | ||||||
(旧群) | B群 | ||||||
(単位数) | 4 単位 | ||||||
(週コマ数) | 2 コマ | ||||||
(授業形態) | 講義 | ||||||
(開講年度・開講期) | 2025・後期 | ||||||
(配当学年) | 主として1回生 | ||||||
(対象学生) | 文系向 | ||||||
(曜時限) | 火4・木2 |
||||||
(教室) | 共北32 | ||||||
(授業の概要・目的) | 高校の数学IIIの内容を、数学基礎Aに引き続き、高校の教科書に沿って基礎事項だけでなく例題、練習問題、演習問題も含めて解説する。更に大学初年次に扱われる線型代数学、微分積分学の入門的授業を行う。扱う題材は初等関数の積分法とその曲線の長さ、面積、体積の計算への応用、連立一次方程式、2次正方行列の対角化とその2次曲線への応用、多変数関数の微分法とその極値問題への応用などである。 | ||||||
(到達目標) | 初等関数の積分法と図形の求積法への応用、連立一次方程式の一般的解法、2次正方行列の対角化とその応用、多変数関数の微分とその極値問題への応用の手法を習得する。 | ||||||
(授業計画と内容) | 授業内容は以下の通りである。授業はフィードバックを含め全15回(試験週を除く)で行う。 (1) 積分法 (5週)(前期の続き) 不定積分、初等関数の原始関数、置換積分、部分積分、定積分、 定積分の置換積分、部分積分、面積、体積、曲線の長さ (2) 線型代数 (6週) 数ベクトル空間、1次結合、1次従属、1次独立、 行列、行列の演算、正則行列、逆行列、 行列式、 連立1次方程式、係数行列、拡大係数行列、 基本変形、掃き出し法、行列の階数、解の空間、解の自由度、 部分ベクトル空間、基底、次元 2次正方行列の対角化(固有値、固有ベクトル)とその2次曲線への応用 (3) 多変数関数 (3週) 偏微分、偏微分係数、偏導関数、全微分、勾配ベクトル、 多変数関数のグラフの接平面、多変数関数の極値、 条件付き極値問題 (4) 方程式と曲線* (1週) 放物線、楕円、双曲線、2次曲線と直線、媒介変数、極座標 不等式と領域 (5) 複素数* (1週) 複素数平面、絶対値、共役複素数、極形式、偏角、四則演算、 冪乗、冪乗根、図形と方程式 * のついた項目は高校の数学Cの内容であり、時間の余裕があればこの中から選んでふれるものである。 上記のトピックスの講義とともに、それに関連した問題演習(授業中の演習または課題提出)を行う。 |
||||||
(履修要件) |
初等関数(整関数、有理関数、無理関数、指数関数、対数関数、三角関数)の微分の知識を前提とする。
|
||||||
(成績評価の方法・観点及び達成度) | 定期試験と課題提出による。その割合は原則的に4対1。 | ||||||
(教科書) |
『数学III』
(数研出版)
ISBN:ISBN978-4-410-80351-2
適当な教科書がないテーマについては、プリントを配布する。
|
||||||
(参考書等) |
授業中に紹介する
|
||||||
(授業外学習(予習・復習)等) | 数学の学習には、予習、復習とともに、演習問題を積極的に解いてみることがかかせません。演習問題に取り組むことで、理解しているかどうかがわかります。 | ||||||
(その他(オフィスアワー等)) | |||||||
数学基礎B [文系]
1H1, 1H2, 1H3 (科目名)
Basic Mathematics B [For liberal arts students]
(英 訳)
|
|
||||||
(群) 自然 (分野(分類)) 数学(基礎) (使用言語) 日本語 | |||||||
(旧群) B群 (単位数) 4 単位 (週コマ数) 2 コマ (授業形態) 講義 | |||||||
(開講年度・ 開講期) 2025・後期 (配当学年) 主として1回生 (対象学生) 文系向 |
|||||||
(曜時限)
火4・木2 (教室) 共北32 |
|||||||
(授業の概要・目的)
高校の数学IIIの内容を、数学基礎Aに引き続き、高校の教科書に沿って基礎事項だけでなく例題、練習問題、演習問題も含めて解説する。更に大学初年次に扱われる線型代数学、微分積分学の入門的授業を行う。扱う題材は初等関数の積分法とその曲線の長さ、面積、体積の計算への応用、連立一次方程式、2次正方行列の対角化とその2次曲線への応用、多変数関数の微分法とその極値問題への応用などである。
|
|||||||
(到達目標)
初等関数の積分法と図形の求積法への応用、連立一次方程式の一般的解法、2次正方行列の対角化とその応用、多変数関数の微分とその極値問題への応用の手法を習得する。
|
|||||||
(授業計画と内容)
授業内容は以下の通りである。授業はフィードバックを含め全15回(試験週を除く)で行う。 (1) 積分法 (5週)(前期の続き) 不定積分、初等関数の原始関数、置換積分、部分積分、定積分、 定積分の置換積分、部分積分、面積、体積、曲線の長さ (2) 線型代数 (6週) 数ベクトル空間、1次結合、1次従属、1次独立、 行列、行列の演算、正則行列、逆行列、 行列式、 連立1次方程式、係数行列、拡大係数行列、 基本変形、掃き出し法、行列の階数、解の空間、解の自由度、 部分ベクトル空間、基底、次元 2次正方行列の対角化(固有値、固有ベクトル)とその2次曲線への応用 (3) 多変数関数 (3週) 偏微分、偏微分係数、偏導関数、全微分、勾配ベクトル、 多変数関数のグラフの接平面、多変数関数の極値、 条件付き極値問題 (4) 方程式と曲線* (1週) 放物線、楕円、双曲線、2次曲線と直線、媒介変数、極座標 不等式と領域 (5) 複素数* (1週) 複素数平面、絶対値、共役複素数、極形式、偏角、四則演算、 冪乗、冪乗根、図形と方程式 * のついた項目は高校の数学Cの内容であり、時間の余裕があればこの中から選んでふれるものである。 上記のトピックスの講義とともに、それに関連した問題演習(授業中の演習または課題提出)を行う。 |
|||||||
(履修要件)
初等関数(整関数、有理関数、無理関数、指数関数、対数関数、三角関数)の微分の知識を前提とする。
|
|||||||
(成績評価の方法・観点及び達成度)
定期試験と課題提出による。その割合は原則的に4対1。
|
|||||||
(教科書)
『数学III』
(数研出版)
ISBN:ISBN978-4-410-80351-2
適当な教科書がないテーマについては、プリントを配布する。
|
|||||||
(参考書等)
授業中に紹介する
|
|||||||
(授業外学習(予習・復習)等)
数学の学習には、予習、復習とともに、演習問題を積極的に解いてみることがかかせません。演習問題に取り組むことで、理解しているかどうかがわかります。
|
|||||||
(その他(オフィスアワー等))
|
|||||||
授業の進捗状況や受講生の習熟度などによって「授業計画と内容」,「成績評価の方法」が変更になる場合があります。
(科目名) |
微分積分学続論II−微分方程式 2T5, 2T6, 2A6
|
(英 訳) | Advanced Calculus II - Differential Equations | ||||
---|---|---|---|---|---|---|---|
(担当教員) |
|
||||||
(群) | 自然 | ||||||
(分野(分類)) | 数学(発展) | ||||||
(使用言語) | 日本語 | ||||||
(旧群) | B群 | ||||||
(単位数) | 2 単位 | ||||||
(週コマ数) | 1 コマ | ||||||
(授業形態) | 講義 | ||||||
(開講年度・開講期) | 2025・後期 | ||||||
(配当学年) | 主として2回生 | ||||||
(対象学生) | 理系向 | ||||||
(曜時限) | 火4 |
||||||
(教室) | 共西32 | ||||||
(授業の概要・目的) | 「微分積分学(講義・演義)A, B」および「線形代数学(講義・演義)A, B」,または「微分積分学A, B」および「線形代数学A, B」を前提として,様々な自然科学の学習において基礎知識として必要となる,常微分方程式の数学的基礎について講義をする.主に,定数係数線形常微分方程式をはじめとする初等的に解くことのできる微分方程式についての解法,一般の線形微分方程式の解空間構造などの基本的性質,常微分方程式の数学的理論の基盤となる解の存在と一意性とそれに関連する事項について講ずる. | ||||||
(到達目標) | ・定数係数線形常微分方程式をはじめとする初等的に解くことのできる微分方程式についての代表的な解法を修得する ・一般の線形常微分方程式の解空間の構造などの基本的性質について理解する ・常微分方程式の数学的理論の基盤となる解の存在と一意性とそれに関連する事項を理解する |
||||||
(授業計画と内容) | 以下の各項目について講述する.各項目には,受講者の理解の程度を確認しながら,【 】で指示した週数を充てる.各項目・小項目の講義の順序は固定したものではなく,担当者の講義方針と受講者の背景や理解の状況に応じて,講義担当者が適切に決める.講義の進め方については適宜,指示をして,受講者が予習をできるように十分に配慮する. 以下の内容を,フィードバック回を含め(試験週を除く)全15回にて行う. 1.導入【1週】 微分方程式とは何か,物理現象などに現れる微分方程式の具体例 2.初等解法【3週】 変数分離,一階線形微分方程式,定数変化法,全微分形,積分因子,級数解法の例 3.線形微分方程式【6〜7週】 線形微分方程式(変数係数を含む)の解の空間,基本解と基本行列,ロンスキー行列,定数変化法,線形微分方程式の解法,行列の指数関数とその計算(射影行列を含む),2次元定数係数線形微分方程式の相平面図 4.常微分方程式の基本定理【3〜4週】 連続関数全体の空間とその性質(ノルム空間,完備性),逐次近似法,常微分方程式の解の存在と一意性(コーシー・リプシッツの定理),初期値に対する連続性,解の延長 |
||||||
(履修要件) |
「微分積分学(講義・演義)A, B」および「線形代数学(講義・演義)A, B」,または「微分積分学A, B」および「線形代数学A, B」の内容は既知とする.
