


授業の進捗状況や受講生の習熟度などによって「授業計画と内容」,「成績評価の方法」が変更になる場合があります。
(科目名) |
線形代数学(講義・演義)B 1A6
|
(英 訳) | Linear Algebra with Exercises B | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
(担当教員) |
|
||||||||||||
(群) | 自然 | ||||||||||||
(分野(分類)) | 数学(基礎) | ||||||||||||
(使用言語) | 日本語 | ||||||||||||
(旧群) | B群 | ||||||||||||
(単位数) | 3 単位 | ||||||||||||
(週コマ数) | 2 コマ | ||||||||||||
(授業形態) | 講義 | ||||||||||||
(開講年度・開講期) | 2025・後期 | ||||||||||||
(配当学年) | 主として1回生 | ||||||||||||
(対象学生) | 理系向 | ||||||||||||
(曜時限) | 月2・水4 |
||||||||||||
(教室) | 共東32 | ||||||||||||
(授業の概要・目的) | 線形代数学は,微分積分学と共に現代の科学技術を支える数学の根幹をなす.この科目では,将来の応用に必要な線形代数学の基礎を解説する. 線形代数学(講義・演義)Bでは,ベクトル空間,線形写像などの基礎概念を体系的に学ぶと共に,それらの概念を行列に応用してさらに理解を深める. |
||||||||||||
(到達目標) | ベクトル空間,線形写像などの抽象概念を体系的に理解すること,ならびにそれを通してベクトル,行列の理論的な基礎を固めることを目標とする.その際には,ベクトルや行列等のより進んだ取り扱いに習熟することも目指す. | ||||||||||||
(授業計画と内容) | この科目は講義と演義とが一体として構成されている. 演義は原則として隔週で開講される.演義においては,受講者は問題演習や課題学習に積極的に取り組むことにより,それまでに講義で学んだ事柄の理解を深める. 以下に挙げるのは講義の計画、内容である.各項目には,受講者の理解の程度を確認しながら,【 】で指示した週数を充てる.各項目・小項目の講義の順序は固定したものではなく,担当者の講義方針と受講者の背景や理解の状況に応じて,講義担当者が適切に決める.講義の進め方については適宜,指示をして,受講者が予習をできるように十分に配慮する. 以下の内容を,フィードバック回を含め(試験週を除く)全15回にて行う. 1. 抽象ベクトル空間【5〜6週】: 一次結合,一次独立,基底,次元,部分空間,線形写像,核と像 線形写像と行列,基底の変換,直和 2. 計量ベクトル空間【3〜4週】: 内積,正規直交基底,直交行列,ユニタリ行列,直交補空間 3. 固有値と行列の対角化【5〜6週】: 固有値と固有ベクトル,固有多項式,固有空間 行列の対角化,行列の上三角化,ケーリー.ハミルトンの定理 対称行列の直交行列による対角化 二次形式* エルミート行列のユニタリ行列による対角化* アステリスク * はオプション |
||||||||||||
(履修要件) |
特になし
|
||||||||||||
(成績評価の方法・観点及び達成度) | 演義担当教員によって平常点(演習への参加状況,課題への取組状況など)から得られた演義成績(30 点満点)をもとに,講義担当教員が期末試験を用いて,演義成績以上,100 点以下の範囲で 評価する. 教員によっては演義以外の平常点(レポート、中間試験などによるもの)を参考にすることもある.詳細は授業中に説明する. 本科目の評価が不合格であった履修者のうち,一定の基準以上の成績の者は再試験を受験できる.再試験の概要は KULASIS で履修者に通知する.なお再試験は3月末に実施予定である. |
||||||||||||
(教科書) |
担当教員毎に指示する.
|
||||||||||||
(参考書等) |
授業中に紹介する
|
||||||||||||
(授業外学習(予習・復習)等) | 予習,復習とともに,演習問題を積極的に解いてみることが必要である. | ||||||||||||
(その他(オフィスアワー等)) | 同一クラスにおいて前期開講の線形代数学(講義・演義)Aとの連続した履修を推奨する.また微分積分学(講義・演義)B を並行して受講することが望ましい. |
||||||||||||
線形代数学(講義・演義)B
1A6 (科目名)
Linear Algebra with Exercises B
(英 訳)
|
|
|||||||||
(群) 自然 (分野(分類)) 数学(基礎) (使用言語) 日本語 | ||||||||||
(旧群) B群 (単位数) 3 単位 (週コマ数) 2 コマ (授業形態) 講義 | ||||||||||
(開講年度・ 開講期) 2025・後期 (配当学年) 主として1回生 (対象学生) 理系向 |
||||||||||
(曜時限)
月2・水4 (教室) 共東32 |
||||||||||
(授業の概要・目的)
線形代数学は,微分積分学と共に現代の科学技術を支える数学の根幹をなす.この科目では,将来の応用に必要な線形代数学の基礎を解説する.
線形代数学(講義・演義)Bでは,ベクトル空間,線形写像などの基礎概念を体系的に学ぶと共に,それらの概念を行列に応用してさらに理解を深める. |
||||||||||
(到達目標)
ベクトル空間,線形写像などの抽象概念を体系的に理解すること,ならびにそれを通してベクトル,行列の理論的な基礎を固めることを目標とする.その際には,ベクトルや行列等のより進んだ取り扱いに習熟することも目指す.
|
||||||||||
(授業計画と内容)
この科目は講義と演義とが一体として構成されている. 演義は原則として隔週で開講される.演義においては,受講者は問題演習や課題学習に積極的に取り組むことにより,それまでに講義で学んだ事柄の理解を深める. 以下に挙げるのは講義の計画、内容である.各項目には,受講者の理解の程度を確認しながら,【 】で指示した週数を充てる.各項目・小項目の講義の順序は固定したものではなく,担当者の講義方針と受講者の背景や理解の状況に応じて,講義担当者が適切に決める.講義の進め方については適宜,指示をして,受講者が予習をできるように十分に配慮する. 以下の内容を,フィードバック回を含め(試験週を除く)全15回にて行う. 1. 抽象ベクトル空間【5〜6週】: 一次結合,一次独立,基底,次元,部分空間,線形写像,核と像 線形写像と行列,基底の変換,直和 2. 計量ベクトル空間【3〜4週】: 内積,正規直交基底,直交行列,ユニタリ行列,直交補空間 3. 固有値と行列の対角化【5〜6週】: 固有値と固有ベクトル,固有多項式,固有空間 行列の対角化,行列の上三角化,ケーリー.ハミルトンの定理 対称行列の直交行列による対角化 二次形式* エルミート行列のユニタリ行列による対角化* アステリスク * はオプション |
||||||||||
(履修要件)
特になし
|
||||||||||
(成績評価の方法・観点及び達成度)
演義担当教員によって平常点(演習への参加状況,課題への取組状況など)から得られた演義成績(30 点満点)をもとに,講義担当教員が期末試験を用いて,演義成績以上,100 点以下の範囲で 評価する.
教員によっては演義以外の平常点(レポート、中間試験などによるもの)を参考にすることもある.詳細は授業中に説明する. 本科目の評価が不合格であった履修者のうち,一定の基準以上の成績の者は再試験を受験できる.再試験の概要は KULASIS で履修者に通知する.なお再試験は3月末に実施予定である. |
||||||||||
(教科書)
担当教員毎に指示する.
|
||||||||||
(参考書等)
授業中に紹介する
|
||||||||||
(授業外学習(予習・復習)等)
予習,復習とともに,演習問題を積極的に解いてみることが必要である.
|
||||||||||
(その他(オフィスアワー等))
同一クラスにおいて前期開講の線形代数学(講義・演義)Aとの連続した履修を推奨する.また微分積分学(講義・演義)B を並行して受講することが望ましい.
|
||||||||||
授業の進捗状況や受講生の習熟度などによって「授業計画と内容」,「成績評価の方法」が変更になる場合があります。
(科目名) |
微分積分学続論II−微分方程式 2T13, 2T14, 2T15, 2T16
|
(英 訳) | Advanced Calculus II - Differential Equations | ||||
---|---|---|---|---|---|---|---|
(担当教員) |
|
||||||
(群) | 自然 | ||||||
(分野(分類)) | 数学(発展) | ||||||
(使用言語) | 日本語 | ||||||
(旧群) | B群 | ||||||
(単位数) | 2 単位 | ||||||
(週コマ数) | 1 コマ | ||||||
(授業形態) | 講義 | ||||||
(開講年度・開講期) | 2025・後期 | ||||||
(配当学年) | 主として2回生 | ||||||
(対象学生) | 理系向 | ||||||
(曜時限) | 月3 |
||||||
(教室) | 4共21 | ||||||
(授業の概要・目的) | 「微分積分学(講義・演義)A, B」および「線形代数学(講義・演義)A, B」,または「微分積分学A, B」および「線形代数学A, B」を前提として,様々な自然科学の学習において基礎知識として必要となる,常微分方程式の数学的基礎について講義をする.主に,定数係数線形常微分方程式をはじめとする初等的に解くことのできる微分方程式についての解法,一般の線形微分方程式の解空間構造などの基本的性質,常微分方程式の数学的理論の基盤となる解の存在と一意性とそれに関連する事項について講ずる. | ||||||
(到達目標) | ・定数係数線形常微分方程式をはじめとする初等的に解くことのできる微分方程式についての代表的な解法を修得する ・一般の線形常微分方程式の解空間の構造などの基本的性質について理解する ・常微分方程式の数学的理論の基盤となる解の存在と一意性とそれに関連する事項を理解する |
||||||
(授業計画と内容) | 以下の各項目について講述する.各項目には,受講者の理解の程度を確認しながら,【 】で指示した週数を充てる.各項目・小項目の講義の順序は固定したものではなく,担当者の講義方針と受講者の背景や理解の状況に応じて,講義担当者が適切に決める.講義の進め方については適宜,指示をして,受講者が予習をできるように十分に配慮する. 以下の内容を,フィードバック回を含め(試験週を除く)全15回にて行う. 1.導入【1週】 微分方程式とは何か,物理現象などに現れる微分方程式の具体例 2.初等解法【3週】 変数分離,一階線形微分方程式,定数変化法,全微分形,積分因子,級数解法の例 3.線形微分方程式【6〜7週】 線形微分方程式(変数係数を含む)の解の空間,基本解と基本行列,ロンスキー行列,定数変化法,線形微分方程式の解法,行列の指数関数とその計算(射影行列を含む),2次元定数係数線形微分方程式の相平面図 4.常微分方程式の基本定理【3〜4週】 連続関数全体の空間とその性質(ノルム空間,完備性),逐次近似法,常微分方程式の解の存在と一意性(コーシー・リプシッツの定理),初期値に対する連続性,解の延長 |
||||||
(履修要件) |
「微分積分学(講義・演義)A, B」および「線形代数学(講義・演義)A, B」,または「微分積分学A, B」および「線形代数学A, B」の内容は既知とする.
本講義の履修希望者は,必ず初回授業の授業に出席すること. |
||||||
(成績評価の方法・観点及び達成度) | 主として定期試験による(詳しくは担当教員毎に授業中に指示する). | ||||||
(教科書) |
担当教員ごとに指示する.
|
||||||
(参考書等) |
授業中に紹介する
|
||||||
(授業外学習(予習・復習)等) | 予習・復習とともに,演習問題を積極的に解いてみることが必要である. | ||||||
(その他(オフィスアワー等)) | |||||||
微分積分学続論II−微分方程式
2T13, 2T14, 2T15, 2T16 (科目名)
Advanced Calculus II - Differential Equations
(英 訳)
|
|
||||||
(群) 自然 (分野(分類)) 数学(発展) (使用言語) 日本語 | |||||||
(旧群) B群 (単位数) 2 単位 (週コマ数) 1 コマ (授業形態) 講義 | |||||||
(開講年度・ 開講期) 2025・後期 (配当学年) 主として2回生 (対象学生) 理系向 |
|||||||
(曜時限)
月3 (教室) 4共21 |
|||||||
(授業の概要・目的)
「微分積分学(講義・演義)A, B」および「線形代数学(講義・演義)A, B」,または「微分積分学A, B」および「線形代数学A, B」を前提として,様々な自然科学の学習において基礎知識として必要となる,常微分方程式の数学的基礎について講義をする.主に,定数係数線形常微分方程式をはじめとする初等的に解くことのできる微分方程式についての解法,一般の線形微分方程式の解空間構造などの基本的性質,常微分方程式の数学的理論の基盤となる解の存在と一意性とそれに関連する事項について講ずる.
|
|||||||
(到達目標)
・定数係数線形常微分方程式をはじめとする初等的に解くことのできる微分方程式についての代表的な解法を修得する
・一般の線形常微分方程式の解空間の構造などの基本的性質について理解する ・常微分方程式の数学的理論の基盤となる解の存在と一意性とそれに関連する事項を理解する |
|||||||
(授業計画と内容)
以下の各項目について講述する.各項目には,受講者の理解の程度を確認しながら,【 】で指示した週数を充てる.各項目・小項目の講義の順序は固定したものではなく,担当者の講義方針と受講者の背景や理解の状況に応じて,講義担当者が適切に決める.講義の進め方については適宜,指示をして,受講者が予習をできるように十分に配慮する. 以下の内容を,フィードバック回を含め(試験週を除く)全15回にて行う. 1.導入【1週】 微分方程式とは何か,物理現象などに現れる微分方程式の具体例 2.初等解法【3週】 変数分離,一階線形微分方程式,定数変化法,全微分形,積分因子,級数解法の例 3.線形微分方程式【6〜7週】 線形微分方程式(変数係数を含む)の解の空間,基本解と基本行列,ロンスキー行列,定数変化法,線形微分方程式の解法,行列の指数関数とその計算(射影行列を含む),2次元定数係数線形微分方程式の相平面図 4.常微分方程式の基本定理【3〜4週】 連続関数全体の空間とその性質(ノルム空間,完備性),逐次近似法,常微分方程式の解の存在と一意性(コーシー・リプシッツの定理),初期値に対する連続性,解の延長 |
|||||||
(履修要件)
「微分積分学(講義・演義)A, B」および「線形代数学(講義・演義)A, B」,または「微分積分学A, B」および「線形代数学A, B」の内容は既知とする.