本講義の履修希望者は,必ず初回授業の授業に出席すること. |
||||||
(成績評価の方法・観点及び達成度) | 主として定期試験による(詳しくは担当教員毎に授業中に指示する). | ||||||
(教科書) |
担当教員ごとに指示する.
|
||||||
(参考書等) |
授業中に紹介する
|
||||||
(授業外学習(予習・復習)等) | 予習・復習とともに,演習問題を積極的に解いてみることが必要である. | ||||||
(その他(オフィスアワー等)) | |||||||
微分積分学続論II−微分方程式
2T5, 2T6, 2A6 (科目名)
Advanced Calculus II - Differential Equations
(英 訳)
|
|
||||||
(群) 自然 (分野(分類)) 数学(発展) (使用言語) 日本語 | |||||||
(旧群) B群 (単位数) 2 単位 (週コマ数) 1 コマ (授業形態) 講義 | |||||||
(開講年度・ 開講期) 2025・後期 (配当学年) 主として2回生 (対象学生) 理系向 |
|||||||
(曜時限)
火4 (教室) 共西32 |
|||||||
(授業の概要・目的)
「微分積分学(講義・演義)A, B」および「線形代数学(講義・演義)A, B」,または「微分積分学A, B」および「線形代数学A, B」を前提として,様々な自然科学の学習において基礎知識として必要となる,常微分方程式の数学的基礎について講義をする.主に,定数係数線形常微分方程式をはじめとする初等的に解くことのできる微分方程式についての解法,一般の線形微分方程式の解空間構造などの基本的性質,常微分方程式の数学的理論の基盤となる解の存在と一意性とそれに関連する事項について講ずる.
|
|||||||
(到達目標)
・定数係数線形常微分方程式をはじめとする初等的に解くことのできる微分方程式についての代表的な解法を修得する
・一般の線形常微分方程式の解空間の構造などの基本的性質について理解する ・常微分方程式の数学的理論の基盤となる解の存在と一意性とそれに関連する事項を理解する |
|||||||
(授業計画と内容)
以下の各項目について講述する.各項目には,受講者の理解の程度を確認しながら,【 】で指示した週数を充てる.各項目・小項目の講義の順序は固定したものではなく,担当者の講義方針と受講者の背景や理解の状況に応じて,講義担当者が適切に決める.講義の進め方については適宜,指示をして,受講者が予習をできるように十分に配慮する. 以下の内容を,フィードバック回を含め(試験週を除く)全15回にて行う. 1.導入【1週】 微分方程式とは何か,物理現象などに現れる微分方程式の具体例 2.初等解法【3週】 変数分離,一階線形微分方程式,定数変化法,全微分形,積分因子,級数解法の例 3.線形微分方程式【6〜7週】 線形微分方程式(変数係数を含む)の解の空間,基本解と基本行列,ロンスキー行列,定数変化法,線形微分方程式の解法,行列の指数関数とその計算(射影行列を含む),2次元定数係数線形微分方程式の相平面図 4.常微分方程式の基本定理【3〜4週】 連続関数全体の空間とその性質(ノルム空間,完備性),逐次近似法,常微分方程式の解の存在と一意性(コーシー・リプシッツの定理),初期値に対する連続性,解の延長 |
|||||||
(履修要件)
「微分積分学(講義・演義)A, B」および「線形代数学(講義・演義)A, B」,または「微分積分学A, B」および「線形代数学A, B」の内容は既知とする.
本講義の履修希望者は,必ず初回授業の授業に出席すること. |
|||||||
(成績評価の方法・観点及び達成度)
主として定期試験による(詳しくは担当教員毎に授業中に指示する).
|
|||||||
(教科書)
担当教員ごとに指示する.
|
|||||||
(参考書等)
授業中に紹介する
|
|||||||
(授業外学習(予習・復習)等)
予習・復習とともに,演習問題を積極的に解いてみることが必要である.
|
|||||||
(その他(オフィスアワー等))
|
|||||||
授業の進捗状況や受講生の習熟度などによって「授業計画と内容」,「成績評価の方法」が変更になる場合があります。
(科目名) |
線形代数学B [文系] 1E1, 1E2, 1E3, 1A5
|
(英 訳) | Linear Algebra B [For liberal arts students] | ||||
---|---|---|---|---|---|---|---|
(担当教員) |
|
||||||
(群) | 自然 | ||||||
(分野(分類)) | 数学(基礎) | ||||||
(使用言語) | 日本語 | ||||||
(旧群) | B群 | ||||||
(単位数) | 2 単位 | ||||||
(週コマ数) | 1 コマ | ||||||
(授業形態) | 講義 | ||||||
(開講年度・開講期) | 2025・後期 | ||||||
(配当学年) | 全回生 | ||||||
(対象学生) | 全学向 | ||||||
(曜時限) | 火4 |
||||||
(教室) | 4共31 | ||||||
(授業の概要・目的) | コンピューターの急速な進歩により,様々な社会現象や自然現象を種々の数理的手法により分析することが可能となり,その重要性が高まっている.そのような数理的手法を学ぶための基礎として,文系学生向けに線形代数学に関する基礎的内容を講義する. 線形代数学B[文系]では,線形代数学A[文系]で学んだ連立一次方程式などのベクトルや行列に関する基礎的な内容を基にして,線形代数学において中心的な役割を果たす考え方や技法を学ぶ. |
||||||
(到達目標) | 線形代数学B[文系]では,行列式,数ベクトル空間の基礎,内積,固有値・固有ベクトル,行列の対角化などの線形代数学において中心的な役割を果たす重要な考え方や技法を理解し,ベクトルや行列のより進んだ取り扱いに習熟することを目指す. | ||||||
(授業計画と内容) | 次の内容について解説する予定である.授業回数はフィードバックを含め全15回とする.各項目・小項目の講義の順序は固定したものではなく,担当者の講義方針と受講者の背景や理解の状況に応じて,講義担当者が適切に決める.主として実ベクトル,実行列を扱う. 1. 行列式(行列式の定義と性質(基本変形,積,転置との関係,置換と符号),行列式の展開,クラメルの公式)【4-5週】 2. 数ベクトル空間(線形独立性,部分空間,基底と次元,内積,正規直交基底,*直和,*直交補空間,*直交行列,*QR分解)【4-5週】 3. 固有値・固有ベクトルと対角化(固有値と固有ベクトル,行列の対角化,*行列の上三角化,*ケーリー・ハミルトンの定理,*対称行列の直交行列による対角化,*対称行列の定値性,*行列の平方根)【4-5週】 4. フィードバック【1週】 *のついた項目は,時間の余裕があればこの中から選んでふれるものである. 上記のトピックスの講義とともに,それに関連した問題演習(授業中の演習または宿題)を行う. |
||||||
(履修要件) |
線形代数学A[文系]に引き続いて履修すること.
|
||||||
(成績評価の方法・観点及び達成度) | 主として定期試験により成績評価を行うが,問題演習,宿題,小テストなどの平常点を成績評価に加えることもある.定期試験と平常点の割合は各教員が周知する. | ||||||
(教科書) |
授業中に指示する.適当な教科書がないテーマについては,プリントや電子資料を配布する.
|
||||||
(参考書等) |
授業中に紹介する
|
||||||
(授業外学習(予習・復習)等) | 数学を学ぶには,予習,復習とともに演習問題を自分で解いてみることが必要です. | ||||||
(その他(オフィスアワー等)) | |||||||
線形代数学B [文系]
1E1, 1E2, 1E3, 1A5 (科目名)
Linear Algebra B [For liberal arts students]
(英 訳)
|
|
||||||
(群) 自然 (分野(分類)) 数学(基礎) (使用言語) 日本語 | |||||||
(旧群) B群 (単位数) 2 単位 (週コマ数) 1 コマ (授業形態) 講義 | |||||||
(開講年度・ 開講期) 2025・後期 (配当学年) 全回生 (対象学生) 全学向 |
|||||||
(曜時限)
火4 (教室) 4共31 |
|||||||
(授業の概要・目的)
コンピューターの急速な進歩により,様々な社会現象や自然現象を種々の数理的手法により分析することが可能となり,その重要性が高まっている.そのような数理的手法を学ぶための基礎として,文系学生向けに線形代数学に関する基礎的内容を講義する.
線形代数学B[文系]では,線形代数学A[文系]で学んだ連立一次方程式などのベクトルや行列に関する基礎的な内容を基にして,線形代数学において中心的な役割を果たす考え方や技法を学ぶ. |
|||||||
(到達目標)
線形代数学B[文系]では,行列式,数ベクトル空間の基礎,内積,固有値・固有ベクトル,行列の対角化などの線形代数学において中心的な役割を果たす重要な考え方や技法を理解し,ベクトルや行列のより進んだ取り扱いに習熟することを目指す.
|
|||||||
(授業計画と内容)
次の内容について解説する予定である.授業回数はフィードバックを含め全15回とする.各項目・小項目の講義の順序は固定したものではなく,担当者の講義方針と受講者の背景や理解の状況に応じて,講義担当者が適切に決める.主として実ベクトル,実行列を扱う. 1. 行列式(行列式の定義と性質(基本変形,積,転置との関係,置換と符号),行列式の展開,クラメルの公式)【4-5週】 2. 数ベクトル空間(線形独立性,部分空間,基底と次元,内積,正規直交基底,*直和,*直交補空間,*直交行列,*QR分解)【4-5週】 3. 固有値・固有ベクトルと対角化(固有値と固有ベクトル,行列の対角化,*行列の上三角化,*ケーリー・ハミルトンの定理,*対称行列の直交行列による対角化,*対称行列の定値性,*行列の平方根)【4-5週】 4. フィードバック【1週】 *のついた項目は,時間の余裕があればこの中から選んでふれるものである. 上記のトピックスの講義とともに,それに関連した問題演習(授業中の演習または宿題)を行う. |
|||||||
(履修要件)
線形代数学A[文系]に引き続いて履修すること.