本講義の履修希望者は,必ず初回授業の授業に出席すること. |
|||||||
(成績評価の方法・観点及び達成度)
主として定期試験による(詳しくは担当教員毎に授業中に指示する).
|
|||||||
(教科書)
担当教員ごとに指示する.
|
|||||||
(参考書等)
授業中に紹介する
|
|||||||
(授業外学習(予習・復習)等)
予習・復習とともに,演習問題を積極的に解いてみることが必要である.
|
|||||||
(その他(オフィスアワー等))
|
|||||||
授業の進捗状況や受講生の習熟度などによって「授業計画と内容」,「成績評価の方法」が変更になる場合があります。
(科目名) |
微分積分学(講義・演義)B 1T1
|
(英 訳) | Calculus with Exercises B | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
(担当教員) |
|
||||||||||||
(群) | 自然 | ||||||||||||
(分野(分類)) | 数学(基礎) | ||||||||||||
(使用言語) | 日本語 | ||||||||||||
(旧群) | B群 | ||||||||||||
(単位数) | 3 単位 | ||||||||||||
(週コマ数) | 2 コマ | ||||||||||||
(授業形態) | 講義 | ||||||||||||
(開講年度・開講期) | 2025・後期 | ||||||||||||
(配当学年) | 主として1回生 | ||||||||||||
(対象学生) | 理系向 | ||||||||||||
(曜時限) | 月3・火1 |
||||||||||||
(教室) | 1共31 | ||||||||||||
(授業の概要・目的) | 微分積分学は,線形代数学と共に現代の科学技術を支える数学の根幹をなす.この科目では,将来の応用に必要な微分積分学の基礎を解説する. 微分積分学(講義・演義)Bでは,微分積分学(講義・演義)Aに続いて一変数関数の微分積分の理解をさらに深めた後に,多変数関数の微分積分について学ぶ. |
||||||||||||
(到達目標) | 一変数および多変数関数の微分積分の理論的な基礎を理解すること,ならびに,それを用いた数学的解析の手法を修得して応用できるようになることを目標とする. | ||||||||||||
(授業計画と内容) | この科目は講義と演義とが一体となって構成されている. 演義は原則として隔週で開講される.演義においては,受講者は問題練習や課題学習に積極的に取り組むことにより,それまでに講義で学んだ事柄の理解を深める. 以下に挙げるのは講義の計画・内容である.各項目には,受講者の理解の程度を確認しながら,【 】で指示した週数を充てる.各項目・小項目の講義の順序は固定したものではなく,担当者の講義方針と受講者の背景や理解の状況に応じて,講義担当者が適切に決める.講義の進め方については適宜,指示をして,受講者が予習をできるように十分に配慮する. 以下の内容を,フィードバック回を含め(試験週を除く)全15回にて行う. 1.級数【3〜5週】: 無限級数(収束の判定法,絶対収束と条件収束) べき級数(収束半径,項別微積分) 関数列・関数項級数*(一様収束,項別微積分) 2.平面および空間の点集合【2週】: 距離,点列の収束,開集合・閉集合 連続関数 3.多変数関数の微分法【4〜5週】: 偏微分,微分(全微分)可能性,一次近似,接平面,勾配ベクトル 合成関数の微分(連鎖律),ヤコビ行列,ヤコビ行列式 テイラーの定理,極値問題 条件付き極値問題(陰関数定理) 4.多変数関数の積分法【4〜5週】: 重積分,累次積分,変数変換公式,面積・体積 広義積分,ガンマ関数とベータ関数 アステリスク * はオプション |
||||||||||||
(履修要件) |
特になし
|
||||||||||||
(成績評価の方法・観点及び達成度) | 演義担当教員によって平常点(演習への参加状況,課題への取組状況など)から得られた演義成績(30 点満点)をもとに,講義担当教員が期末試験を用いて,演義成績以上,100 点以下の範囲で 評価する. 教員によっては演義以外の平常点(レポート、中間試験などによるもの)を参考にすることもある.詳細は授業中に説明する. 本科目の評価が不合格であった履修者のうち,一定の基準以上の成績の者は再試験を受験できる.再試験の概要は KULASIS で履修者に通知する.なお再試験は3月末に実施予定である. |
||||||||||||
(教科書) |
担当教員毎に指示する.
|
||||||||||||
(参考書等) |
授業中に紹介する
|
||||||||||||
(授業外学習(予習・復習)等) | 予習,復習とともに,演習問題を積極的に解いてみることが必要である. | ||||||||||||
(その他(オフィスアワー等)) | 同一クラスにおいて前期開講の微分積分学(講義・演義)Aとの連続した履修を推奨する.また線形代数学(講義・演義)B を並行して受講することが望ましい. |
||||||||||||
微分積分学(講義・演義)B
1T1 (科目名)
Calculus with Exercises B
(英 訳)
|
|
|||||||||
(群) 自然 (分野(分類)) 数学(基礎) (使用言語) 日本語 | ||||||||||
(旧群) B群 (単位数) 3 単位 (週コマ数) 2 コマ (授業形態) 講義 | ||||||||||
(開講年度・ 開講期) 2025・後期 (配当学年) 主として1回生 (対象学生) 理系向 |
||||||||||
(曜時限)
月3・火1 (教室) 1共31 |
||||||||||
(授業の概要・目的)
微分積分学は,線形代数学と共に現代の科学技術を支える数学の根幹をなす.この科目では,将来の応用に必要な微分積分学の基礎を解説する.
微分積分学(講義・演義)Bでは,微分積分学(講義・演義)Aに続いて一変数関数の微分積分の理解をさらに深めた後に,多変数関数の微分積分について学ぶ. |
||||||||||
(到達目標)
一変数および多変数関数の微分積分の理論的な基礎を理解すること,ならびに,それを用いた数学的解析の手法を修得して応用できるようになることを目標とする.
|
||||||||||
(授業計画と内容)
この科目は講義と演義とが一体となって構成されている. 演義は原則として隔週で開講される.演義においては,受講者は問題練習や課題学習に積極的に取り組むことにより,それまでに講義で学んだ事柄の理解を深める. 以下に挙げるのは講義の計画・内容である.各項目には,受講者の理解の程度を確認しながら,【 】で指示した週数を充てる.各項目・小項目の講義の順序は固定したものではなく,担当者の講義方針と受講者の背景や理解の状況に応じて,講義担当者が適切に決める.講義の進め方については適宜,指示をして,受講者が予習をできるように十分に配慮する. 以下の内容を,フィードバック回を含め(試験週を除く)全15回にて行う. 1.級数【3〜5週】: 無限級数(収束の判定法,絶対収束と条件収束) べき級数(収束半径,項別微積分) 関数列・関数項級数*(一様収束,項別微積分) 2.平面および空間の点集合【2週】: 距離,点列の収束,開集合・閉集合 連続関数 3.多変数関数の微分法【4〜5週】: 偏微分,微分(全微分)可能性,一次近似,接平面,勾配ベクトル 合成関数の微分(連鎖律),ヤコビ行列,ヤコビ行列式 テイラーの定理,極値問題 条件付き極値問題(陰関数定理) 4.多変数関数の積分法【4〜5週】: 重積分,累次積分,変数変換公式,面積・体積 広義積分,ガンマ関数とベータ関数 アステリスク * はオプション |
||||||||||
(履修要件)
特になし
|
||||||||||
(成績評価の方法・観点及び達成度)
演義担当教員によって平常点(演習への参加状況,課題への取組状況など)から得られた演義成績(30 点満点)をもとに,講義担当教員が期末試験を用いて,演義成績以上,100 点以下の範囲で 評価する.
教員によっては演義以外の平常点(レポート、中間試験などによるもの)を参考にすることもある.詳細は授業中に説明する. 本科目の評価が不合格であった履修者のうち,一定の基準以上の成績の者は再試験を受験できる.再試験の概要は KULASIS で履修者に通知する.なお再試験は3月末に実施予定である. |
||||||||||
(教科書)
担当教員毎に指示する.
|
||||||||||
(参考書等)
授業中に紹介する
|
||||||||||
(授業外学習(予習・復習)等)
予習,復習とともに,演習問題を積極的に解いてみることが必要である.
|
||||||||||
(その他(オフィスアワー等))
同一クラスにおいて前期開講の微分積分学(講義・演義)Aとの連続した履修を推奨する.また線形代数学(講義・演義)B を並行して受講することが望ましい.
|
||||||||||
授業の進捗状況や受講生の習熟度などによって「授業計画と内容」,「成績評価の方法」が変更になる場合があります。
(科目名) |
微分積分学(講義・演義)B 1T3
|
(英 訳) | Calculus with Exercises B | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
(担当教員) |
|
||||||||||||
(群) | 自然 | ||||||||||||
(分野(分類)) | 数学(基礎) | ||||||||||||
(使用言語) | 日本語 | ||||||||||||
(旧群) | B群 | ||||||||||||
(単位数) | 3 単位 | ||||||||||||
(週コマ数) | 2 コマ | ||||||||||||
(授業形態) | 講義 | ||||||||||||
(開講年度・開講期) | 2025・後期 | ||||||||||||
(配当学年) | 主として1回生 | ||||||||||||
(対象学生) | 理系向 | ||||||||||||
(曜時限) | 月3・火2 |
||||||||||||
(教室) | 1共31 | ||||||||||||
(授業の概要・目的) | 微分積分学は,線形代数学と共に現代の科学技術を支える数学の根幹をなす.この科目では,将来の応用に必要な微分積分学の基礎を解説する. 微分積分学(講義・演義)Bでは,微分積分学(講義・演義)Aに続いて一変数関数の微分積分の理解をさらに深めた後に,多変数関数の微分積分について学ぶ. |
||||||||||||
(到達目標) | 一変数および多変数関数の微分積分の理論的な基礎を理解すること,ならびに,それを用いた数学的解析の手法を修得して応用できるようになることを目標とする. | ||||||||||||
(授業計画と内容) | この科目は講義と演義とが一体となって構成されている. 演義は原則として隔週で開講される.演義においては,受講者は問題練習や課題学習に積極的に取り組むことにより,それまでに講義で学んだ事柄の理解を深める. 以下に挙げるのは講義の計画・内容である.各項目には,受講者の理解の程度を確認しながら,【 】で指示した週数を充てる.各項目・小項目の講義の順序は固定したものではなく,担当者の講義方針と受講者の背景や理解の状況に応じて,講義担当者が適切に決める.講義の進め方については適宜,指示をして,受講者が予習をできるように十分に配慮する. 以下の内容を,フィードバック回を含め(試験週を除く)全15回にて行う. 1.級数【3〜5週】: 無限級数(収束の判定法,絶対収束と条件収束) べき級数(収束半径,項別微積分) 関数列・関数項級数*(一様収束,項別微積分) 2.平面および空間の点集合【2週】: 距離,点列の収束,開集合・閉集合 連続関数 3.多変数関数の微分法【4〜5週】: 偏微分,微分(全微分)可能性,一次近似,接平面,勾配ベクトル 合成関数の微分(連鎖律),ヤコビ行列,ヤコビ行列式 テイラーの定理,極値問題 条件付き極値問題(陰関数定理) 4.多変数関数の積分法【4〜5週】: 重積分,累次積分,変数変換公式,面積・体積 広義積分,ガンマ関数とベータ関数 アステリスク * はオプション |
||||||||||||
(履修要件) |
特になし
|
||||||||||||
(成績評価の方法・観点及び達成度) | 演義担当教員によって平常点(演習への参加状況,課題への取組状況など)から得られた演義成績(30 点満点)をもとに,講義担当教員が期末試験を用いて,演義成績以上,100 点以下の範囲で 評価する. 教員によっては演義以外の平常点(レポート、中間試験などによるもの)を参考にすることもある.詳細は授業中に説明する. 本科目の評価が不合格であった履修者のうち,一定の基準以上の成績の者は再試験を受験できる.再試験の概要は KULASIS で履修者に通知する.なお再試験は3月末に実施予定である. |
||||||||||||
(教科書) |
担当教員毎に指示する.
|
||||||||||||
(参考書等) |
授業中に紹介する
|
||||||||||||
(授業外学習(予習・復習)等) | 予習,復習とともに,演習問題を積極的に解いてみることが必要である. | ||||||||||||
(その他(オフィスアワー等)) | 同一クラスにおいて前期開講の微分積分学(講義・演義)Aとの連続した履修を推奨する.また線形代数学(講義・演義)B を並行して受講することが望ましい. |
||||||||||||
微分積分学(講義・演義)B
1T3 (科目名)
Calculus with Exercises B
(英 訳)
|
|
|||||||||
(群) 自然 (分野(分類)) 数学(基礎) (使用言語) 日本語 | ||||||||||
(旧群) B群 (単位数) 3 単位 (週コマ数) 2 コマ (授業形態) 講義 | ||||||||||
(開講年度・ 開講期) 2025・後期 (配当学年) 主として1回生 (対象学生) 理系向 |
||||||||||
(曜時限)
月3・火2 (教室) 1共31 |
||||||||||
(授業の概要・目的)
微分積分学は,線形代数学と共に現代の科学技術を支える数学の根幹をなす.この科目では,将来の応用に必要な微分積分学の基礎を解説する.
微分積分学(講義・演義)Bでは,微分積分学(講義・演義)Aに続いて一変数関数の微分積分の理解をさらに深めた後に,多変数関数の微分積分について学ぶ. |
||||||||||
(到達目標)
一変数および多変数関数の微分積分の理論的な基礎を理解すること,ならびに,それを用いた数学的解析の手法を修得して応用できるようになることを目標とする.
|
||||||||||
(授業計画と内容)
この科目は講義と演義とが一体となって構成されている. 演義は原則として隔週で開講される.演義においては,受講者は問題練習や課題学習に積極的に取り組むことにより,それまでに講義で学んだ事柄の理解を深める. 以下に挙げるのは講義の計画・内容である.各項目には,受講者の理解の程度を確認しながら,【 】で指示した週数を充てる.各項目・小項目の講義の順序は固定したものではなく,担当者の講義方針と受講者の背景や理解の状況に応じて,講義担当者が適切に決める.講義の進め方については適宜,指示をして,受講者が予習をできるように十分に配慮する. 以下の内容を,フィードバック回を含め(試験週を除く)全15回にて行う. 1.級数【3〜5週】: 無限級数(収束の判定法,絶対収束と条件収束) べき級数(収束半径,項別微積分) 関数列・関数項級数*(一様収束,項別微積分) 2.平面および空間の点集合【2週】: 距離,点列の収束,開集合・閉集合 連続関数 3.多変数関数の微分法【4〜5週】: 偏微分,微分(全微分)可能性,一次近似,接平面,勾配ベクトル 合成関数の微分(連鎖律),ヤコビ行列,ヤコビ行列式 テイラーの定理,極値問題 条件付き極値問題(陰関数定理) 4.多変数関数の積分法【4〜5週】: 重積分,累次積分,変数変換公式,面積・体積 広義積分,ガンマ関数とベータ関数 アステリスク * はオプション |
||||||||||
(履修要件)
特になし
|
||||||||||
(成績評価の方法・観点及び達成度)
演義担当教員によって平常点(演習への参加状況,課題への取組状況など)から得られた演義成績(30 点満点)をもとに,講義担当教員が期末試験を用いて,演義成績以上,100 点以下の範囲で 評価する.
教員によっては演義以外の平常点(レポート、中間試験などによるもの)を参考にすることもある.詳細は授業中に説明する. 本科目の評価が不合格であった履修者のうち,一定の基準以上の成績の者は再試験を受験できる.再試験の概要は KULASIS で履修者に通知する.なお再試験は3月末に実施予定である. |
||||||||||
(教科書)
担当教員毎に指示する.
|
||||||||||
(参考書等)
授業中に紹介する
|
||||||||||
(授業外学習(予習・復習)等)
予習,復習とともに,演習問題を積極的に解いてみることが必要である.
|
||||||||||
(その他(オフィスアワー等))
同一クラスにおいて前期開講の微分積分学(講義・演義)Aとの連続した履修を推奨する.また線形代数学(講義・演義)B を並行して受講することが望ましい.
|
||||||||||
授業の進捗状況や受講生の習熟度などによって「授業計画と内容」,「成績評価の方法」が変更になる場合があります。
(科目名) |
微分積分学(講義・演義)B 1T18
|
(英 訳) | Calculus with Exercises B | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
(担当教員) |
|
||||||||||||
(群) | 自然 | ||||||||||||
(分野(分類)) | 数学(基礎) | ||||||||||||
(使用言語) | 日本語 | ||||||||||||
(旧群) | B群 | ||||||||||||
(単位数) | 3 単位 | ||||||||||||
(週コマ数) | 2 コマ | ||||||||||||
(授業形態) | 講義 | ||||||||||||
(開講年度・開講期) | 2025・後期 | ||||||||||||
(配当学年) | 主として1回生 | ||||||||||||
(対象学生) | 理系向 | ||||||||||||
(曜時限) | 月3・火1 |
||||||||||||
(教室) | 共東42 | ||||||||||||
(授業の概要・目的) | 微分積分学は,線形代数学と共に現代の科学技術を支える数学の根幹をなす.この科目では,将来の応用に必要な微分積分学の基礎を解説する. 微分積分学(講義・演義)Bでは,微分積分学(講義・演義)Aに続いて一変数関数の微分積分の理解をさらに深めた後に,多変数関数の微分積分について学ぶ. |
||||||||||||
(到達目標) | 一変数および多変数関数の微分積分の理論的な基礎を理解すること,ならびに,それを用いた数学的解析の手法を修得して応用できるようになることを目標とする. | ||||||||||||
(授業計画と内容) | この科目は講義と演義とが一体となって構成されている. 演義は原則として隔週で開講される.演義においては,受講者は問題練習や課題学習に積極的に取り組むことにより,それまでに講義で学んだ事柄の理解を深める. 以下に挙げるのは講義の計画・内容である.各項目には,受講者の理解の程度を確認しながら,【 】で指示した週数を充てる.各項目・小項目の講義の順序は固定したものではなく,担当者の講義方針と受講者の背景や理解の状況に応じて,講義担当者が適切に決める.講義の進め方については適宜,指示をして,受講者が予習をできるように十分に配慮する. 以下の内容を,フィードバック回を含め(試験週を除く)全15回にて行う. 1.級数【3〜5週】: 無限級数(収束の判定法,絶対収束と条件収束) べき級数(収束半径,項別微積分) 関数列・関数項級数*(一様収束,項別微積分) 2.平面および空間の点集合【2週】: 距離,点列の収束,開集合・閉集合 連続関数 3.多変数関数の微分法【4〜5週】: 偏微分,微分(全微分)可能性,一次近似,接平面,勾配ベクトル 合成関数の微分(連鎖律),ヤコビ行列,ヤコビ行列式 テイラーの定理,極値問題 条件付き極値問題(陰関数定理) 4.多変数関数の積分法【4〜5週】: 重積分,累次積分,変数変換公式,面積・体積 広義積分,ガンマ関数とベータ関数 アステリスク * はオプション |
||||||||||||
(履修要件) |
特になし
|
||||||||||||
(成績評価の方法・観点及び達成度) | 演義担当教員によって平常点(演習への参加状況,課題への取組状況など)から得られた演義成績(30 点満点)をもとに,講義担当教員が期末試験を用いて,演義成績以上,100 点以下の範囲で 評価する. 教員によっては演義以外の平常点(レポート、中間試験などによるもの)を参考にすることもある.詳細は授業中に説明する. 本科目の評価が不合格であった履修者のうち,一定の基準以上の成績の者は再試験を受験できる.再試験の概要は KULASIS で履修者に通知する.なお再試験は3月末に実施予定である. |
||||||||||||
(教科書) |
担当教員毎に指示する.
|
||||||||||||
(参考書等) |
授業中に紹介する
|
||||||||||||
(授業外学習(予習・復習)等) | 予習,復習とともに,演習問題を積極的に解いてみることが必要である. | ||||||||||||
(その他(オフィスアワー等)) | 同一クラスにおいて前期開講の微分積分学(講義・演義)Aとの連続した履修を推奨する.また線形代数学(講義・演義)B を並行して受講することが望ましい. |
||||||||||||
微分積分学(講義・演義)B
1T18 (科目名)
Calculus with Exercises B
(英 訳)
|
|
|||||||||
(群) 自然 (分野(分類)) 数学(基礎) (使用言語) 日本語 | ||||||||||
(旧群) B群 (単位数) 3 単位 (週コマ数) 2 コマ (授業形態) 講義 | ||||||||||
(開講年度・ 開講期) 2025・後期 (配当学年) 主として1回生 (対象学生) 理系向 |
||||||||||
(曜時限)
月3・火1 (教室) 共東42 |
||||||||||
(授業の概要・目的)
微分積分学は,線形代数学と共に現代の科学技術を支える数学の根幹をなす.この科目では,将来の応用に必要な微分積分学の基礎を解説する.
微分積分学(講義・演義)Bでは,微分積分学(講義・演義)Aに続いて一変数関数の微分積分の理解をさらに深めた後に,多変数関数の微分積分について学ぶ. |
||||||||||
(到達目標)
一変数および多変数関数の微分積分の理論的な基礎を理解すること,ならびに,それを用いた数学的解析の手法を修得して応用できるようになることを目標とする.
|
||||||||||
(授業計画と内容)
この科目は講義と演義とが一体となって構成されている. 演義は原則として隔週で開講される.演義においては,受講者は問題練習や課題学習に積極的に取り組むことにより,それまでに講義で学んだ事柄の理解を深める. 以下に挙げるのは講義の計画・内容である.各項目には,受講者の理解の程度を確認しながら,【 】で指示した週数を充てる.各項目・小項目の講義の順序は固定したものではなく,担当者の講義方針と受講者の背景や理解の状況に応じて,講義担当者が適切に決める.講義の進め方については適宜,指示をして,受講者が予習をできるように十分に配慮する. 以下の内容を,フィードバック回を含め(試験週を除く)全15回にて行う. 1.級数【3〜5週】: 無限級数(収束の判定法,絶対収束と条件収束) べき級数(収束半径,項別微積分) 関数列・関数項級数*(一様収束,項別微積分) 2.平面および空間の点集合【2週】: 距離,点列の収束,開集合・閉集合 連続関数 3.多変数関数の微分法【4〜5週】: 偏微分,微分(全微分)可能性,一次近似,接平面,勾配ベクトル 合成関数の微分(連鎖律),ヤコビ行列,ヤコビ行列式 テイラーの定理,極値問題 条件付き極値問題(陰関数定理) 4.多変数関数の積分法【4〜5週】: 重積分,累次積分,変数変換公式,面積・体積 広義積分,ガンマ関数とベータ関数 アステリスク * はオプション |
||||||||||
(履修要件)
特になし
|
||||||||||
(成績評価の方法・観点及び達成度)
演義担当教員によって平常点(演習への参加状況,課題への取組状況など)から得られた演義成績(30 点満点)をもとに,講義担当教員が期末試験を用いて,演義成績以上,100 点以下の範囲で 評価する.
教員によっては演義以外の平常点(レポート、中間試験などによるもの)を参考にすることもある.詳細は授業中に説明する. 本科目の評価が不合格であった履修者のうち,一定の基準以上の成績の者は再試験を受験できる.再試験の概要は KULASIS で履修者に通知する.なお再試験は3月末に実施予定である. |
||||||||||
(教科書)
担当教員毎に指示する.
|
||||||||||
(参考書等)
授業中に紹介する
|
||||||||||
(授業外学習(予習・復習)等)
予習,復習とともに,演習問題を積極的に解いてみることが必要である.
|
||||||||||
(その他(オフィスアワー等))
同一クラスにおいて前期開講の微分積分学(講義・演義)Aとの連続した履修を推奨する.また線形代数学(講義・演義)B を並行して受講することが望ましい.
|
||||||||||
授業の進捗状況や受講生の習熟度などによって「授業計画と内容」,「成績評価の方法」が変更になる場合があります。
(科目名) |
微分積分学(講義・演義)B 1T19
|
(英 訳) | Calculus with Exercises B | ||||
---|---|---|---|---|---|---|---|
(担当教員) |
|
||||||
(群) | 自然 | ||||||
(分野(分類)) | 数学(基礎) | ||||||
(使用言語) | 日本語 | ||||||
(旧群) | B群 | ||||||
(単位数) | 3 単位 | ||||||
(週コマ数) | 2 コマ | ||||||
(授業形態) | 講義 | ||||||
(開講年度・開講期) | 2025・後期 | ||||||
(配当学年) | 主として1回生 | ||||||
(対象学生) | 理系向 | ||||||
(曜時限) | 月3・火1 |
||||||
(教室) | 共東31 | ||||||
(授業の概要・目的) | 微分積分学は,線形代数学と共に現代の科学技術を支える数学の根幹をなす.この科目では,将来の応用に必要な微分積分学の基礎を解説する. 微分積分学(講義・演義)Bでは,微分積分学(講義・演義)Aに続いて一変数関数の微分積分の理解をさらに深めた後に,多変数関数の微分積分について学ぶ. |
||||||
(到達目標) | 一変数および多変数関数の微分積分の理論的な基礎を理解すること,ならびに,それを用いた数学的解析の手法を修得して応用できるようになることを目標とする. | ||||||
(授業計画と内容) | この科目は講義と演義とが一体となって構成されている. 演義は原則として隔週で開講される.演義においては,受講者は問題練習や課題学習に積極的に取り組むことにより,それまでに講義で学んだ事柄の理解を深める. 以下に挙げるのは講義の計画・内容である.各項目には,受講者の理解の程度を確認しながら,【 】で指示した週数を充てる.各項目・小項目の講義の順序は固定したものではなく,担当者の講義方針と受講者の背景や理解の状況に応じて,講義担当者が適切に決める.講義の進め方については適宜,指示をして,受講者が予習をできるように十分に配慮する. 以下の内容を,フィードバック回を含め(試験週を除く)全15回にて行う. 1.級数【3〜5週】: 無限級数(収束の判定法,絶対収束と条件収束) べき級数(収束半径,項別微積分) 関数列・関数項級数*(一様収束,項別微積分) 2.平面および空間の点集合【2週】: 距離,点列の収束,開集合・閉集合 連続関数 3.多変数関数の微分法【4〜5週】: 偏微分,微分(全微分)可能性,一次近似,接平面,勾配ベクトル 合成関数の微分(連鎖律),ヤコビ行列,ヤコビ行列式 テイラーの定理,極値問題 条件付き極値問題(陰関数定理) 4.多変数関数の積分法【4〜5週】: 重積分,累次積分,変数変換公式,面積・体積 広義積分,ガンマ関数とベータ関数 アステリスク * はオプション |
||||||
(履修要件) |
特になし
|
||||||
(成績評価の方法・観点及び達成度) | 演義担当教員によって平常点(演習への参加状況,課題への取組状況など)から得られた演義成績(30 点満点)をもとに,講義担当教員が期末試験を用いて,演義成績以上,100 点以下の範囲で 評価する. 教員によっては演義以外の平常点(レポート、中間試験などによるもの)を参考にすることもある.詳細は授業中に説明する. 本科目の評価が不合格であった履修者のうち,一定の基準以上の成績の者は再試験を受験できる.再試験の概要は KULASIS で履修者に通知する.なお再試験は3月末に実施予定である. |
||||||
(教科書) |
担当教員毎に指示する.