|
|||||||
(成績評価の方法・観点及び達成度)
主として定期試験により成績評価を行うが,問題演習,宿題,小テストなどの平常点を成績評価に加えることもある.定期試験と平常点の割合は各教員が周知する.
|
|||||||
(教科書)
授業中に指示する.適当な教科書がないテーマについては,プリントや電子資料を配布する.
|
|||||||
(参考書等)
授業中に紹介する
|
|||||||
(授業外学習(予習・復習)等)
数学を学ぶには,予習,復習とともに演習問題を自分で解いてみることが必要です.
|
|||||||
(その他(オフィスアワー等))
|
|||||||
授業の進捗状況や受講生の習熟度などによって「授業計画と内容」,「成績評価の方法」が変更になる場合があります。
(科目名) |
線形代数学B [文系] 1E4, 1E5, 1E6, 1A5
|
(英 訳) | Linear Algebra B [For liberal arts students] | ||||
---|---|---|---|---|---|---|---|
(担当教員) |
|
||||||
(群) | 自然 | ||||||
(分野(分類)) | 数学(基礎) | ||||||
(使用言語) | 日本語 | ||||||
(旧群) | B群 | ||||||
(単位数) | 2 単位 | ||||||
(週コマ数) | 1 コマ | ||||||
(授業形態) | 講義 | ||||||
(開講年度・開講期) | 2025・後期 | ||||||
(配当学年) | 全回生 | ||||||
(対象学生) | 全学向 | ||||||
(曜時限) | 火4 |
||||||
(教室) | 4共21 | ||||||
(授業の概要・目的) | コンピューターの急速な進歩により,様々な社会現象や自然現象を種々の数理的手法により分析することが可能となり,その重要性が高まっている.そのような数理的手法を学ぶための基礎として,文系学生向けに線形代数学に関する基礎的内容を講義する. 線形代数学B[文系]では,線形代数学A[文系]で学んだ連立一次方程式などのベクトルや行列に関する基礎的な内容を基にして,線形代数学において中心的な役割を果たす考え方や技法を学ぶ. |
||||||
(到達目標) | 線形代数学B[文系]では,行列式,数ベクトル空間の基礎,内積,固有値・固有ベクトル,行列の対角化などの線形代数学において中心的な役割を果たす重要な考え方や技法を理解し,ベクトルや行列のより進んだ取り扱いに習熟することを目指す. | ||||||
(授業計画と内容) | 次の内容について解説する予定である.授業回数はフィードバックを含め全15回とする.各項目・小項目の講義の順序は固定したものではなく,担当者の講義方針と受講者の背景や理解の状況に応じて,講義担当者が適切に決める.主として実ベクトル,実行列を扱う. 1. 行列式(行列式の定義と性質(基本変形,積,転置との関係,置換と符号),行列式の展開,クラメルの公式)【4-5週】 2. 数ベクトル空間(線形独立性,部分空間,基底と次元,内積,正規直交基底,*直和,*直交補空間,*直交行列,*QR分解)【4-5週】 3. 固有値・固有ベクトルと対角化(固有値と固有ベクトル,行列の対角化,*行列の上三角化,*ケーリー・ハミルトンの定理,*対称行列の直交行列による対角化,*対称行列の定値性,*行列の平方根)【4-5週】 4. フィードバック【1週】 *のついた項目は,時間の余裕があればこの中から選んでふれるものである. 上記のトピックスの講義とともに,それに関連した問題演習(授業中の演習または宿題)を行う. |
||||||
(履修要件) |
線形代数学A[文系]に引き続いて履修すること.
|
||||||
(成績評価の方法・観点及び達成度) | 主として定期試験により成績評価を行うが,問題演習,宿題,小テストなどの平常点を成績評価に加えることもある.定期試験と平常点の割合は各教員が周知する. | ||||||
(教科書) |
授業中に指示する.適当な教科書がないテーマについては,プリントや電子資料を配布する.
|
||||||
(参考書等) |
授業中に紹介する
|
||||||
(授業外学習(予習・復習)等) | 数学を学ぶには,予習,復習とともに演習問題を自分で解いてみることが必要です. | ||||||
(その他(オフィスアワー等)) | |||||||
線形代数学B [文系]
1E4, 1E5, 1E6, 1A5 (科目名)
Linear Algebra B [For liberal arts students]
(英 訳)
|
|
||||||
(群) 自然 (分野(分類)) 数学(基礎) (使用言語) 日本語 | |||||||
(旧群) B群 (単位数) 2 単位 (週コマ数) 1 コマ (授業形態) 講義 | |||||||
(開講年度・ 開講期) 2025・後期 (配当学年) 全回生 (対象学生) 全学向 |
|||||||
(曜時限)
火4 (教室) 4共21 |
|||||||
(授業の概要・目的)
コンピューターの急速な進歩により,様々な社会現象や自然現象を種々の数理的手法により分析することが可能となり,その重要性が高まっている.そのような数理的手法を学ぶための基礎として,文系学生向けに線形代数学に関する基礎的内容を講義する.
線形代数学B[文系]では,線形代数学A[文系]で学んだ連立一次方程式などのベクトルや行列に関する基礎的な内容を基にして,線形代数学において中心的な役割を果たす考え方や技法を学ぶ. |
|||||||
(到達目標)
線形代数学B[文系]では,行列式,数ベクトル空間の基礎,内積,固有値・固有ベクトル,行列の対角化などの線形代数学において中心的な役割を果たす重要な考え方や技法を理解し,ベクトルや行列のより進んだ取り扱いに習熟することを目指す.
|
|||||||
(授業計画と内容)
次の内容について解説する予定である.授業回数はフィードバックを含め全15回とする.各項目・小項目の講義の順序は固定したものではなく,担当者の講義方針と受講者の背景や理解の状況に応じて,講義担当者が適切に決める.主として実ベクトル,実行列を扱う. 1. 行列式(行列式の定義と性質(基本変形,積,転置との関係,置換と符号),行列式の展開,クラメルの公式)【4-5週】 2. 数ベクトル空間(線形独立性,部分空間,基底と次元,内積,正規直交基底,*直和,*直交補空間,*直交行列,*QR分解)【4-5週】 3. 固有値・固有ベクトルと対角化(固有値と固有ベクトル,行列の対角化,*行列の上三角化,*ケーリー・ハミルトンの定理,*対称行列の直交行列による対角化,*対称行列の定値性,*行列の平方根)【4-5週】 4. フィードバック【1週】 *のついた項目は,時間の余裕があればこの中から選んでふれるものである. 上記のトピックスの講義とともに,それに関連した問題演習(授業中の演習または宿題)を行う. |
|||||||
(履修要件)
線形代数学A[文系]に引き続いて履修すること.
|
|||||||
(成績評価の方法・観点及び達成度)
主として定期試験により成績評価を行うが,問題演習,宿題,小テストなどの平常点を成績評価に加えることもある.定期試験と平常点の割合は各教員が周知する.
|
|||||||
(教科書)
授業中に指示する.適当な教科書がないテーマについては,プリントや電子資料を配布する.
|
|||||||
(参考書等)
授業中に紹介する
|
|||||||
(授業外学習(予習・復習)等)
数学を学ぶには,予習,復習とともに演習問題を自分で解いてみることが必要です.
|
|||||||
(その他(オフィスアワー等))
|
|||||||
授業の進捗状況や受講生の習熟度などによって「授業計画と内容」,「成績評価の方法」が変更になる場合があります。
(科目名) |
微分積分学(講義・演義)B 1M4, 1M6
|
(英 訳) | Calculus with Exercises B | ||||
---|---|---|---|---|---|---|---|
(担当教員) |
|
||||||
(群) | 自然 | ||||||
(分野(分類)) | 数学(基礎) | ||||||
(使用言語) | 日本語 | ||||||
(旧群) | B群 | ||||||
(単位数) | 3 単位 | ||||||
(週コマ数) | 2 コマ | ||||||
(授業形態) | 講義 | ||||||
(開講年度・開講期) | 2025・後期 | ||||||
(配当学年) | 主として1回生 | ||||||
(対象学生) | 理系向 | ||||||
(曜時限) | 水1・木1 |
||||||
(教室) | 4共32 | ||||||
(授業の概要・目的) | 微分積分学は,線形代数学と共に現代の科学技術を支える数学の根幹をなす.この科目では,将来の応用に必要な微分積分学の基礎を解説する. 微分積分学(講義・演義)Bでは,微分積分学(講義・演義)Aに続いて一変数関数の微分積分の理解をさらに深めた後に,多変数関数の微分積分について学ぶ. |
||||||
(到達目標) | 一変数および多変数関数の微分積分の理論的な基礎を理解すること,ならびに,それを用いた数学的解析の手法を修得して応用できるようになることを目標とする. | ||||||
(授業計画と内容) | この科目は講義と演義とが一体となって構成されている. 演義は原則として隔週で開講される.演義においては,受講者は問題練習や課題学習に積極的に取り組むことにより,それまでに講義で学んだ事柄の理解を深める. 以下に挙げるのは講義の計画・内容である.各項目には,受講者の理解の程度を確認しながら,【 】で指示した週数を充てる.各項目・小項目の講義の順序は固定したものではなく,担当者の講義方針と受講者の背景や理解の状況に応じて,講義担当者が適切に決める.講義の進め方については適宜,指示をして,受講者が予習をできるように十分に配慮する. 以下の内容を,フィードバック回を含め(試験週を除く)全15回にて行う. 1.級数【3〜5週】: 無限級数(収束の判定法,絶対収束と条件収束) べき級数(収束半径,項別微積分) 関数列・関数項級数*(一様収束,項別微積分) 2.平面および空間の点集合【2週】: 距離,点列の収束,開集合・閉集合 連続関数 3.多変数関数の微分法【4〜5週】: 偏微分,微分(全微分)可能性,一次近似,接平面,勾配ベクトル 合成関数の微分(連鎖律),ヤコビ行列,ヤコビ行列式 テイラーの定理,極値問題 条件付き極値問題(陰関数定理) 4.多変数関数の積分法【4〜5週】: 重積分,累次積分,変数変換公式,面積・体積 広義積分,ガンマ関数とベータ関数 アステリスク * はオプション |
||||||
(履修要件) |
特になし
|
||||||
(成績評価の方法・観点及び達成度) | 演義担当教員によって平常点(演習への参加状況,課題への取組状況など)から得られた演義成績(30 点満点)をもとに,講義担当教員が期末試験を用いて,演義成績以上,100 点以下の範囲で 評価する. 教員によっては演義以外の平常点(レポート、中間試験などによるもの)を参考にすることもある.詳細は授業中に説明する. 本科目の評価が不合格であった履修者のうち,一定の基準以上の成績の者は再試験を受験できる.再試験の概要は KULASIS で履修者に通知する.なお再試験は3月末に実施予定である. |
||||||
(教科書) |
担当教員毎に指示する.