|
||||||
(参考書等) |
授業中に紹介する
|
||||||
(授業外学習(予習・復習)等) | 予習,復習とともに,演習問題を積極的に解いてみることが必要である. | ||||||
(その他(オフィスアワー等)) | 同一クラスにおいて前期開講の微分積分学(講義・演義)Aとの連続した履修を推奨する.また線形代数学(講義・演義)B を並行して受講することが望ましい. |
||||||
微分積分学(講義・演義)B
1T19 (科目名)
Calculus with Exercises B
(英 訳)
|
|
||||||
(群) 自然 (分野(分類)) 数学(基礎) (使用言語) 日本語 | |||||||
(旧群) B群 (単位数) 3 単位 (週コマ数) 2 コマ (授業形態) 講義 | |||||||
(開講年度・ 開講期) 2025・後期 (配当学年) 主として1回生 (対象学生) 理系向 |
|||||||
(曜時限)
月3・火1 (教室) 共東31 |
|||||||
(授業の概要・目的)
微分積分学は,線形代数学と共に現代の科学技術を支える数学の根幹をなす.この科目では,将来の応用に必要な微分積分学の基礎を解説する.
微分積分学(講義・演義)Bでは,微分積分学(講義・演義)Aに続いて一変数関数の微分積分の理解をさらに深めた後に,多変数関数の微分積分について学ぶ. |
|||||||
(到達目標)
一変数および多変数関数の微分積分の理論的な基礎を理解すること,ならびに,それを用いた数学的解析の手法を修得して応用できるようになることを目標とする.
|
|||||||
(授業計画と内容)
この科目は講義と演義とが一体となって構成されている. 演義は原則として隔週で開講される.演義においては,受講者は問題練習や課題学習に積極的に取り組むことにより,それまでに講義で学んだ事柄の理解を深める. 以下に挙げるのは講義の計画・内容である.各項目には,受講者の理解の程度を確認しながら,【 】で指示した週数を充てる.各項目・小項目の講義の順序は固定したものではなく,担当者の講義方針と受講者の背景や理解の状況に応じて,講義担当者が適切に決める.講義の進め方については適宜,指示をして,受講者が予習をできるように十分に配慮する. 以下の内容を,フィードバック回を含め(試験週を除く)全15回にて行う. 1.級数【3〜5週】: 無限級数(収束の判定法,絶対収束と条件収束) べき級数(収束半径,項別微積分) 関数列・関数項級数*(一様収束,項別微積分) 2.平面および空間の点集合【2週】: 距離,点列の収束,開集合・閉集合 連続関数 3.多変数関数の微分法【4〜5週】: 偏微分,微分(全微分)可能性,一次近似,接平面,勾配ベクトル 合成関数の微分(連鎖律),ヤコビ行列,ヤコビ行列式 テイラーの定理,極値問題 条件付き極値問題(陰関数定理) 4.多変数関数の積分法【4〜5週】: 重積分,累次積分,変数変換公式,面積・体積 広義積分,ガンマ関数とベータ関数 アステリスク * はオプション |
|||||||
(履修要件)
特になし
|
|||||||
(成績評価の方法・観点及び達成度)
演義担当教員によって平常点(演習への参加状況,課題への取組状況など)から得られた演義成績(30 点満点)をもとに,講義担当教員が期末試験を用いて,演義成績以上,100 点以下の範囲で 評価する.
教員によっては演義以外の平常点(レポート、中間試験などによるもの)を参考にすることもある.詳細は授業中に説明する. 本科目の評価が不合格であった履修者のうち,一定の基準以上の成績の者は再試験を受験できる.再試験の概要は KULASIS で履修者に通知する.なお再試験は3月末に実施予定である. |
|||||||
(教科書)
担当教員毎に指示する.
|
|||||||
(参考書等)
授業中に紹介する
|
|||||||
(授業外学習(予習・復習)等)
予習,復習とともに,演習問題を積極的に解いてみることが必要である.
|
|||||||
(その他(オフィスアワー等))
同一クラスにおいて前期開講の微分積分学(講義・演義)Aとの連続した履修を推奨する.また線形代数学(講義・演義)B を並行して受講することが望ましい.
|
|||||||
授業の進捗状況や受講生の習熟度などによって「授業計画と内容」,「成績評価の方法」が変更になる場合があります。
(科目名) |
微分積分学(講義・演義)B 1T21
|
(英 訳) | Calculus with Exercises B | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
(担当教員) |
|
||||||||||||
(群) | 自然 | ||||||||||||
(分野(分類)) | 数学(基礎) | ||||||||||||
(使用言語) | 日本語 | ||||||||||||
(旧群) | B群 | ||||||||||||
(単位数) | 3 単位 | ||||||||||||
(週コマ数) | 2 コマ | ||||||||||||
(授業形態) | 講義 | ||||||||||||
(開講年度・開講期) | 2025・後期 | ||||||||||||
(配当学年) | 主として1回生 | ||||||||||||
(対象学生) | 理系向 | ||||||||||||
(曜時限) | 月3・火2 |
||||||||||||
(教室) | 共東42 | ||||||||||||
(授業の概要・目的) | 微分積分学は,線形代数学と共に現代の科学技術を支える数学の根幹をなす.この科目では,将来の応用に必要な微分積分学の基礎を解説する. 微分積分学(講義・演義)Bでは,微分積分学(講義・演義)Aに続いて一変数関数の微分積分の理解をさらに深めた後に,多変数関数の微分積分について学ぶ. |
||||||||||||
(到達目標) | 一変数および多変数関数の微分積分の理論的な基礎を理解すること,ならびに,それを用いた数学的解析の手法を修得して応用できるようになることを目標とする. | ||||||||||||
(授業計画と内容) | この科目は講義と演義とが一体となって構成されている. 演義は原則として隔週で開講される.演義においては,受講者は問題練習や課題学習に積極的に取り組むことにより,それまでに講義で学んだ事柄の理解を深める. 以下に挙げるのは講義の計画・内容である.各項目には,受講者の理解の程度を確認しながら,【 】で指示した週数を充てる.各項目・小項目の講義の順序は固定したものではなく,担当者の講義方針と受講者の背景や理解の状況に応じて,講義担当者が適切に決める.講義の進め方については適宜,指示をして,受講者が予習をできるように十分に配慮する. 以下の内容を,フィードバック回を含め(試験週を除く)全15回にて行う. 1.級数【3〜5週】: 無限級数(収束の判定法,絶対収束と条件収束) べき級数(収束半径,項別微積分) 関数列・関数項級数*(一様収束,項別微積分) 2.平面および空間の点集合【2週】: 距離,点列の収束,開集合・閉集合 連続関数 3.多変数関数の微分法【4〜5週】: 偏微分,微分(全微分)可能性,一次近似,接平面,勾配ベクトル 合成関数の微分(連鎖律),ヤコビ行列,ヤコビ行列式 テイラーの定理,極値問題 条件付き極値問題(陰関数定理) 4.多変数関数の積分法【4〜5週】: 重積分,累次積分,変数変換公式,面積・体積 広義積分,ガンマ関数とベータ関数 アステリスク * はオプション |
||||||||||||
(履修要件) |
特になし
|
||||||||||||
(成績評価の方法・観点及び達成度) | 演義担当教員によって平常点(演習への参加状況,課題への取組状況など)から得られた演義成績(30 点満点)をもとに,講義担当教員が期末試験を用いて,演義成績以上,100 点以下の範囲で 評価する. 教員によっては演義以外の平常点(レポート、中間試験などによるもの)を参考にすることもある.詳細は授業中に説明する. 本科目の評価が不合格であった履修者のうち,一定の基準以上の成績の者は再試験を受験できる.再試験の概要は KULASIS で履修者に通知する.なお再試験は3月末に実施予定である. |
||||||||||||
(教科書) |
担当教員毎に指示する.
|
||||||||||||
(参考書等) |
授業中に紹介する
|
||||||||||||
(授業外学習(予習・復習)等) | 予習,復習とともに,演習問題を積極的に解いてみることが必要である. | ||||||||||||
(その他(オフィスアワー等)) | 同一クラスにおいて前期開講の微分積分学(講義・演義)Aとの連続した履修を推奨する.また線形代数学(講義・演義)B を並行して受講することが望ましい. |
||||||||||||
微分積分学(講義・演義)B
1T21 (科目名)
Calculus with Exercises B
(英 訳)
|
|
|||||||||
(群) 自然 (分野(分類)) 数学(基礎) (使用言語) 日本語 | ||||||||||
(旧群) B群 (単位数) 3 単位 (週コマ数) 2 コマ (授業形態) 講義 | ||||||||||
(開講年度・ 開講期) 2025・後期 (配当学年) 主として1回生 (対象学生) 理系向 |
||||||||||
(曜時限)
月3・火2 (教室) 共東42 |
||||||||||
(授業の概要・目的)
微分積分学は,線形代数学と共に現代の科学技術を支える数学の根幹をなす.この科目では,将来の応用に必要な微分積分学の基礎を解説する.
微分積分学(講義・演義)Bでは,微分積分学(講義・演義)Aに続いて一変数関数の微分積分の理解をさらに深めた後に,多変数関数の微分積分について学ぶ. |
||||||||||
(到達目標)
一変数および多変数関数の微分積分の理論的な基礎を理解すること,ならびに,それを用いた数学的解析の手法を修得して応用できるようになることを目標とする.
|
||||||||||
(授業計画と内容)
この科目は講義と演義とが一体となって構成されている. 演義は原則として隔週で開講される.演義においては,受講者は問題練習や課題学習に積極的に取り組むことにより,それまでに講義で学んだ事柄の理解を深める. 以下に挙げるのは講義の計画・内容である.各項目には,受講者の理解の程度を確認しながら,【 】で指示した週数を充てる.各項目・小項目の講義の順序は固定したものではなく,担当者の講義方針と受講者の背景や理解の状況に応じて,講義担当者が適切に決める.講義の進め方については適宜,指示をして,受講者が予習をできるように十分に配慮する. 以下の内容を,フィードバック回を含め(試験週を除く)全15回にて行う. 1.級数【3〜5週】: 無限級数(収束の判定法,絶対収束と条件収束) べき級数(収束半径,項別微積分) 関数列・関数項級数*(一様収束,項別微積分) 2.平面および空間の点集合【2週】: 距離,点列の収束,開集合・閉集合 連続関数 3.多変数関数の微分法【4〜5週】: 偏微分,微分(全微分)可能性,一次近似,接平面,勾配ベクトル 合成関数の微分(連鎖律),ヤコビ行列,ヤコビ行列式 テイラーの定理,極値問題 条件付き極値問題(陰関数定理) 4.多変数関数の積分法【4〜5週】: 重積分,累次積分,変数変換公式,面積・体積 広義積分,ガンマ関数とベータ関数 アステリスク * はオプション |
||||||||||
(履修要件)
特になし
|
||||||||||
(成績評価の方法・観点及び達成度)
演義担当教員によって平常点(演習への参加状況,課題への取組状況など)から得られた演義成績(30 点満点)をもとに,講義担当教員が期末試験を用いて,演義成績以上,100 点以下の範囲で 評価する.
教員によっては演義以外の平常点(レポート、中間試験などによるもの)を参考にすることもある.詳細は授業中に説明する. 本科目の評価が不合格であった履修者のうち,一定の基準以上の成績の者は再試験を受験できる.再試験の概要は KULASIS で履修者に通知する.なお再試験は3月末に実施予定である. |
||||||||||
(教科書)
担当教員毎に指示する.
|
||||||||||
(参考書等)
授業中に紹介する
|
||||||||||
(授業外学習(予習・復習)等)
予習,復習とともに,演習問題を積極的に解いてみることが必要である.
|
||||||||||
(その他(オフィスアワー等))
同一クラスにおいて前期開講の微分積分学(講義・演義)Aとの連続した履修を推奨する.また線形代数学(講義・演義)B を並行して受講することが望ましい.
|
||||||||||
授業の進捗状況や受講生の習熟度などによって「授業計画と内容」,「成績評価の方法」が変更になる場合があります。
(科目名) |
微分積分学(講義・演義)B 1T22
|
(英 訳) | Calculus with Exercises B | ||||
---|---|---|---|---|---|---|---|
(担当教員) |
|
||||||
(群) | 自然 | ||||||
(分野(分類)) | 数学(基礎) | ||||||
(使用言語) | 日本語 | ||||||
(旧群) | B群 | ||||||
(単位数) | 3 単位 | ||||||
(週コマ数) | 2 コマ | ||||||
(授業形態) | 講義 | ||||||
(開講年度・開講期) | 2025・後期 | ||||||
(配当学年) | 主として1回生 | ||||||
(対象学生) | 理系向 | ||||||
(曜時限) | 月3・火2 |
||||||
(教室) | 共東31 | ||||||
(授業の概要・目的) | 微分積分学は,線形代数学と共に現代の科学技術を支える数学の根幹をなす.この科目では,将来の応用に必要な微分積分学の基礎を解説する. 微分積分学(講義・演義)Bでは,微分積分学(講義・演義)Aに続いて一変数関数の微分積分の理解をさらに深めた後に,多変数関数の微分積分について学ぶ. |
||||||
(到達目標) | 一変数および多変数関数の微分積分の理論的な基礎を理解すること,ならびに,それを用いた数学的解析の手法を修得して応用できるようになることを目標とする. | ||||||
(授業計画と内容) | この科目は講義と演義とが一体となって構成されている. 演義は原則として隔週で開講される.演義においては,受講者は問題練習や課題学習に積極的に取り組むことにより,それまでに講義で学んだ事柄の理解を深める. 以下に挙げるのは講義の計画・内容である.各項目には,受講者の理解の程度を確認しながら,【 】で指示した週数を充てる.各項目・小項目の講義の順序は固定したものではなく,担当者の講義方針と受講者の背景や理解の状況に応じて,講義担当者が適切に決める.講義の進め方については適宜,指示をして,受講者が予習をできるように十分に配慮する. 以下の内容を,フィードバック回を含め(試験週を除く)全15回にて行う. 1.級数【3〜5週】: 無限級数(収束の判定法,絶対収束と条件収束) べき級数(収束半径,項別微積分) 関数列・関数項級数*(一様収束,項別微積分) 2.平面および空間の点集合【2週】: 距離,点列の収束,開集合・閉集合 連続関数 3.多変数関数の微分法【4〜5週】: 偏微分,微分(全微分)可能性,一次近似,接平面,勾配ベクトル 合成関数の微分(連鎖律),ヤコビ行列,ヤコビ行列式 テイラーの定理,極値問題 条件付き極値問題(陰関数定理) 4.多変数関数の積分法【4〜5週】: 重積分,累次積分,変数変換公式,面積・体積 広義積分,ガンマ関数とベータ関数 アステリスク * はオプション |
||||||
(履修要件) |
特になし
|
||||||
(成績評価の方法・観点及び達成度) | 演義担当教員によって平常点(演習への参加状況,課題への取組状況など)から得られた演義成績(30 点満点)をもとに,講義担当教員が期末試験を用いて,演義成績以上,100 点以下の範囲で 評価する. 教員によっては演義以外の平常点(レポート、中間試験などによるもの)を参考にすることもある.詳細は授業中に説明する. 本科目の評価が不合格であった履修者のうち,一定の基準以上の成績の者は再試験を受験できる.再試験の概要は KULASIS で履修者に通知する.なお再試験は3月末に実施予定である. |
||||||
(教科書) |
担当教員毎に指示する.
|
||||||
(参考書等) |
授業中に紹介する
|
||||||
(授業外学習(予習・復習)等) | 予習,復習とともに,演習問題を積極的に解いてみることが必要である. | ||||||
(その他(オフィスアワー等)) | 同一クラスにおいて前期開講の微分積分学(講義・演義)Aとの連続した履修を推奨する.また線形代数学(講義・演義)B を並行して受講することが望ましい. |
||||||
微分積分学(講義・演義)B
1T22 (科目名)
Calculus with Exercises B
(英 訳)
|
|
||||||
(群) 自然 (分野(分類)) 数学(基礎) (使用言語) 日本語 | |||||||
(旧群) B群 (単位数) 3 単位 (週コマ数) 2 コマ (授業形態) 講義 | |||||||
(開講年度・ 開講期) 2025・後期 (配当学年) 主として1回生 (対象学生) 理系向 |
|||||||
(曜時限)
月3・火2 (教室) 共東31 |
|||||||
(授業の概要・目的)
微分積分学は,線形代数学と共に現代の科学技術を支える数学の根幹をなす.この科目では,将来の応用に必要な微分積分学の基礎を解説する.
微分積分学(講義・演義)Bでは,微分積分学(講義・演義)Aに続いて一変数関数の微分積分の理解をさらに深めた後に,多変数関数の微分積分について学ぶ. |
|||||||
(到達目標)
一変数および多変数関数の微分積分の理論的な基礎を理解すること,ならびに,それを用いた数学的解析の手法を修得して応用できるようになることを目標とする.
|
|||||||
(授業計画と内容)
この科目は講義と演義とが一体となって構成されている. 演義は原則として隔週で開講される.演義においては,受講者は問題練習や課題学習に積極的に取り組むことにより,それまでに講義で学んだ事柄の理解を深める. 以下に挙げるのは講義の計画・内容である.各項目には,受講者の理解の程度を確認しながら,【 】で指示した週数を充てる.各項目・小項目の講義の順序は固定したものではなく,担当者の講義方針と受講者の背景や理解の状況に応じて,講義担当者が適切に決める.講義の進め方については適宜,指示をして,受講者が予習をできるように十分に配慮する. 以下の内容を,フィードバック回を含め(試験週を除く)全15回にて行う. 1.級数【3〜5週】: 無限級数(収束の判定法,絶対収束と条件収束) べき級数(収束半径,項別微積分) 関数列・関数項級数*(一様収束,項別微積分) 2.平面および空間の点集合【2週】: 距離,点列の収束,開集合・閉集合 連続関数 3.多変数関数の微分法【4〜5週】: 偏微分,微分(全微分)可能性,一次近似,接平面,勾配ベクトル 合成関数の微分(連鎖律),ヤコビ行列,ヤコビ行列式 テイラーの定理,極値問題 条件付き極値問題(陰関数定理) 4.多変数関数の積分法【4〜5週】: 重積分,累次積分,変数変換公式,面積・体積 広義積分,ガンマ関数とベータ関数 アステリスク * はオプション |
|||||||
(履修要件)
特になし
|
|||||||
(成績評価の方法・観点及び達成度)
演義担当教員によって平常点(演習への参加状況,課題への取組状況など)から得られた演義成績(30 点満点)をもとに,講義担当教員が期末試験を用いて,演義成績以上,100 点以下の範囲で 評価する.
教員によっては演義以外の平常点(レポート、中間試験などによるもの)を参考にすることもある.詳細は授業中に説明する. 本科目の評価が不合格であった履修者のうち,一定の基準以上の成績の者は再試験を受験できる.再試験の概要は KULASIS で履修者に通知する.なお再試験は3月末に実施予定である. |
|||||||
(教科書)
担当教員毎に指示する.
|
|||||||
(参考書等)
授業中に紹介する
|
|||||||
(授業外学習(予習・復習)等)
予習,復習とともに,演習問題を積極的に解いてみることが必要である.
|
|||||||
(その他(オフィスアワー等))
同一クラスにおいて前期開講の微分積分学(講義・演義)Aとの連続した履修を推奨する.また線形代数学(講義・演義)B を並行して受講することが望ましい.
|
|||||||
授業の進捗状況や受講生の習熟度などによって「授業計画と内容」,「成績評価の方法」が変更になる場合があります。
(科目名) |
線形代数学(講義・演義)B 1T2
|
(英 訳) | Linear Algebra with Exercises B | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
(担当教員) |
|
||||||||||||
(群) | 自然 | ||||||||||||
(分野(分類)) | 数学(基礎) | ||||||||||||
(使用言語) | 日本語 | ||||||||||||
(旧群) | B群 | ||||||||||||
(単位数) | 3 単位 | ||||||||||||
(週コマ数) | 2 コマ | ||||||||||||
(授業形態) | 講義 | ||||||||||||
(開講年度・開講期) | 2025・後期 | ||||||||||||
(配当学年) | 主として1回生 | ||||||||||||
(対象学生) | 理系向 | ||||||||||||
(曜時限) | 月3・火1 |
||||||||||||
(教室) | 1共02 | ||||||||||||
(授業の概要・目的) | 線形代数学は,微分積分学と共に現代の科学技術を支える数学の根幹をなす.この科目では,将来の応用に必要な線形代数学の基礎を解説する. 線形代数学(講義・演義)Bでは,ベクトル空間,線形写像などの基礎概念を体系的に学ぶと共に,それらの概念を行列に応用してさらに理解を深める. |
||||||||||||
(到達目標) | ベクトル空間,線形写像などの抽象概念を体系的に理解すること,ならびにそれを通してベクトル,行列の理論的な基礎を固めることを目標とする.その際には,ベクトルや行列等のより進んだ取り扱いに習熟することも目指す. | ||||||||||||
(授業計画と内容) | この科目は講義と演義とが一体として構成されている. 演義は原則として隔週で開講される.演義においては,受講者は問題演習や課題学習に積極的に取り組むことにより,それまでに講義で学んだ事柄の理解を深める. 以下に挙げるのは講義の計画、内容である.各項目には,受講者の理解の程度を確認しながら,【 】で指示した週数を充てる.各項目・小項目の講義の順序は固定したものではなく,担当者の講義方針と受講者の背景や理解の状況に応じて,講義担当者が適切に決める.講義の進め方については適宜,指示をして,受講者が予習をできるように十分に配慮する. 以下の内容を,フィードバック回を含め(試験週を除く)全15回にて行う. 1. 抽象ベクトル空間【5〜6週】: 一次結合,一次独立,基底,次元,部分空間,線形写像,核と像 線形写像と行列,基底の変換,直和 2. 計量ベクトル空間【3〜4週】: 内積,正規直交基底,直交行列,ユニタリ行列,直交補空間 3. 固有値と行列の対角化【5〜6週】: 固有値と固有ベクトル,固有多項式,固有空間 行列の対角化,行列の上三角化,ケーリー.ハミルトンの定理 対称行列の直交行列による対角化 二次形式* エルミート行列のユニタリ行列による対角化* アステリスク * はオプション |
||||||||||||
(履修要件) |
特になし
|
||||||||||||
(成績評価の方法・観点及び達成度) | 演義担当教員によって平常点(演習への参加状況,課題への取組状況など)から得られた演義成績(30 点満点)をもとに,講義担当教員が期末試験を用いて,演義成績以上,100 点以下の範囲で 評価する. 教員によっては演義以外の平常点(レポート、中間試験などによるもの)を参考にすることもある.詳細は授業中に説明する. 本科目の評価が不合格であった履修者のうち,一定の基準以上の成績の者は再試験を受験できる.再試験の概要は KULASIS で履修者に通知する.なお再試験は3月末に実施予定である. |
||||||||||||
(教科書) |
担当教員毎に指示する.
|
||||||||||||
(参考書等) |
授業中に紹介する
|
||||||||||||
(授業外学習(予習・復習)等) | 予習,復習とともに,演習問題を積極的に解いてみることが必要である. | ||||||||||||
(その他(オフィスアワー等)) | 同一クラスにおいて前期開講の線形代数学(講義・演義)Aとの連続した履修を推奨する.また微分積分学(講義・演義)B を並行して受講することが望ましい. |
||||||||||||
線形代数学(講義・演義)B
1T2 (科目名)
Linear Algebra with Exercises B
(英 訳)
|
|
|||||||||
(群) 自然 (分野(分類)) 数学(基礎) (使用言語) 日本語 | ||||||||||
(旧群) B群 (単位数) 3 単位 (週コマ数) 2 コマ (授業形態) 講義 | ||||||||||
(開講年度・ 開講期) 2025・後期 (配当学年) 主として1回生 (対象学生) 理系向 |
||||||||||
(曜時限)
月3・火1 (教室) 1共02 |
||||||||||
(授業の概要・目的)
線形代数学は,微分積分学と共に現代の科学技術を支える数学の根幹をなす.この科目では,将来の応用に必要な線形代数学の基礎を解説する.