|
||||||
(参考書等) |
授業中に紹介する
|
||||||
(授業外学習(予習・復習)等) | 予習,復習とともに,演習問題を積極的に解いてみることが必要である. | ||||||
(その他(オフィスアワー等)) | 同一クラスにおいて前期開講の微分積分学(講義・演義)Aとの連続した履修を推奨する.また線形代数学(講義・演義)B を並行して受講することが望ましい. |
||||||
微分積分学(講義・演義)B
1M4, 1M6 (科目名)
Calculus with Exercises B
(英 訳)
|
|
||||||
(群) 自然 (分野(分類)) 数学(基礎) (使用言語) 日本語 | |||||||
(旧群) B群 (単位数) 3 単位 (週コマ数) 2 コマ (授業形態) 講義 | |||||||
(開講年度・ 開講期) 2025・後期 (配当学年) 主として1回生 (対象学生) 理系向 |
|||||||
(曜時限)
水1・木1 (教室) 4共32 |
|||||||
(授業の概要・目的)
微分積分学は,線形代数学と共に現代の科学技術を支える数学の根幹をなす.この科目では,将来の応用に必要な微分積分学の基礎を解説する.
微分積分学(講義・演義)Bでは,微分積分学(講義・演義)Aに続いて一変数関数の微分積分の理解をさらに深めた後に,多変数関数の微分積分について学ぶ. |
|||||||
(到達目標)
一変数および多変数関数の微分積分の理論的な基礎を理解すること,ならびに,それを用いた数学的解析の手法を修得して応用できるようになることを目標とする.
|
|||||||
(授業計画と内容)
この科目は講義と演義とが一体となって構成されている. 演義は原則として隔週で開講される.演義においては,受講者は問題練習や課題学習に積極的に取り組むことにより,それまでに講義で学んだ事柄の理解を深める. 以下に挙げるのは講義の計画・内容である.各項目には,受講者の理解の程度を確認しながら,【 】で指示した週数を充てる.各項目・小項目の講義の順序は固定したものではなく,担当者の講義方針と受講者の背景や理解の状況に応じて,講義担当者が適切に決める.講義の進め方については適宜,指示をして,受講者が予習をできるように十分に配慮する. 以下の内容を,フィードバック回を含め(試験週を除く)全15回にて行う. 1.級数【3〜5週】: 無限級数(収束の判定法,絶対収束と条件収束) べき級数(収束半径,項別微積分) 関数列・関数項級数*(一様収束,項別微積分) 2.平面および空間の点集合【2週】: 距離,点列の収束,開集合・閉集合 連続関数 3.多変数関数の微分法【4〜5週】: 偏微分,微分(全微分)可能性,一次近似,接平面,勾配ベクトル 合成関数の微分(連鎖律),ヤコビ行列,ヤコビ行列式 テイラーの定理,極値問題 条件付き極値問題(陰関数定理) 4.多変数関数の積分法【4〜5週】: 重積分,累次積分,変数変換公式,面積・体積 広義積分,ガンマ関数とベータ関数 アステリスク * はオプション |
|||||||
(履修要件)
特になし
|
|||||||
(成績評価の方法・観点及び達成度)
演義担当教員によって平常点(演習への参加状況,課題への取組状況など)から得られた演義成績(30 点満点)をもとに,講義担当教員が期末試験を用いて,演義成績以上,100 点以下の範囲で 評価する.
教員によっては演義以外の平常点(レポート、中間試験などによるもの)を参考にすることもある.詳細は授業中に説明する. 本科目の評価が不合格であった履修者のうち,一定の基準以上の成績の者は再試験を受験できる.再試験の概要は KULASIS で履修者に通知する.なお再試験は3月末に実施予定である. |
|||||||
(教科書)
担当教員毎に指示する.
|
|||||||
(参考書等)
授業中に紹介する
|
|||||||
(授業外学習(予習・復習)等)
予習,復習とともに,演習問題を積極的に解いてみることが必要である.
|
|||||||
(その他(オフィスアワー等))
同一クラスにおいて前期開講の微分積分学(講義・演義)Aとの連続した履修を推奨する.また線形代数学(講義・演義)B を並行して受講することが望ましい.
|
|||||||
授業の進捗状況や受講生の習熟度などによって「授業計画と内容」,「成績評価の方法」が変更になる場合があります。
(科目名) |
微分積分学(講義・演義)B 1φ1
|
(英 訳) | Calculus with Exercises B | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
(担当教員) |
|
||||||||||||
(群) | 自然 | ||||||||||||
(分野(分類)) | 数学(基礎) | ||||||||||||
(使用言語) | 日本語 | ||||||||||||
(旧群) | B群 | ||||||||||||
(単位数) | 3 単位 | ||||||||||||
(週コマ数) | 2 コマ | ||||||||||||
(授業形態) | 講義 | ||||||||||||
(開講年度・開講期) | 2025・後期 | ||||||||||||
(配当学年) | 主として1回生 | ||||||||||||
(対象学生) | 理系向 | ||||||||||||
(曜時限) | 水1・金3 |
||||||||||||
(教室) | 共東32 | ||||||||||||
(授業の概要・目的) | 微分積分学は,線形代数学と共に現代の科学技術を支える数学の根幹をなす.この科目では,将来の応用に必要な微分積分学の基礎を解説する. 微分積分学(講義・演義)Bでは,微分積分学(講義・演義)Aに続いて一変数関数の微分積分の理解をさらに深めた後に,多変数関数の微分積分について学ぶ. |
||||||||||||
(到達目標) | 一変数および多変数関数の微分積分の理論的な基礎を理解すること,ならびに,それを用いた数学的解析の手法を修得して応用できるようになることを目標とする. | ||||||||||||
(授業計画と内容) | この科目は講義と演義とが一体となって構成されている. 演義は原則として隔週で開講される.演義においては,受講者は問題練習や課題学習に積極的に取り組むことにより,それまでに講義で学んだ事柄の理解を深める. 以下に挙げるのは講義の計画・内容である.各項目には,受講者の理解の程度を確認しながら,【 】で指示した週数を充てる.各項目・小項目の講義の順序は固定したものではなく,担当者の講義方針と受講者の背景や理解の状況に応じて,講義担当者が適切に決める.講義の進め方については適宜,指示をして,受講者が予習をできるように十分に配慮する. 以下の内容を,フィードバック回を含め(試験週を除く)全15回にて行う. 1.級数【3〜5週】: 無限級数(収束の判定法,絶対収束と条件収束) べき級数(収束半径,項別微積分) 関数列・関数項級数*(一様収束,項別微積分) 2.平面および空間の点集合【2週】: 距離,点列の収束,開集合・閉集合 連続関数 3.多変数関数の微分法【4〜5週】: 偏微分,微分(全微分)可能性,一次近似,接平面,勾配ベクトル 合成関数の微分(連鎖律),ヤコビ行列,ヤコビ行列式 テイラーの定理,極値問題 条件付き極値問題(陰関数定理) 4.多変数関数の積分法【4〜5週】: 重積分,累次積分,変数変換公式,面積・体積 広義積分,ガンマ関数とベータ関数 アステリスク * はオプション |
||||||||||||
(履修要件) |
特になし
|
||||||||||||
(成績評価の方法・観点及び達成度) | 演義担当教員によって平常点(演習への参加状況,課題への取組状況など)から得られた演義成績(30 点満点)をもとに,講義担当教員が期末試験を用いて,演義成績以上,100 点以下の範囲で 評価する. 教員によっては演義以外の平常点(レポート、中間試験などによるもの)を参考にすることもある.詳細は授業中に説明する. 本科目の評価が不合格であった履修者のうち,一定の基準以上の成績の者は再試験を受験できる.再試験の概要は KULASIS で履修者に通知する.なお再試験は3月末に実施予定である. |
||||||||||||
(教科書) |
担当教員毎に指示する.
|
||||||||||||
(参考書等) |
授業中に紹介する
|
||||||||||||
(授業外学習(予習・復習)等) | 予習,復習とともに,演習問題を積極的に解いてみることが必要である. | ||||||||||||
(その他(オフィスアワー等)) | 同一クラスにおいて前期開講の微分積分学(講義・演義)Aとの連続した履修を推奨する.また線形代数学(講義・演義)B を並行して受講することが望ましい. |
||||||||||||
微分積分学(講義・演義)B
1φ1 (科目名)
Calculus with Exercises B
(英 訳)
|
|
|||||||||
(群) 自然 (分野(分類)) 数学(基礎) (使用言語) 日本語 | ||||||||||
(旧群) B群 (単位数) 3 単位 (週コマ数) 2 コマ (授業形態) 講義 | ||||||||||
(開講年度・ 開講期) 2025・後期 (配当学年) 主として1回生 (対象学生) 理系向 |
||||||||||
(曜時限)
水1・金3 (教室) 共東32 |
||||||||||
(授業の概要・目的)
微分積分学は,線形代数学と共に現代の科学技術を支える数学の根幹をなす.この科目では,将来の応用に必要な微分積分学の基礎を解説する.
微分積分学(講義・演義)Bでは,微分積分学(講義・演義)Aに続いて一変数関数の微分積分の理解をさらに深めた後に,多変数関数の微分積分について学ぶ. |
||||||||||
(到達目標)
一変数および多変数関数の微分積分の理論的な基礎を理解すること,ならびに,それを用いた数学的解析の手法を修得して応用できるようになることを目標とする.
|
||||||||||
(授業計画と内容)
この科目は講義と演義とが一体となって構成されている. 演義は原則として隔週で開講される.演義においては,受講者は問題練習や課題学習に積極的に取り組むことにより,それまでに講義で学んだ事柄の理解を深める. 以下に挙げるのは講義の計画・内容である.各項目には,受講者の理解の程度を確認しながら,【 】で指示した週数を充てる.各項目・小項目の講義の順序は固定したものではなく,担当者の講義方針と受講者の背景や理解の状況に応じて,講義担当者が適切に決める.講義の進め方については適宜,指示をして,受講者が予習をできるように十分に配慮する. 以下の内容を,フィードバック回を含め(試験週を除く)全15回にて行う. 1.級数【3〜5週】: 無限級数(収束の判定法,絶対収束と条件収束) べき級数(収束半径,項別微積分) 関数列・関数項級数*(一様収束,項別微積分) 2.平面および空間の点集合【2週】: 距離,点列の収束,開集合・閉集合 連続関数 3.多変数関数の微分法【4〜5週】: 偏微分,微分(全微分)可能性,一次近似,接平面,勾配ベクトル 合成関数の微分(連鎖律),ヤコビ行列,ヤコビ行列式 テイラーの定理,極値問題 条件付き極値問題(陰関数定理) 4.多変数関数の積分法【4〜5週】: 重積分,累次積分,変数変換公式,面積・体積 広義積分,ガンマ関数とベータ関数 アステリスク * はオプション |
||||||||||
(履修要件)
特になし
|
||||||||||
(成績評価の方法・観点及び達成度)
演義担当教員によって平常点(演習への参加状況,課題への取組状況など)から得られた演義成績(30 点満点)をもとに,講義担当教員が期末試験を用いて,演義成績以上,100 点以下の範囲で 評価する.
教員によっては演義以外の平常点(レポート、中間試験などによるもの)を参考にすることもある.詳細は授業中に説明する. 本科目の評価が不合格であった履修者のうち,一定の基準以上の成績の者は再試験を受験できる.再試験の概要は KULASIS で履修者に通知する.なお再試験は3月末に実施予定である. |
||||||||||
(教科書)
担当教員毎に指示する.
|
||||||||||
(参考書等)
授業中に紹介する
|
||||||||||
(授業外学習(予習・復習)等)
予習,復習とともに,演習問題を積極的に解いてみることが必要である.
|
||||||||||
(その他(オフィスアワー等))
同一クラスにおいて前期開講の微分積分学(講義・演義)Aとの連続した履修を推奨する.また線形代数学(講義・演義)B を並行して受講することが望ましい.
|
||||||||||
授業の進捗状況や受講生の習熟度などによって「授業計画と内容」,「成績評価の方法」が変更になる場合があります。
(科目名) |
線形代数学(講義・演義)B 1φ1
|
(英 訳) | Linear Algebra with Exercises B | ||||
---|---|---|---|---|---|---|---|
(担当教員) |
|
||||||
(群) | 自然 | ||||||
(分野(分類)) | 数学(基礎) | ||||||
(使用言語) | 日本語 | ||||||
(旧群) | B群 | ||||||
(単位数) | 3 単位 | ||||||
(週コマ数) | 2 コマ | ||||||
(授業形態) | 講義 | ||||||
(開講年度・開講期) | 2025・後期 | ||||||
(配当学年) | 主として1回生 | ||||||
(対象学生) | 理系向 | ||||||
(曜時限) | 水1・木2 |
||||||
(教室) | 共東32 | ||||||
(授業の概要・目的) | 線形代数学は,微分積分学と共に現代の科学技術を支える数学の根幹をなす.この科目では,将来の応用に必要な線形代数学の基礎を解説する. 線形代数学(講義・演義)Bでは,ベクトル空間,線形写像などの基礎概念を体系的に学ぶと共に,それらの概念を行列に応用してさらに理解を深める. |
||||||
(到達目標) | ベクトル空間,線形写像などの抽象概念を体系的に理解すること,ならびにそれを通してベクトル,行列の理論的な基礎を固めることを目標とする.その際には,ベクトルや行列等のより進んだ取り扱いに習熟することも目指す. | ||||||
(授業計画と内容) | この科目は講義と演義とが一体として構成されている. 演義は原則として隔週で開講される.演義においては,受講者は問題演習や課題学習に積極的に取り組むことにより,それまでに講義で学んだ事柄の理解を深める. 以下に挙げるのは講義の計画、内容である.各項目には,受講者の理解の程度を確認しながら,【 】で指示した週数を充てる.各項目・小項目の講義の順序は固定したものではなく,担当者の講義方針と受講者の背景や理解の状況に応じて,講義担当者が適切に決める.講義の進め方については適宜,指示をして,受講者が予習をできるように十分に配慮する. 以下の内容を,フィードバック回を含め(試験週を除く)全15回にて行う. 1. 抽象ベクトル空間【5〜6週】: 一次結合,一次独立,基底,次元,部分空間,線形写像,核と像 線形写像と行列,基底の変換,直和 2. 計量ベクトル空間【3〜4週】: 内積,正規直交基底,直交行列,ユニタリ行列,直交補空間 3. 固有値と行列の対角化【5〜6週】: 固有値と固有ベクトル,固有多項式,固有空間 行列の対角化,行列の上三角化,ケーリー.ハミルトンの定理 対称行列の直交行列による対角化 二次形式* エルミート行列のユニタリ行列による対角化* アステリスク * はオプション |
||||||
(履修要件) |
特になし
|
||||||
(成績評価の方法・観点及び達成度) | 演義担当教員によって平常点(演習への参加状況,課題への取組状況など)から得られた演義成績(30 点満点)をもとに,講義担当教員が期末試験を用いて,演義成績以上,100 点以下の範囲で 評価する. 教員によっては演義以外の平常点(レポート、中間試験などによるもの)を参考にすることもある.詳細は授業中に説明する. 本科目の評価が不合格であった履修者のうち,一定の基準以上の成績の者は再試験を受験できる.再試験の概要は KULASIS で履修者に通知する.なお再試験は3月末に実施予定である. |
||||||
(教科書) |
担当教員毎に指示する.
|
||||||
(参考書等) |
授業中に紹介する
|
||||||
(授業外学習(予習・復習)等) | 予習,復習とともに,演習問題を積極的に解いてみることが必要である. | ||||||
(その他(オフィスアワー等)) | 同一クラスにおいて前期開講の線形代数学(講義・演義)Aとの連続した履修を推奨する.また微分積分学(講義・演義)B を並行して受講することが望ましい. |
||||||
線形代数学(講義・演義)B
1φ1 (科目名)
Linear Algebra with Exercises B
(英 訳)
|
|
||||||
(群) 自然 (分野(分類)) 数学(基礎) (使用言語) 日本語 | |||||||
(旧群) B群 (単位数) 3 単位 (週コマ数) 2 コマ (授業形態) 講義 | |||||||
(開講年度・ 開講期) 2025・後期 (配当学年) 主として1回生 (対象学生) 理系向 |
|||||||
(曜時限)
水1・木2 (教室) 共東32 |
|||||||
(授業の概要・目的)
線形代数学は,微分積分学と共に現代の科学技術を支える数学の根幹をなす.この科目では,将来の応用に必要な線形代数学の基礎を解説する.
線形代数学(講義・演義)Bでは,ベクトル空間,線形写像などの基礎概念を体系的に学ぶと共に,それらの概念を行列に応用してさらに理解を深める. |
|||||||
(到達目標)
ベクトル空間,線形写像などの抽象概念を体系的に理解すること,ならびにそれを通してベクトル,行列の理論的な基礎を固めることを目標とする.その際には,ベクトルや行列等のより進んだ取り扱いに習熟することも目指す.
|
|||||||
(授業計画と内容)
この科目は講義と演義とが一体として構成されている. 演義は原則として隔週で開講される.演義においては,受講者は問題演習や課題学習に積極的に取り組むことにより,それまでに講義で学んだ事柄の理解を深める. 以下に挙げるのは講義の計画、内容である.各項目には,受講者の理解の程度を確認しながら,【 】で指示した週数を充てる.各項目・小項目の講義の順序は固定したものではなく,担当者の講義方針と受講者の背景や理解の状況に応じて,講義担当者が適切に決める.講義の進め方については適宜,指示をして,受講者が予習をできるように十分に配慮する. 以下の内容を,フィードバック回を含め(試験週を除く)全15回にて行う. 1. 抽象ベクトル空間【5〜6週】: 一次結合,一次独立,基底,次元,部分空間,線形写像,核と像 線形写像と行列,基底の変換,直和 2. 計量ベクトル空間【3〜4週】: 内積,正規直交基底,直交行列,ユニタリ行列,直交補空間 3. 固有値と行列の対角化【5〜6週】: 固有値と固有ベクトル,固有多項式,固有空間 行列の対角化,行列の上三角化,ケーリー.ハミルトンの定理 対称行列の直交行列による対角化 二次形式* エルミート行列のユニタリ行列による対角化* アステリスク * はオプション |
|||||||
(履修要件)
特になし
|
|||||||
(成績評価の方法・観点及び達成度)
演義担当教員によって平常点(演習への参加状況,課題への取組状況など)から得られた演義成績(30 点満点)をもとに,講義担当教員が期末試験を用いて,演義成績以上,100 点以下の範囲で 評価する.