線形代数学(講義・演義)Bでは,ベクトル空間,線形写像などの基礎概念を体系的に学ぶと共に,それらの概念を行列に応用してさらに理解を深める. |
||||||||||
(到達目標)
ベクトル空間,線形写像などの抽象概念を体系的に理解すること,ならびにそれを通してベクトル,行列の理論的な基礎を固めることを目標とする.その際には,ベクトルや行列等のより進んだ取り扱いに習熟することも目指す.
|
||||||||||
(授業計画と内容)
この科目は講義と演義とが一体として構成されている. 演義は原則として隔週で開講される.演義においては,受講者は問題演習や課題学習に積極的に取り組むことにより,それまでに講義で学んだ事柄の理解を深める. 以下に挙げるのは講義の計画、内容である.各項目には,受講者の理解の程度を確認しながら,【 】で指示した週数を充てる.各項目・小項目の講義の順序は固定したものではなく,担当者の講義方針と受講者の背景や理解の状況に応じて,講義担当者が適切に決める.講義の進め方については適宜,指示をして,受講者が予習をできるように十分に配慮する. 以下の内容を,フィードバック回を含め(試験週を除く)全15回にて行う. 1. 抽象ベクトル空間【5〜6週】: 一次結合,一次独立,基底,次元,部分空間,線形写像,核と像 線形写像と行列,基底の変換,直和 2. 計量ベクトル空間【3〜4週】: 内積,正規直交基底,直交行列,ユニタリ行列,直交補空間 3. 固有値と行列の対角化【5〜6週】: 固有値と固有ベクトル,固有多項式,固有空間 行列の対角化,行列の上三角化,ケーリー.ハミルトンの定理 対称行列の直交行列による対角化 二次形式* エルミート行列のユニタリ行列による対角化* アステリスク * はオプション |
||||||||||
(履修要件)
特になし
|
||||||||||
(成績評価の方法・観点及び達成度)
演義担当教員によって平常点(演習への参加状況,課題への取組状況など)から得られた演義成績(30 点満点)をもとに,講義担当教員が期末試験を用いて,演義成績以上,100 点以下の範囲で 評価する.
教員によっては演義以外の平常点(レポート、中間試験などによるもの)を参考にすることもある.詳細は授業中に説明する. 本科目の評価が不合格であった履修者のうち,一定の基準以上の成績の者は再試験を受験できる.再試験の概要は KULASIS で履修者に通知する.なお再試験は3月末に実施予定である. |
||||||||||
(教科書)
担当教員毎に指示する.
|
||||||||||
(参考書等)
授業中に紹介する
|
||||||||||
(授業外学習(予習・復習)等)
予習,復習とともに,演習問題を積極的に解いてみることが必要である.
|
||||||||||
(その他(オフィスアワー等))
同一クラスにおいて前期開講の線形代数学(講義・演義)Aとの連続した履修を推奨する.また微分積分学(講義・演義)B を並行して受講することが望ましい.
|
||||||||||
授業の進捗状況や受講生の習熟度などによって「授業計画と内容」,「成績評価の方法」が変更になる場合があります。
(科目名) |
線形代数学(講義・演義)B 1T4
|
(英 訳) | Linear Algebra with Exercises B | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
(担当教員) |
|
||||||||||||
(群) | 自然 | ||||||||||||
(分野(分類)) | 数学(基礎) | ||||||||||||
(使用言語) | 日本語 | ||||||||||||
(旧群) | B群 | ||||||||||||
(単位数) | 3 単位 | ||||||||||||
(週コマ数) | 2 コマ | ||||||||||||
(授業形態) | 講義 | ||||||||||||
(開講年度・開講期) | 2025・後期 | ||||||||||||
(配当学年) | 主として1回生 | ||||||||||||
(対象学生) | 理系向 | ||||||||||||
(曜時限) | 月3・火2 |
||||||||||||
(教室) | 1共02 | ||||||||||||
(授業の概要・目的) | 線形代数学は,微分積分学と共に現代の科学技術を支える数学の根幹をなす.この科目では,将来の応用に必要な線形代数学の基礎を解説する. 線形代数学(講義・演義)Bでは,ベクトル空間,線形写像などの基礎概念を体系的に学ぶと共に,それらの概念を行列に応用してさらに理解を深める. |
||||||||||||
(到達目標) | ベクトル空間,線形写像などの抽象概念を体系的に理解すること,ならびにそれを通してベクトル,行列の理論的な基礎を固めることを目標とする.その際には,ベクトルや行列等のより進んだ取り扱いに習熟することも目指す. | ||||||||||||
(授業計画と内容) | この科目は講義と演義とが一体として構成されている. 演義は原則として隔週で開講される.演義においては,受講者は問題演習や課題学習に積極的に取り組むことにより,それまでに講義で学んだ事柄の理解を深める. 以下に挙げるのは講義の計画、内容である.各項目には,受講者の理解の程度を確認しながら,【 】で指示した週数を充てる.各項目・小項目の講義の順序は固定したものではなく,担当者の講義方針と受講者の背景や理解の状況に応じて,講義担当者が適切に決める.講義の進め方については適宜,指示をして,受講者が予習をできるように十分に配慮する. 以下の内容を,フィードバック回を含め(試験週を除く)全15回にて行う. 1. 抽象ベクトル空間【5〜6週】: 一次結合,一次独立,基底,次元,部分空間,線形写像,核と像 線形写像と行列,基底の変換,直和 2. 計量ベクトル空間【3〜4週】: 内積,正規直交基底,直交行列,ユニタリ行列,直交補空間 3. 固有値と行列の対角化【5〜6週】: 固有値と固有ベクトル,固有多項式,固有空間 行列の対角化,行列の上三角化,ケーリー.ハミルトンの定理 対称行列の直交行列による対角化 二次形式* エルミート行列のユニタリ行列による対角化* アステリスク * はオプション |
||||||||||||
(履修要件) |
特になし
|
||||||||||||
(成績評価の方法・観点及び達成度) | 演義担当教員によって平常点(演習への参加状況,課題への取組状況など)から得られた演義成績(30 点満点)をもとに,講義担当教員が期末試験を用いて,演義成績以上,100 点以下の範囲で 評価する. 教員によっては演義以外の平常点(レポート、中間試験などによるもの)を参考にすることもある.詳細は授業中に説明する. 本科目の評価が不合格であった履修者のうち,一定の基準以上の成績の者は再試験を受験できる.再試験の概要は KULASIS で履修者に通知する.なお再試験は3月末に実施予定である. |
||||||||||||
(教科書) |
担当教員毎に指示する.
|
||||||||||||
(参考書等) |
授業中に紹介する
|
||||||||||||
(授業外学習(予習・復習)等) | 予習,復習とともに,演習問題を積極的に解いてみることが必要である. | ||||||||||||
(その他(オフィスアワー等)) | 同一クラスにおいて前期開講の線形代数学(講義・演義)Aとの連続した履修を推奨する.また微分積分学(講義・演義)B を並行して受講することが望ましい. |
||||||||||||
線形代数学(講義・演義)B
1T4 (科目名)
Linear Algebra with Exercises B
(英 訳)
|
|
|||||||||
(群) 自然 (分野(分類)) 数学(基礎) (使用言語) 日本語 | ||||||||||
(旧群) B群 (単位数) 3 単位 (週コマ数) 2 コマ (授業形態) 講義 | ||||||||||
(開講年度・ 開講期) 2025・後期 (配当学年) 主として1回生 (対象学生) 理系向 |
||||||||||
(曜時限)
月3・火2 (教室) 1共02 |
||||||||||
(授業の概要・目的)
線形代数学は,微分積分学と共に現代の科学技術を支える数学の根幹をなす.この科目では,将来の応用に必要な線形代数学の基礎を解説する.
線形代数学(講義・演義)Bでは,ベクトル空間,線形写像などの基礎概念を体系的に学ぶと共に,それらの概念を行列に応用してさらに理解を深める. |
||||||||||
(到達目標)
ベクトル空間,線形写像などの抽象概念を体系的に理解すること,ならびにそれを通してベクトル,行列の理論的な基礎を固めることを目標とする.その際には,ベクトルや行列等のより進んだ取り扱いに習熟することも目指す.
|
||||||||||
(授業計画と内容)
この科目は講義と演義とが一体として構成されている. 演義は原則として隔週で開講される.演義においては,受講者は問題演習や課題学習に積極的に取り組むことにより,それまでに講義で学んだ事柄の理解を深める. 以下に挙げるのは講義の計画、内容である.各項目には,受講者の理解の程度を確認しながら,【 】で指示した週数を充てる.各項目・小項目の講義の順序は固定したものではなく,担当者の講義方針と受講者の背景や理解の状況に応じて,講義担当者が適切に決める.講義の進め方については適宜,指示をして,受講者が予習をできるように十分に配慮する. 以下の内容を,フィードバック回を含め(試験週を除く)全15回にて行う. 1. 抽象ベクトル空間【5〜6週】: 一次結合,一次独立,基底,次元,部分空間,線形写像,核と像 線形写像と行列,基底の変換,直和 2. 計量ベクトル空間【3〜4週】: 内積,正規直交基底,直交行列,ユニタリ行列,直交補空間 3. 固有値と行列の対角化【5〜6週】: 固有値と固有ベクトル,固有多項式,固有空間 行列の対角化,行列の上三角化,ケーリー.ハミルトンの定理 対称行列の直交行列による対角化 二次形式* エルミート行列のユニタリ行列による対角化* アステリスク * はオプション |
||||||||||
(履修要件)
特になし
|
||||||||||
(成績評価の方法・観点及び達成度)
演義担当教員によって平常点(演習への参加状況,課題への取組状況など)から得られた演義成績(30 点満点)をもとに,講義担当教員が期末試験を用いて,演義成績以上,100 点以下の範囲で 評価する.
教員によっては演義以外の平常点(レポート、中間試験などによるもの)を参考にすることもある.詳細は授業中に説明する. 本科目の評価が不合格であった履修者のうち,一定の基準以上の成績の者は再試験を受験できる.再試験の概要は KULASIS で履修者に通知する.なお再試験は3月末に実施予定である. |
||||||||||
(教科書)
担当教員毎に指示する.
|
||||||||||
(参考書等)
授業中に紹介する
|
||||||||||
(授業外学習(予習・復習)等)
予習,復習とともに,演習問題を積極的に解いてみることが必要である.
|
||||||||||
(その他(オフィスアワー等))
同一クラスにおいて前期開講の線形代数学(講義・演義)Aとの連続した履修を推奨する.また微分積分学(講義・演義)B を並行して受講することが望ましい.
|
||||||||||
授業の進捗状況や受講生の習熟度などによって「授業計画と内容」,「成績評価の方法」が変更になる場合があります。
(科目名) |
線形代数学(講義・演義)B 1T17
|
(英 訳) | Linear Algebra with Exercises B | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
(担当教員) |
|
||||||||||||
(群) | 自然 | ||||||||||||
(分野(分類)) | 数学(基礎) | ||||||||||||
(使用言語) | 日本語 | ||||||||||||
(旧群) | B群 | ||||||||||||
(単位数) | 3 単位 | ||||||||||||
(週コマ数) | 2 コマ | ||||||||||||
(授業形態) | 講義 | ||||||||||||
(開講年度・開講期) | 2025・後期 | ||||||||||||
(配当学年) | 主として1回生 | ||||||||||||
(対象学生) | 理系向 | ||||||||||||
(曜時限) | 月3・火1 |
||||||||||||
(教室) | 共西32 | ||||||||||||
(授業の概要・目的) | 線形代数学は,微分積分学と共に現代の科学技術を支える数学の根幹をなす.この科目では,将来の応用に必要な線形代数学の基礎を解説する. 線形代数学(講義・演義)Bでは,ベクトル空間,線形写像などの基礎概念を体系的に学ぶと共に,それらの概念を行列に応用してさらに理解を深める. |
||||||||||||
(到達目標) | ベクトル空間,線形写像などの抽象概念を体系的に理解すること,ならびにそれを通してベクトル,行列の理論的な基礎を固めることを目標とする.その際には,ベクトルや行列等のより進んだ取り扱いに習熟することも目指す. | ||||||||||||
(授業計画と内容) | この科目は講義と演義とが一体として構成されている. 演義は原則として隔週で開講される.演義においては,受講者は問題演習や課題学習に積極的に取り組むことにより,それまでに講義で学んだ事柄の理解を深める. 以下に挙げるのは講義の計画、内容である.各項目には,受講者の理解の程度を確認しながら,【 】で指示した週数を充てる.各項目・小項目の講義の順序は固定したものではなく,担当者の講義方針と受講者の背景や理解の状況に応じて,講義担当者が適切に決める.講義の進め方については適宜,指示をして,受講者が予習をできるように十分に配慮する. 以下の内容を,フィードバック回を含め(試験週を除く)全15回にて行う. 1. 抽象ベクトル空間【5〜6週】: 一次結合,一次独立,基底,次元,部分空間,線形写像,核と像 線形写像と行列,基底の変換,直和 2. 計量ベクトル空間【3〜4週】: 内積,正規直交基底,直交行列,ユニタリ行列,直交補空間 3. 固有値と行列の対角化【5〜6週】: 固有値と固有ベクトル,固有多項式,固有空間 行列の対角化,行列の上三角化,ケーリー.ハミルトンの定理 対称行列の直交行列による対角化 二次形式* エルミート行列のユニタリ行列による対角化* アステリスク * はオプション |
||||||||||||
(履修要件) |
特になし
|
||||||||||||
(成績評価の方法・観点及び達成度) | 演義担当教員によって平常点(演習への参加状況,課題への取組状況など)から得られた演義成績(30 点満点)をもとに,講義担当教員が期末試験を用いて,演義成績以上,100 点以下の範囲で 評価する. 教員によっては演義以外の平常点(レポート、中間試験などによるもの)を参考にすることもある.詳細は授業中に説明する. 本科目の評価が不合格であった履修者のうち,一定の基準以上の成績の者は再試験を受験できる.再試験の概要は KULASIS で履修者に通知する.なお再試験は3月末に実施予定である. |
||||||||||||
(教科書) |
担当教員毎に指示する.
|
||||||||||||
(参考書等) |
授業中に紹介する
|
||||||||||||
(授業外学習(予習・復習)等) | 予習,復習とともに,演習問題を積極的に解いてみることが必要である. | ||||||||||||
(その他(オフィスアワー等)) | 同一クラスにおいて前期開講の線形代数学(講義・演義)Aとの連続した履修を推奨する.また微分積分学(講義・演義)B を並行して受講することが望ましい. |
||||||||||||
線形代数学(講義・演義)B
1T17 (科目名)
Linear Algebra with Exercises B
(英 訳)
|
|
|||||||||
(群) 自然 (分野(分類)) 数学(基礎) (使用言語) 日本語 | ||||||||||
(旧群) B群 (単位数) 3 単位 (週コマ数) 2 コマ (授業形態) 講義 | ||||||||||
(開講年度・ 開講期) 2025・後期 (配当学年) 主として1回生 (対象学生) 理系向 |
||||||||||
(曜時限)
月3・火1 (教室) 共西32 |
||||||||||
(授業の概要・目的)
線形代数学は,微分積分学と共に現代の科学技術を支える数学の根幹をなす.この科目では,将来の応用に必要な線形代数学の基礎を解説する.
線形代数学(講義・演義)Bでは,ベクトル空間,線形写像などの基礎概念を体系的に学ぶと共に,それらの概念を行列に応用してさらに理解を深める. |
||||||||||
(到達目標)
ベクトル空間,線形写像などの抽象概念を体系的に理解すること,ならびにそれを通してベクトル,行列の理論的な基礎を固めることを目標とする.その際には,ベクトルや行列等のより進んだ取り扱いに習熟することも目指す.
|
||||||||||
(授業計画と内容)
この科目は講義と演義とが一体として構成されている. 演義は原則として隔週で開講される.演義においては,受講者は問題演習や課題学習に積極的に取り組むことにより,それまでに講義で学んだ事柄の理解を深める. 以下に挙げるのは講義の計画、内容である.各項目には,受講者の理解の程度を確認しながら,【 】で指示した週数を充てる.各項目・小項目の講義の順序は固定したものではなく,担当者の講義方針と受講者の背景や理解の状況に応じて,講義担当者が適切に決める.講義の進め方については適宜,指示をして,受講者が予習をできるように十分に配慮する. 以下の内容を,フィードバック回を含め(試験週を除く)全15回にて行う. 1. 抽象ベクトル空間【5〜6週】: 一次結合,一次独立,基底,次元,部分空間,線形写像,核と像 線形写像と行列,基底の変換,直和 2. 計量ベクトル空間【3〜4週】: 内積,正規直交基底,直交行列,ユニタリ行列,直交補空間 3. 固有値と行列の対角化【5〜6週】: 固有値と固有ベクトル,固有多項式,固有空間 行列の対角化,行列の上三角化,ケーリー.ハミルトンの定理 対称行列の直交行列による対角化 二次形式* エルミート行列のユニタリ行列による対角化* アステリスク * はオプション |
||||||||||
(履修要件)
特になし
|
||||||||||
(成績評価の方法・観点及び達成度)
演義担当教員によって平常点(演習への参加状況,課題への取組状況など)から得られた演義成績(30 点満点)をもとに,講義担当教員が期末試験を用いて,演義成績以上,100 点以下の範囲で 評価する.
教員によっては演義以外の平常点(レポート、中間試験などによるもの)を参考にすることもある.詳細は授業中に説明する. 本科目の評価が不合格であった履修者のうち,一定の基準以上の成績の者は再試験を受験できる.再試験の概要は KULASIS で履修者に通知する.なお再試験は3月末に実施予定である. |
||||||||||
(教科書)
担当教員毎に指示する.
|
||||||||||
(参考書等)
授業中に紹介する
|
||||||||||
(授業外学習(予習・復習)等)
予習,復習とともに,演習問題を積極的に解いてみることが必要である.
|
||||||||||
(その他(オフィスアワー等))
同一クラスにおいて前期開講の線形代数学(講義・演義)Aとの連続した履修を推奨する.また微分積分学(講義・演義)B を並行して受講することが望ましい.
|
||||||||||
授業の進捗状況や受講生の習熟度などによって「授業計画と内容」,「成績評価の方法」が変更になる場合があります。
(科目名) |
線形代数学(講義・演義)B 1T20
|
(英 訳) | Linear Algebra with Exercises B | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
(担当教員) |
|
||||||||||||
(群) | 自然 | ||||||||||||
(分野(分類)) | 数学(基礎) | ||||||||||||
(使用言語) | 日本語 | ||||||||||||
(旧群) | B群 | ||||||||||||
(単位数) | 3 単位 | ||||||||||||
(週コマ数) | 2 コマ | ||||||||||||
(授業形態) | 講義 | ||||||||||||
(開講年度・開講期) | 2025・後期 | ||||||||||||
(配当学年) | 主として1回生 | ||||||||||||
(対象学生) | 理系向 | ||||||||||||
(曜時限) | 月3・火2 |
||||||||||||
(教室) | 共西32 | ||||||||||||
(授業の概要・目的) | 線形代数学は,微分積分学と共に現代の科学技術を支える数学の根幹をなす.この科目では,将来の応用に必要な線形代数学の基礎を解説する. 線形代数学(講義・演義)Bでは,ベクトル空間,線形写像などの基礎概念を体系的に学ぶと共に,それらの概念を行列に応用してさらに理解を深める. |
||||||||||||
(到達目標) | ベクトル空間,線形写像などの抽象概念を体系的に理解すること,ならびにそれを通してベクトル,行列の理論的な基礎を固めることを目標とする.その際には,ベクトルや行列等のより進んだ取り扱いに習熟することも目指す. | ||||||||||||
(授業計画と内容) | この科目は講義と演義とが一体として構成されている. 演義は原則として隔週で開講される.演義においては,受講者は問題演習や課題学習に積極的に取り組むことにより,それまでに講義で学んだ事柄の理解を深める. 以下に挙げるのは講義の計画、内容である.各項目には,受講者の理解の程度を確認しながら,【 】で指示した週数を充てる.各項目・小項目の講義の順序は固定したものではなく,担当者の講義方針と受講者の背景や理解の状況に応じて,講義担当者が適切に決める.講義の進め方については適宜,指示をして,受講者が予習をできるように十分に配慮する. 以下の内容を,フィードバック回を含め(試験週を除く)全15回にて行う. 1. 抽象ベクトル空間【5〜6週】: 一次結合,一次独立,基底,次元,部分空間,線形写像,核と像 線形写像と行列,基底の変換,直和 2. 計量ベクトル空間【3〜4週】: 内積,正規直交基底,直交行列,ユニタリ行列,直交補空間 3. 固有値と行列の対角化【5〜6週】: 固有値と固有ベクトル,固有多項式,固有空間 行列の対角化,行列の上三角化,ケーリー.ハミルトンの定理 対称行列の直交行列による対角化 二次形式* エルミート行列のユニタリ行列による対角化* アステリスク * はオプション |
||||||||||||
(履修要件) |
特になし
|
||||||||||||
(成績評価の方法・観点及び達成度) | 演義担当教員によって平常点(演習への参加状況,課題への取組状況など)から得られた演義成績(30 点満点)をもとに,講義担当教員が期末試験を用いて,演義成績以上,100 点以下の範囲で 評価する. 教員によっては演義以外の平常点(レポート、中間試験などによるもの)を参考にすることもある.詳細は授業中に説明する. 本科目の評価が不合格であった履修者のうち,一定の基準以上の成績の者は再試験を受験できる.再試験の概要は KULASIS で履修者に通知する.なお再試験は3月末に実施予定である. |
||||||||||||
(教科書) |
担当教員毎に指示する.
|
||||||||||||
(参考書等) |
授業中に紹介する
|
||||||||||||
(授業外学習(予習・復習)等) | 予習,復習とともに,演習問題を積極的に解いてみることが必要である. | ||||||||||||
(その他(オフィスアワー等)) | 同一クラスにおいて前期開講の線形代数学(講義・演義)Aとの連続した履修を推奨する.また微分積分学(講義・演義)B を並行して受講することが望ましい. |
||||||||||||
線形代数学(講義・演義)B
1T20 (科目名)
Linear Algebra with Exercises B
(英 訳)
|
|
|||||||||
(群) 自然 (分野(分類)) 数学(基礎) (使用言語) 日本語 | ||||||||||
(旧群) B群 (単位数) 3 単位 (週コマ数) 2 コマ (授業形態) 講義 | ||||||||||
(開講年度・ 開講期) 2025・後期 (配当学年) 主として1回生 (対象学生) 理系向 |
||||||||||
(曜時限)
月3・火2 (教室) 共西32 |
||||||||||
(授業の概要・目的)
線形代数学は,微分積分学と共に現代の科学技術を支える数学の根幹をなす.この科目では,将来の応用に必要な線形代数学の基礎を解説する.
線形代数学(講義・演義)Bでは,ベクトル空間,線形写像などの基礎概念を体系的に学ぶと共に,それらの概念を行列に応用してさらに理解を深める. |
||||||||||
(到達目標)
ベクトル空間,線形写像などの抽象概念を体系的に理解すること,ならびにそれを通してベクトル,行列の理論的な基礎を固めることを目標とする.その際には,ベクトルや行列等のより進んだ取り扱いに習熟することも目指す.
|
||||||||||
(授業計画と内容)
この科目は講義と演義とが一体として構成されている. 演義は原則として隔週で開講される.演義においては,受講者は問題演習や課題学習に積極的に取り組むことにより,それまでに講義で学んだ事柄の理解を深める. 以下に挙げるのは講義の計画、内容である.各項目には,受講者の理解の程度を確認しながら,【 】で指示した週数を充てる.各項目・小項目の講義の順序は固定したものではなく,担当者の講義方針と受講者の背景や理解の状況に応じて,講義担当者が適切に決める.講義の進め方については適宜,指示をして,受講者が予習をできるように十分に配慮する. 以下の内容を,フィードバック回を含め(試験週を除く)全15回にて行う. 1. 抽象ベクトル空間【5〜6週】: 一次結合,一次独立,基底,次元,部分空間,線形写像,核と像 線形写像と行列,基底の変換,直和 2. 計量ベクトル空間【3〜4週】: 内積,正規直交基底,直交行列,ユニタリ行列,直交補空間 3. 固有値と行列の対角化【5〜6週】: 固有値と固有ベクトル,固有多項式,固有空間 行列の対角化,行列の上三角化,ケーリー.ハミルトンの定理 対称行列の直交行列による対角化 二次形式* エルミート行列のユニタリ行列による対角化* アステリスク * はオプション |
||||||||||
(履修要件)
特になし
|
||||||||||
(成績評価の方法・観点及び達成度)
演義担当教員によって平常点(演習への参加状況,課題への取組状況など)から得られた演義成績(30 点満点)をもとに,講義担当教員が期末試験を用いて,演義成績以上,100 点以下の範囲で 評価する.
教員によっては演義以外の平常点(レポート、中間試験などによるもの)を参考にすることもある.詳細は授業中に説明する. 本科目の評価が不合格であった履修者のうち,一定の基準以上の成績の者は再試験を受験できる.再試験の概要は KULASIS で履修者に通知する.なお再試験は3月末に実施予定である. |
||||||||||
(教科書)
担当教員毎に指示する.
|
||||||||||
(参考書等)
授業中に紹介する
|
||||||||||
(授業外学習(予習・復習)等)
予習,復習とともに,演習問題を積極的に解いてみることが必要である.
|
||||||||||
(その他(オフィスアワー等))
同一クラスにおいて前期開講の線形代数学(講義・演義)Aとの連続した履修を推奨する.また微分積分学(講義・演義)B を並行して受講することが望ましい.
|
||||||||||
授業の進捗状況や受講生の習熟度などによって「授業計画と内容」,「成績評価の方法」が変更になる場合があります。
(科目名) |
Linear Algebra with Exercises B 1T25
|
(英 訳) | Linear Algebra with Exercises B | ||||
---|---|---|---|---|---|---|---|
(担当教員) |
|
||||||
(群) | 自然 | ||||||
(分野(分類)) | 数学(基礎) | ||||||
(使用言語) | 英語 | ||||||
(旧群) | B群 | ||||||
(単位数) | 3 単位 | ||||||
(週コマ数) | 2 コマ | ||||||
(授業形態) | 講義 | ||||||
(開講年度・開講期) | 2025・後期 | ||||||
(配当学年) | 主として1回生 | ||||||
(対象学生) | 理系向 | ||||||
(曜時限) | 月3・火2 |
||||||
(教室) | 4共40 | ||||||
(授業の概要・目的) | Linear algebra is one of the fundamental and important parts of mathematics. With Linear Algebra A and B, students are expected to understand not only the fundamental concepts of vector spaces and linear mappings, but also the concrete treatments of matrices and systems of linear equations. | ||||||
(到達目標) | The objective of this course is to introduce linear algebra concepts such as vector spaces, linear mappings, matrices and systems of linear equations. In addition to learning linear algebra, students can learn how to discuss and present mathematical topics in English through this course. |
||||||
(授業計画と内容) | 1. Abstract Vector Spaces (1--3) Basis, dimension, linear mappings and matrices, (4--5) Change of bases, subspaces, direct sums, kernel and image 2. Euclidean Spaces (6--7) Inner product, orthogonal matrices, unitary matrices, (8--10) Orthonormal basis and orthogonal complements 3. Eigenvalues and Diagonalization of Matrices (11--12) Eigenvalues and eigenvectors, eigenpolynominals, (13--14) Diagonalization of symmetric matrices by orthogonal matrices (diagonalization of Hermitian matrices by unitary matrices) The schedule is subject to change. Total:14 classes, 1 Feedback session |
||||||
(履修要件) |
Students are expected to understand Calculus with Exercises A and Linear Algebra with Exercises A.