教員によっては演義以外の平常点(レポート、中間試験などによるもの)を参考にすることもある.詳細は授業中に説明する. 本科目の評価が不合格であった履修者のうち,一定の基準以上の成績の者は再試験を受験できる.再試験の概要は KULASIS で履修者に通知する.なお再試験は3月末に実施予定である. |
|||||||
(教科書)
担当教員毎に指示する.
|
|||||||
(参考書等)
授業中に紹介する
|
|||||||
(授業外学習(予習・復習)等)
予習,復習とともに,演習問題を積極的に解いてみることが必要である.
|
|||||||
(その他(オフィスアワー等))
同一クラスにおいて前期開講の線形代数学(講義・演義)Aとの連続した履修を推奨する.また微分積分学(講義・演義)B を並行して受講することが望ましい.
|
|||||||
授業の進捗状況や受講生の習熟度などによって「授業計画と内容」,「成績評価の方法」が変更になる場合があります。
(科目名) |
微分積分学続論II−微分方程式 2T1, 2T2, 2T3, 2T4
|
(英 訳) | Advanced Calculus II - Differential Equations | ||||
---|---|---|---|---|---|---|---|
(担当教員) |
|
||||||
(群) | 自然 | ||||||
(分野(分類)) | 数学(発展) | ||||||
(使用言語) | 日本語 | ||||||
(旧群) | B群 | ||||||
(単位数) | 2 単位 | ||||||
(週コマ数) | 1 コマ | ||||||
(授業形態) | 講義 | ||||||
(開講年度・開講期) | 2025・後期 | ||||||
(配当学年) | 主として2回生 | ||||||
(対象学生) | 理系向 | ||||||
(曜時限) | 水2 |
||||||
(教室) | 4共21 | ||||||
(授業の概要・目的) | 「微分積分学(講義・演義)A, B」および「線形代数学(講義・演義)A, B」,または「微分積分学A, B」および「線形代数学A, B」を前提として,様々な自然科学の学習において基礎知識として必要となる,常微分方程式の数学的基礎について講義をする.主に,定数係数線形常微分方程式をはじめとする初等的に解くことのできる微分方程式についての解法,一般の線形微分方程式の解空間構造などの基本的性質,常微分方程式の数学的理論の基盤となる解の存在と一意性とそれに関連する事項について講ずる. | ||||||
(到達目標) | ・定数係数線形常微分方程式をはじめとする初等的に解くことのできる微分方程式についての代表的な解法を修得する ・一般の線形常微分方程式の解空間の構造などの基本的性質について理解する ・常微分方程式の数学的理論の基盤となる解の存在と一意性とそれに関連する事項を理解する |
||||||
(授業計画と内容) | 以下の各項目について講述する.各項目には,受講者の理解の程度を確認しながら,【 】で指示した週数を充てる.各項目・小項目の講義の順序は固定したものではなく,担当者の講義方針と受講者の背景や理解の状況に応じて,講義担当者が適切に決める.講義の進め方については適宜,指示をして,受講者が予習をできるように十分に配慮する. 以下の内容を,フィードバック回を含め(試験週を除く)全15回にて行う. 1.導入【1週】 微分方程式とは何か,物理現象などに現れる微分方程式の具体例 2.初等解法【3週】 変数分離,一階線形微分方程式,定数変化法,全微分形,積分因子,級数解法の例 3.線形微分方程式【6〜7週】 線形微分方程式(変数係数を含む)の解の空間,基本解と基本行列,ロンスキー行列,定数変化法,線形微分方程式の解法,行列の指数関数とその計算(射影行列を含む),2次元定数係数線形微分方程式の相平面図 4.常微分方程式の基本定理【3〜4週】 連続関数全体の空間とその性質(ノルム空間,完備性),逐次近似法,常微分方程式の解の存在と一意性(コーシー・リプシッツの定理),初期値に対する連続性,解の延長 |
||||||
(履修要件) |
「微分積分学(講義・演義)A, B」および「線形代数学(講義・演義)A, B」,または「微分積分学A, B」および「線形代数学A, B」の内容は既知とする.
本講義の履修希望者は,必ず初回授業の授業に出席すること. |
||||||
(成績評価の方法・観点及び達成度) | 主として定期試験による(詳しくは担当教員毎に授業中に指示する). | ||||||
(教科書) |
担当教員ごとに指示する.
|
||||||
(参考書等) |
授業中に紹介する
|
||||||
(授業外学習(予習・復習)等) | 予習・復習とともに,演習問題を積極的に解いてみることが必要である. | ||||||
(その他(オフィスアワー等)) | |||||||
微分積分学続論II−微分方程式
2T1, 2T2, 2T3, 2T4 (科目名)
Advanced Calculus II - Differential Equations
(英 訳)
|
|
||||||
(群) 自然 (分野(分類)) 数学(発展) (使用言語) 日本語 | |||||||
(旧群) B群 (単位数) 2 単位 (週コマ数) 1 コマ (授業形態) 講義 | |||||||
(開講年度・ 開講期) 2025・後期 (配当学年) 主として2回生 (対象学生) 理系向 |
|||||||
(曜時限)
水2 (教室) 4共21 |
|||||||
(授業の概要・目的)
「微分積分学(講義・演義)A, B」および「線形代数学(講義・演義)A, B」,または「微分積分学A, B」および「線形代数学A, B」を前提として,様々な自然科学の学習において基礎知識として必要となる,常微分方程式の数学的基礎について講義をする.主に,定数係数線形常微分方程式をはじめとする初等的に解くことのできる微分方程式についての解法,一般の線形微分方程式の解空間構造などの基本的性質,常微分方程式の数学的理論の基盤となる解の存在と一意性とそれに関連する事項について講ずる.
|
|||||||
(到達目標)
・定数係数線形常微分方程式をはじめとする初等的に解くことのできる微分方程式についての代表的な解法を修得する
・一般の線形常微分方程式の解空間の構造などの基本的性質について理解する ・常微分方程式の数学的理論の基盤となる解の存在と一意性とそれに関連する事項を理解する |
|||||||
(授業計画と内容)
以下の各項目について講述する.各項目には,受講者の理解の程度を確認しながら,【 】で指示した週数を充てる.各項目・小項目の講義の順序は固定したものではなく,担当者の講義方針と受講者の背景や理解の状況に応じて,講義担当者が適切に決める.講義の進め方については適宜,指示をして,受講者が予習をできるように十分に配慮する. 以下の内容を,フィードバック回を含め(試験週を除く)全15回にて行う. 1.導入【1週】 微分方程式とは何か,物理現象などに現れる微分方程式の具体例 2.初等解法【3週】 変数分離,一階線形微分方程式,定数変化法,全微分形,積分因子,級数解法の例 3.線形微分方程式【6〜7週】 線形微分方程式(変数係数を含む)の解の空間,基本解と基本行列,ロンスキー行列,定数変化法,線形微分方程式の解法,行列の指数関数とその計算(射影行列を含む),2次元定数係数線形微分方程式の相平面図 4.常微分方程式の基本定理【3〜4週】 連続関数全体の空間とその性質(ノルム空間,完備性),逐次近似法,常微分方程式の解の存在と一意性(コーシー・リプシッツの定理),初期値に対する連続性,解の延長 |
|||||||
(履修要件)
「微分積分学(講義・演義)A, B」および「線形代数学(講義・演義)A, B」,または「微分積分学A, B」および「線形代数学A, B」の内容は既知とする.
本講義の履修希望者は,必ず初回授業の授業に出席すること. |
|||||||
(成績評価の方法・観点及び達成度)
主として定期試験による(詳しくは担当教員毎に授業中に指示する).
|
|||||||
(教科書)
担当教員ごとに指示する.
|
|||||||
(参考書等)
授業中に紹介する
|
|||||||
(授業外学習(予習・復習)等)
予習・復習とともに,演習問題を積極的に解いてみることが必要である.
|
|||||||
(その他(オフィスアワー等))
|
|||||||
授業の進捗状況や受講生の習熟度などによって「授業計画と内容」,「成績評価の方法」が変更になる場合があります。
(科目名) |
関数論
|
(英 訳) | Function Theory of a Complex Variable | ||||
---|---|---|---|---|---|---|---|
(担当教員) |
|
||||||
(群) | 自然 | ||||||
(分野(分類)) | 数学(発展) | ||||||
(使用言語) | 日本語 | ||||||
(旧群) | B群 | ||||||
(単位数) | 2 単位 | ||||||
(週コマ数) | 1 コマ | ||||||
(授業形態) | 講義 | ||||||
(開講年度・開講期) | 2025・後期 | ||||||
(配当学年) | 主として2回生 | ||||||
(対象学生) | 理系向 | ||||||
(曜時限) | 水2 |
||||||
(教室) | 共北27 | ||||||
(授業の概要・目的) | 1回生で学んだ微分積分学に引き続くものとして,複素変数の微分積分学である複素関数論(複素解析)について講義する.理論の根幹をなすコーシーの積分定理と,そこから導かれる正則関数・有理型関数の基本的性質を中心に解説する.複素関数論は,数学の他分野だけでなく,物理学や工学とも深い部分で結びついている.将来の様々な分野への応用のための確実な基礎となるよう,具体的な例や計算についても時間をとる. | ||||||
(到達目標) | 1.複素関数の正則性の意味と種々の特徴づけを理解する. 2.初等関数の複素関数としての性質を理解する. 3.コーシーの積分定理と,そこから正則関数の基本的性質が体系的に導かれることを理解する. 4.複素線積分を活用した具体的な例の計算ができる能力を身につける. |
||||||
(授業計画と内容) | 複素関数論(複素解析)の基礎となる事柄を学ぶ. 以下の内容を、フィードバック回を含め(試験週を除く)全15回にて行う。 1. 複素数と複素平面(ガウス平面),リーマン球面 【1週】 2. 複素関数の微分法【2週】 (複素微分可能性,コーシー・リーマンの方程式,正則関数) 3. べき級数(整級数)【2週】 (収束半径,べき級数による初等関数の定義) 4. 複素積分【2週】 (複素線積分,グリーンの定理,コーシーの積分定理) 5. コーシーの積分公式と正則関数の基本的性質【3〜4週】 (正則関数のべき級数展開,一致の定理,最大値の原理,代数学の基本定理) 6. 有理型関数と留数定理【3〜4週】 (ローラン展開,留数定理および実関数の定積分の計算への応用) 時間があれば留数定理の理論的応用として偏角の原理,ルーシェの定理,逆関数定理についても,また調和関数との関連についても触れたい. |
||||||
(履修要件) |
微分積分学および線形代数学の基本的知識を前提とする.また「微分積分学続論 I-ベクトル解析」を履修していることが望ましい.
|
||||||
(成績評価の方法・観点及び達成度) | 主として定期試験によるが,それ以外の小テスト等を行う場合は担当教員が指示する. | ||||||
(教科書) |
授業中に指示する
|
||||||
(参考書等) |
授業中に紹介する
|
||||||
(授業外学習(予習・復習)等) | 1.この講義全般のための準備として,微分積分学の範囲のうち,特に,べき級数と実2変数関数の微積分の基本的事柄を復習しておくことが望ましい. 2.講義では時間の制約のために議論や計算,具体例の検討の一部を省略する場合がある.受講者は自習や質問コーナーの活用によってこの点を補うことが望ましい. |
||||||
(その他(オフィスアワー等)) | 理系(特に理学部)の学生は,履修することが極めて望ましい。 | ||||||
関数論
(科目名)
Function Theory of a Complex Variable
(英 訳)
|
|
||||||
(群) 自然 (分野(分類)) 数学(発展) (使用言語) 日本語 | |||||||
(旧群) B群 (単位数) 2 単位 (週コマ数) 1 コマ (授業形態) 講義 | |||||||
(開講年度・ 開講期) 2025・後期 (配当学年) 主として2回生 (対象学生) 理系向 |
|||||||
(曜時限)
水2 (教室) 共北27 |
|||||||
(授業の概要・目的)
1回生で学んだ微分積分学に引き続くものとして,複素変数の微分積分学である複素関数論(複素解析)について講義する.理論の根幹をなすコーシーの積分定理と,そこから導かれる正則関数・有理型関数の基本的性質を中心に解説する.複素関数論は,数学の他分野だけでなく,物理学や工学とも深い部分で結びついている.将来の様々な分野への応用のための確実な基礎となるよう,具体的な例や計算についても時間をとる.
|
|||||||
(到達目標)
1.複素関数の正則性の意味と種々の特徴づけを理解する.
2.初等関数の複素関数としての性質を理解する. 3.コーシーの積分定理と,そこから正則関数の基本的性質が体系的に導かれることを理解する. 4.複素線積分を活用した具体的な例の計算ができる能力を身につける. |
|||||||
(授業計画と内容)
複素関数論(複素解析)の基礎となる事柄を学ぶ. 以下の内容を、フィードバック回を含め(試験週を除く)全15回にて行う。 1. 複素数と複素平面(ガウス平面),リーマン球面 【1週】 2. 複素関数の微分法【2週】 (複素微分可能性,コーシー・リーマンの方程式,正則関数) 3. べき級数(整級数)【2週】 (収束半径,べき級数による初等関数の定義) 4. 複素積分【2週】 (複素線積分,グリーンの定理,コーシーの積分定理) 5. コーシーの積分公式と正則関数の基本的性質【3〜4週】 (正則関数のべき級数展開,一致の定理,最大値の原理,代数学の基本定理) 6. 有理型関数と留数定理【3〜4週】 (ローラン展開,留数定理および実関数の定積分の計算への応用) 時間があれば留数定理の理論的応用として偏角の原理,ルーシェの定理,逆関数定理についても,また調和関数との関連についても触れたい. |
|||||||
(履修要件)
微分積分学および線形代数学の基本的知識を前提とする.また「微分積分学続論 I-ベクトル解析」を履修していることが望ましい.
|
|||||||
(成績評価の方法・観点及び達成度)
主として定期試験によるが,それ以外の小テスト等を行う場合は担当教員が指示する.
|
|||||||
(教科書)
授業中に指示する
|
|||||||
(参考書等)
授業中に紹介する
|
|||||||
(授業外学習(予習・復習)等)
1.この講義全般のための準備として,微分積分学の範囲のうち,特に,べき級数と実2変数関数の微積分の基本的事柄を復習しておくことが望ましい.
2.講義では時間の制約のために議論や計算,具体例の検討の一部を省略する場合がある.受講者は自習や質問コーナーの活用によってこの点を補うことが望ましい. |
|||||||
(その他(オフィスアワー等))
理系(特に理学部)の学生は,履修することが極めて望ましい。
|
|||||||
授業の進捗状況や受講生の習熟度などによって「授業計画と内容」,「成績評価の方法」が変更になる場合があります。
(科目名) |
微分積分学(講義・演義)B 1φ2
|
(英 訳) | Calculus with Exercises B | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
(担当教員) |
|
||||||||||||
(群) | 自然 | ||||||||||||
(分野(分類)) | 数学(基礎) | ||||||||||||
(使用言語) | 日本語 | ||||||||||||
(旧群) | B群 | ||||||||||||
(単位数) | 3 単位 | ||||||||||||
(週コマ数) | 2 コマ | ||||||||||||
(授業形態) | 講義 | ||||||||||||
(開講年度・開講期) | 2025・後期 | ||||||||||||
(配当学年) | 主として1回生 | ||||||||||||
(対象学生) | 理系向 | ||||||||||||
(曜時限) | 水2・金3 |
||||||||||||
(教室) | 共東32 | ||||||||||||
(授業の概要・目的) | 微分積分学は,線形代数学と共に現代の科学技術を支える数学の根幹をなす.この科目では,将来の応用に必要な微分積分学の基礎を解説する. 微分積分学(講義・演義)Bでは,微分積分学(講義・演義)Aに続いて一変数関数の微分積分の理解をさらに深めた後に,多変数関数の微分積分について学ぶ. |
||||||||||||
(到達目標) | 一変数および多変数関数の微分積分の理論的な基礎を理解すること,ならびに,それを用いた数学的解析の手法を修得して応用できるようになることを目標とする. | ||||||||||||
(授業計画と内容) | この科目は講義と演義とが一体となって構成されている. 演義は原則として隔週で開講される.演義においては,受講者は問題練習や課題学習に積極的に取り組むことにより,それまでに講義で学んだ事柄の理解を深める. 以下に挙げるのは講義の計画・内容である.各項目には,受講者の理解の程度を確認しながら,【 】で指示した週数を充てる.各項目・小項目の講義の順序は固定したものではなく,担当者の講義方針と受講者の背景や理解の状況に応じて,講義担当者が適切に決める.講義の進め方については適宜,指示をして,受講者が予習をできるように十分に配慮する. 以下の内容を,フィードバック回を含め(試験週を除く)全15回にて行う. 1.級数【3〜5週】: 無限級数(収束の判定法,絶対収束と条件収束) べき級数(収束半径,項別微積分) 関数列・関数項級数*(一様収束,項別微積分) 2.平面および空間の点集合【2週】: 距離,点列の収束,開集合・閉集合 連続関数 3.多変数関数の微分法【4〜5週】: 偏微分,微分(全微分)可能性,一次近似,接平面,勾配ベクトル 合成関数の微分(連鎖律),ヤコビ行列,ヤコビ行列式 テイラーの定理,極値問題 条件付き極値問題(陰関数定理) 4.多変数関数の積分法【4〜5週】: 重積分,累次積分,変数変換公式,面積・体積 広義積分,ガンマ関数とベータ関数 アステリスク * はオプション |
||||||||||||
(履修要件) |
特になし
|
||||||||||||
(成績評価の方法・観点及び達成度) | 演義担当教員によって平常点(演習への参加状況,課題への取組状況など)から得られた演義成績(30 点満点)をもとに,講義担当教員が期末試験を用いて,演義成績以上,100 点以下の範囲で 評価する. 教員によっては演義以外の平常点(レポート、中間試験などによるもの)を参考にすることもある.詳細は授業中に説明する. 本科目の評価が不合格であった履修者のうち,一定の基準以上の成績の者は再試験を受験できる.再試験の概要は KULASIS で履修者に通知する.なお再試験は3月末に実施予定である. |
||||||||||||
(教科書) |
担当教員毎に指示する.
|
||||||||||||
(参考書等) |
授業中に紹介する
|
||||||||||||
(授業外学習(予習・復習)等) | 予習,復習とともに,演習問題を積極的に解いてみることが必要である. | ||||||||||||
(その他(オフィスアワー等)) | 同一クラスにおいて前期開講の微分積分学(講義・演義)Aとの連続した履修を推奨する.また線形代数学(講義・演義)B を並行して受講することが望ましい. |
||||||||||||
微分積分学(講義・演義)B
1φ2 (科目名)
Calculus with Exercises B
(英 訳)
|
|
|||||||||
(群) 自然 (分野(分類)) 数学(基礎) (使用言語) 日本語 | ||||||||||
(旧群) B群 (単位数) 3 単位 (週コマ数) 2 コマ (授業形態) 講義 | ||||||||||
(開講年度・ 開講期) 2025・後期 (配当学年) 主として1回生 (対象学生) 理系向 |
||||||||||
(曜時限)
水2・金3 (教室) 共東32 |
||||||||||
(授業の概要・目的)
微分積分学は,線形代数学と共に現代の科学技術を支える数学の根幹をなす.この科目では,将来の応用に必要な微分積分学の基礎を解説する.
微分積分学(講義・演義)Bでは,微分積分学(講義・演義)Aに続いて一変数関数の微分積分の理解をさらに深めた後に,多変数関数の微分積分について学ぶ. |
||||||||||
(到達目標)
一変数および多変数関数の微分積分の理論的な基礎を理解すること,ならびに,それを用いた数学的解析の手法を修得して応用できるようになることを目標とする.
|
||||||||||
(授業計画と内容)
この科目は講義と演義とが一体となって構成されている. 演義は原則として隔週で開講される.演義においては,受講者は問題練習や課題学習に積極的に取り組むことにより,それまでに講義で学んだ事柄の理解を深める. 以下に挙げるのは講義の計画・内容である.各項目には,受講者の理解の程度を確認しながら,【 】で指示した週数を充てる.各項目・小項目の講義の順序は固定したものではなく,担当者の講義方針と受講者の背景や理解の状況に応じて,講義担当者が適切に決める.講義の進め方については適宜,指示をして,受講者が予習をできるように十分に配慮する. 以下の内容を,フィードバック回を含め(試験週を除く)全15回にて行う. 1.級数【3〜5週】: 無限級数(収束の判定法,絶対収束と条件収束) べき級数(収束半径,項別微積分) 関数列・関数項級数*(一様収束,項別微積分) 2.平面および空間の点集合【2週】: 距離,点列の収束,開集合・閉集合 連続関数 3.多変数関数の微分法【4〜5週】: 偏微分,微分(全微分)可能性,一次近似,接平面,勾配ベクトル 合成関数の微分(連鎖律),ヤコビ行列,ヤコビ行列式 テイラーの定理,極値問題 条件付き極値問題(陰関数定理) 4.多変数関数の積分法【4〜5週】: 重積分,累次積分,変数変換公式,面積・体積 広義積分,ガンマ関数とベータ関数 アステリスク * はオプション |
||||||||||
(履修要件)
特になし
|
||||||||||
(成績評価の方法・観点及び達成度)
演義担当教員によって平常点(演習への参加状況,課題への取組状況など)から得られた演義成績(30 点満点)をもとに,講義担当教員が期末試験を用いて,演義成績以上,100 点以下の範囲で 評価する.
教員によっては演義以外の平常点(レポート、中間試験などによるもの)を参考にすることもある.詳細は授業中に説明する. 本科目の評価が不合格であった履修者のうち,一定の基準以上の成績の者は再試験を受験できる.再試験の概要は KULASIS で履修者に通知する.なお再試験は3月末に実施予定である. |
||||||||||
(教科書)
担当教員毎に指示する.
|
||||||||||
(参考書等)
授業中に紹介する
|
||||||||||
(授業外学習(予習・復習)等)
予習,復習とともに,演習問題を積極的に解いてみることが必要である.
|
||||||||||
(その他(オフィスアワー等))
同一クラスにおいて前期開講の微分積分学(講義・演義)Aとの連続した履修を推奨する.また線形代数学(講義・演義)B を並行して受講することが望ましい.
|
||||||||||
授業の進捗状況や受講生の習熟度などによって「授業計画と内容」,「成績評価の方法」が変更になる場合があります。
(科目名) |
微分積分学(講義・演義)B 1M5, 1M6
|
(英 訳) | Calculus with Exercises B | ||||
---|---|---|---|---|---|---|---|
(担当教員) |
|
||||||
(群) | 自然 | ||||||
(分野(分類)) | 数学(基礎) | ||||||
(使用言語) | 日本語 | ||||||
(旧群) | B群 | ||||||
(単位数) | 3 単位 | ||||||
(週コマ数) | 2 コマ | ||||||
(授業形態) | 講義 | ||||||
(開講年度・開講期) | 2025・後期 | ||||||
(配当学年) | 主として1回生 | ||||||
(対象学生) | 理系向 | ||||||
(曜時限) | 水2・木1 |
||||||
(教室) | 4共32 | ||||||
(授業の概要・目的) | 微分積分学は,線形代数学と共に現代の科学技術を支える数学の根幹をなす.この科目では,将来の応用に必要な微分積分学の基礎を解説する. 微分積分学(講義・演義)Bでは,微分積分学(講義・演義)Aに続いて一変数関数の微分積分の理解をさらに深めた後に,多変数関数の微分積分について学ぶ. |
||||||
(到達目標) | 一変数および多変数関数の微分積分の理論的な基礎を理解すること,ならびに,それを用いた数学的解析の手法を修得して応用できるようになることを目標とする. | ||||||
(授業計画と内容) | この科目は講義と演義とが一体となって構成されている. 演義は原則として隔週で開講される.演義においては,受講者は問題練習や課題学習に積極的に取り組むことにより,それまでに講義で学んだ事柄の理解を深める. 以下に挙げるのは講義の計画・内容である.各項目には,受講者の理解の程度を確認しながら,【 】で指示した週数を充てる.各項目・小項目の講義の順序は固定したものではなく,担当者の講義方針と受講者の背景や理解の状況に応じて,講義担当者が適切に決める.講義の進め方については適宜,指示をして,受講者が予習をできるように十分に配慮する. 以下の内容を,フィードバック回を含め(試験週を除く)全15回にて行う. 1.級数【3〜5週】: 無限級数(収束の判定法,絶対収束と条件収束) べき級数(収束半径,項別微積分) 関数列・関数項級数*(一様収束,項別微積分) 2.平面および空間の点集合【2週】: 距離,点列の収束,開集合・閉集合 連続関数 3.多変数関数の微分法【4〜5週】: 偏微分,微分(全微分)可能性,一次近似,接平面,勾配ベクトル 合成関数の微分(連鎖律),ヤコビ行列,ヤコビ行列式 テイラーの定理,極値問題 条件付き極値問題(陰関数定理) 4.多変数関数の積分法【4〜5週】: 重積分,累次積分,変数変換公式,面積・体積 広義積分,ガンマ関数とベータ関数 アステリスク * はオプション |
||||||
(履修要件) |
特になし
|
||||||
(成績評価の方法・観点及び達成度) | 演義担当教員によって平常点(演習への参加状況,課題への取組状況など)から得られた演義成績(30 点満点)をもとに,講義担当教員が期末試験を用いて,演義成績以上,100 点以下の範囲で 評価する. 教員によっては演義以外の平常点(レポート、中間試験などによるもの)を参考にすることもある.詳細は授業中に説明する. 本科目の評価が不合格であった履修者のうち,一定の基準以上の成績の者は再試験を受験できる.再試験の概要は KULASIS で履修者に通知する.なお再試験は3月末に実施予定である. |
||||||
(教科書) |
担当教員毎に指示する.
|
||||||
(参考書等) |
授業中に紹介する
|
||||||
(授業外学習(予習・復習)等) | 予習,復習とともに,演習問題を積極的に解いてみることが必要である. | ||||||
(その他(オフィスアワー等)) | 同一クラスにおいて前期開講の微分積分学(講義・演義)Aとの連続した履修を推奨する.また線形代数学(講義・演義)B を並行して受講することが望ましい. |
||||||
微分積分学(講義・演義)B
1M5, 1M6 (科目名)
Calculus with Exercises B
(英 訳)
|
|
||||||
(群) 自然 (分野(分類)) 数学(基礎) (使用言語) 日本語 | |||||||
(旧群) B群 (単位数) 3 単位 (週コマ数) 2 コマ (授業形態) 講義 | |||||||
(開講年度・ 開講期) 2025・後期 (配当学年) 主として1回生 (対象学生) 理系向 |
|||||||
(曜時限)
水2・木1 (教室) 4共32 |
|||||||
(授業の概要・目的)
微分積分学は,線形代数学と共に現代の科学技術を支える数学の根幹をなす.この科目では,将来の応用に必要な微分積分学の基礎を解説する.
微分積分学(講義・演義)Bでは,微分積分学(講義・演義)Aに続いて一変数関数の微分積分の理解をさらに深めた後に,多変数関数の微分積分について学ぶ. |
|||||||
(到達目標)
一変数および多変数関数の微分積分の理論的な基礎を理解すること,ならびに,それを用いた数学的解析の手法を修得して応用できるようになることを目標とする.
|
|||||||
(授業計画と内容)
この科目は講義と演義とが一体となって構成されている. 演義は原則として隔週で開講される.演義においては,受講者は問題練習や課題学習に積極的に取り組むことにより,それまでに講義で学んだ事柄の理解を深める. 以下に挙げるのは講義の計画・内容である.各項目には,受講者の理解の程度を確認しながら,【 】で指示した週数を充てる.各項目・小項目の講義の順序は固定したものではなく,担当者の講義方針と受講者の背景や理解の状況に応じて,講義担当者が適切に決める.講義の進め方については適宜,指示をして,受講者が予習をできるように十分に配慮する. 以下の内容を,フィードバック回を含め(試験週を除く)全15回にて行う. 1.級数【3〜5週】: 無限級数(収束の判定法,絶対収束と条件収束) べき級数(収束半径,項別微積分) 関数列・関数項級数*(一様収束,項別微積分) 2.平面および空間の点集合【2週】: 距離,点列の収束,開集合・閉集合 連続関数 3.多変数関数の微分法【4〜5週】: 偏微分,微分(全微分)可能性,一次近似,接平面,勾配ベクトル 合成関数の微分(連鎖律),ヤコビ行列,ヤコビ行列式 テイラーの定理,極値問題 条件付き極値問題(陰関数定理) 4.多変数関数の積分法【4〜5週】: 重積分,累次積分,変数変換公式,面積・体積 広義積分,ガンマ関数とベータ関数 アステリスク * はオプション |
|||||||
(履修要件)
特になし
|
|||||||
(成績評価の方法・観点及び達成度)
演義担当教員によって平常点(演習への参加状況,課題への取組状況など)から得られた演義成績(30 点満点)をもとに,講義担当教員が期末試験を用いて,演義成績以上,100 点以下の範囲で 評価する.
教員によっては演義以外の平常点(レポート、中間試験などによるもの)を参考にすることもある.詳細は授業中に説明する. 本科目の評価が不合格であった履修者のうち,一定の基準以上の成績の者は再試験を受験できる.再試験の概要は KULASIS で履修者に通知する.なお再試験は3月末に実施予定である. |
|||||||
(教科書)
担当教員毎に指示する.
|
|||||||
(参考書等)
授業中に紹介する
|
|||||||
(授業外学習(予習・復習)等)
予習,復習とともに,演習問題を積極的に解いてみることが必要である.
|
|||||||
(その他(オフィスアワー等))
同一クラスにおいて前期開講の微分積分学(講義・演義)Aとの連続した履修を推奨する.また線形代数学(講義・演義)B を並行して受講することが望ましい.
|
|||||||