|
||||||
(成績評価の方法・観点及び達成度) | Students will be evaluated based on their performance in both the lecture and the exercises sessions. * Lecture will be graded based mainly on the final examination. * Exercises will be evaluated based mainly on submitted reports and participation in class. The details of the evaluation system will be given by the lecturer at the first lecture. Students who fail to pass the examination but reach a certain standard are eligible for reexamination. |
||||||
(教科書) |
授業中に指示する
|
||||||
(参考書等) |
授業中に紹介する
|
||||||
(授業外学習(予習・復習)等) | To be announced. |
||||||
(その他(オフィスアワー等)) | It is advisable to attend the lecture “Calculus with Exercises B”in parallel. Students are welcome to ask questions during, at the beginning or at the end of the class. The instructor encourages students to arrange an appointment with him if they have questions. |
||||||
Linear Algebra with Exercises B
1T25 (科目名)
Linear Algebra with Exercises B
(英 訳)
|
|
||||||
(群) 自然 (分野(分類)) 数学(基礎) (使用言語) 英語 | |||||||
(旧群) B群 (単位数) 3 単位 (週コマ数) 2 コマ (授業形態) 講義 | |||||||
(開講年度・ 開講期) 2025・後期 (配当学年) 主として1回生 (対象学生) 理系向 |
|||||||
(曜時限)
月3・火2 (教室) 4共40 |
|||||||
(授業の概要・目的)
Linear algebra is one of the fundamental and important parts of mathematics. With Linear Algebra A and B, students are expected to understand not only the fundamental concepts of vector spaces and linear mappings, but also the concrete treatments of matrices and systems of linear equations.
|
|||||||
(到達目標)
The objective of this course is to introduce linear algebra concepts such as vector spaces, linear mappings, matrices and systems of linear equations.
In addition to learning linear algebra, students can learn how to discuss and present mathematical topics in English through this course. |
|||||||
(授業計画と内容)
1. Abstract Vector Spaces (1--3) Basis, dimension, linear mappings and matrices, (4--5) Change of bases, subspaces, direct sums, kernel and image 2. Euclidean Spaces (6--7) Inner product, orthogonal matrices, unitary matrices, (8--10) Orthonormal basis and orthogonal complements 3. Eigenvalues and Diagonalization of Matrices (11--12) Eigenvalues and eigenvectors, eigenpolynominals, (13--14) Diagonalization of symmetric matrices by orthogonal matrices (diagonalization of Hermitian matrices by unitary matrices) The schedule is subject to change. Total:14 classes, 1 Feedback session |
|||||||
(履修要件)
Students are expected to understand Calculus with Exercises A and Linear Algebra with Exercises A.
|
|||||||
(成績評価の方法・観点及び達成度)
Students will be evaluated based on their performance in both the lecture and the exercises sessions.
* Lecture will be graded based mainly on the final examination. * Exercises will be evaluated based mainly on submitted reports and participation in class. The details of the evaluation system will be given by the lecturer at the first lecture. Students who fail to pass the examination but reach a certain standard are eligible for reexamination. |
|||||||
(教科書)
授業中に指示する
|
|||||||
(参考書等)
授業中に紹介する
|
|||||||
(授業外学習(予習・復習)等)
To be announced.
|
|||||||
(その他(オフィスアワー等))
It is advisable to attend the lecture “Calculus with Exercises B”in parallel.
Students are welcome to ask questions during, at the beginning or at the end of the class. The instructor encourages students to arrange an appointment with him if they have questions. |
|||||||
授業の進捗状況や受講生の習熟度などによって「授業計画と内容」,「成績評価の方法」が変更になる場合があります。
(科目名) |
微分積分学続論I−ベクトル解析
|
(英 訳) | Advanced Calculus I - Vector Calculus | ||||
---|---|---|---|---|---|---|---|
(担当教員) |
|
||||||
(群) | 自然 | ||||||
(分野(分類)) | 数学(発展) | ||||||
(使用言語) | 日本語 | ||||||
(旧群) | B群 | ||||||
(単位数) | 2 単位 | ||||||
(週コマ数) | 1 コマ | ||||||
(授業形態) | 講義 | ||||||
(開講年度・開講期) | 2025・後期 | ||||||
(配当学年) | 主として2回生 | ||||||
(対象学生) | 理系向 | ||||||
(曜時限) | 月5 |
||||||
(教室) | 共東31 | ||||||
(授業の概要・目的) | 多変数関数の微分積分学は,数学の諸分野のみならず,物理学,工学等の広い領域の共通の基礎である. この授業では,「微分積分学(講義・演義)A・B」および「線形代数学(講義・演義)A・B」,または「微分積分学A・B」および「線形代数学A・B」を前提として,多変数微分積分学の理解を深めると同時に,ベクトル解析の基本的概念を具体的な例と共に解説する. |
||||||
(到達目標) | 多変数関数の微分積分の理解を深める.また平面および空間のベクトル場の演算や線積分・面積分の意味を理解する.さらに,これらを活用する能力を身につける. | ||||||
(授業計画と内容) | 以下の各項目について講述する.各項目には,受講者の理解の程度を確認しながら,【 】で指示した週数を充てる.各項目・小項目の講義の順序は固定したものではなく,担当者の講義方針と受講者の背景や理解の状況に応じて,講義担当者が適切に決める.講義の進め方については適宜,指示をして,受講者が予習をできるように十分に配慮する. 以下の内容を,フィードバック回を含め(試験週を除く)全15回にて行う. 1.ユークリッド空間のベクトル場とポテンシャル【4〜5週】: ベクトルの演算(内積,外積) ベクトル場 ベクトル場の演算(勾配,回転,発散など) スカラーポテンシャル, ベクトルポテンシャル 2.線積分と面積分【6〜7週】: 曲線の長さ,曲面積 線積分,面積分 積分定理(ガウスの発散定理,グリーンの公式,ストークスの定理) なお上記の項目を学習する際には, 3.多変数関数の微積分【3〜5週】: 陰関数定理,逆関数定理 重積分,変数変換公式 について,必要な箇所で適宜説明を加えるものとする. |
||||||
(履修要件) |
「微分積分学(講義・演義)A・B」および「線形代数学(講義・演義)A・B」,または「微分積分学A・B」および「線形代数学A・B」の履修を前提とする。
|
||||||
(成績評価の方法・観点及び達成度) | 主として定期試験による(詳しくは担当教員が授業中に指示する)。 | ||||||
(教科書) |
担当教員が指示する。
|
||||||
(参考書等) |
授業中に紹介する
|
||||||
(授業外学習(予習・復習)等) | 予習・復習とともに,演習問題を積極的に解いてみることが必要である. | ||||||
(その他(オフィスアワー等)) | |||||||
微分積分学続論I−ベクトル解析
(科目名)
Advanced Calculus I - Vector Calculus
(英 訳)
|
|
||||||
(群) 自然 (分野(分類)) 数学(発展) (使用言語) 日本語 | |||||||
(旧群) B群 (単位数) 2 単位 (週コマ数) 1 コマ (授業形態) 講義 | |||||||
(開講年度・ 開講期) 2025・後期 (配当学年) 主として2回生 (対象学生) 理系向 |
|||||||
(曜時限)
月5 (教室) 共東31 |
|||||||
(授業の概要・目的)
多変数関数の微分積分学は,数学の諸分野のみならず,物理学,工学等の広い領域の共通の基礎である.
この授業では,「微分積分学(講義・演義)A・B」および「線形代数学(講義・演義)A・B」,または「微分積分学A・B」および「線形代数学A・B」を前提として,多変数微分積分学の理解を深めると同時に,ベクトル解析の基本的概念を具体的な例と共に解説する. |
|||||||
(到達目標)
多変数関数の微分積分の理解を深める.また平面および空間のベクトル場の演算や線積分・面積分の意味を理解する.さらに,これらを活用する能力を身につける.
|
|||||||
(授業計画と内容)
以下の各項目について講述する.各項目には,受講者の理解の程度を確認しながら,【 】で指示した週数を充てる.各項目・小項目の講義の順序は固定したものではなく,担当者の講義方針と受講者の背景や理解の状況に応じて,講義担当者が適切に決める.講義の進め方については適宜,指示をして,受講者が予習をできるように十分に配慮する. 以下の内容を,フィードバック回を含め(試験週を除く)全15回にて行う. 1.ユークリッド空間のベクトル場とポテンシャル【4〜5週】: ベクトルの演算(内積,外積) ベクトル場 ベクトル場の演算(勾配,回転,発散など) スカラーポテンシャル, ベクトルポテンシャル 2.線積分と面積分【6〜7週】: 曲線の長さ,曲面積 線積分,面積分 積分定理(ガウスの発散定理,グリーンの公式,ストークスの定理) なお上記の項目を学習する際には, 3.多変数関数の微積分【3〜5週】: 陰関数定理,逆関数定理 重積分,変数変換公式 について,必要な箇所で適宜説明を加えるものとする. |
|||||||
(履修要件)
「微分積分学(講義・演義)A・B」および「線形代数学(講義・演義)A・B」,または「微分積分学A・B」および「線形代数学A・B」の履修を前提とする。
|
|||||||
(成績評価の方法・観点及び達成度)
主として定期試験による(詳しくは担当教員が授業中に指示する)。
|
|||||||
(教科書)
担当教員が指示する。
|
|||||||
(参考書等)
授業中に紹介する
|
|||||||
(授業外学習(予習・復習)等)
予習・復習とともに,演習問題を積極的に解いてみることが必要である.
|
|||||||
(その他(オフィスアワー等))
|
|||||||
授業の進捗状況や受講生の習熟度などによって「授業計画と内容」,「成績評価の方法」が変更になる場合があります。
(科目名) |
微分積分学(講義・演義)B 1T2
|
(英 訳) | Calculus with Exercises B | ||||
---|---|---|---|---|---|---|---|
(担当教員) |
|
||||||
(群) | 自然 | ||||||
(分野(分類)) | 数学(基礎) | ||||||
(使用言語) | 日本語 | ||||||
(旧群) | B群 | ||||||
(単位数) | 3 単位 | ||||||
(週コマ数) | 2 コマ | ||||||
(授業形態) | 講義 | ||||||
(開講年度・開講期) | 2025・後期 | ||||||
(配当学年) | 主として1回生 | ||||||
(対象学生) | 理系向 | ||||||
(曜時限) | 火1・水2 |
||||||
(教室) | 1共02 | ||||||
(授業の概要・目的) | 微分積分学は,線形代数学と共に現代の科学技術を支える数学の根幹をなす.この科目では,将来の応用に必要な微分積分学の基礎を解説する. 微分積分学(講義・演義)Bでは,微分積分学(講義・演義)Aに続いて一変数関数の微分積分の理解をさらに深めた後に,多変数関数の微分積分について学ぶ. |
||||||
(到達目標) | 一変数および多変数関数の微分積分の理論的な基礎を理解すること,ならびに,それを用いた数学的解析の手法を修得して応用できるようになることを目標とする. | ||||||
(授業計画と内容) | この科目は講義と演義とが一体となって構成されている. 演義は原則として隔週で開講される.演義においては,受講者は問題練習や課題学習に積極的に取り組むことにより,それまでに講義で学んだ事柄の理解を深める. 以下に挙げるのは講義の計画・内容である.各項目には,受講者の理解の程度を確認しながら,【 】で指示した週数を充てる.各項目・小項目の講義の順序は固定したものではなく,担当者の講義方針と受講者の背景や理解の状況に応じて,講義担当者が適切に決める.講義の進め方については適宜,指示をして,受講者が予習をできるように十分に配慮する. 以下の内容を,フィードバック回を含め(試験週を除く)全15回にて行う. 1.級数【3〜5週】: 無限級数(収束の判定法,絶対収束と条件収束) べき級数(収束半径,項別微積分) 関数列・関数項級数*(一様収束,項別微積分) 2.平面および空間の点集合【2週】: 距離,点列の収束,開集合・閉集合 連続関数 3.多変数関数の微分法【4〜5週】: 偏微分,微分(全微分)可能性,一次近似,接平面,勾配ベクトル 合成関数の微分(連鎖律),ヤコビ行列,ヤコビ行列式 テイラーの定理,極値問題 条件付き極値問題(陰関数定理) 4.多変数関数の積分法【4〜5週】: 重積分,累次積分,変数変換公式,面積・体積 広義積分,ガンマ関数とベータ関数 アステリスク * はオプション |
||||||
(履修要件) |
特になし
|
||||||
(成績評価の方法・観点及び達成度) | 演義担当教員によって平常点(演習への参加状況,課題への取組状況など)から得られた演義成績(30 点満点)をもとに,講義担当教員が期末試験を用いて,演義成績以上,100 点以下の範囲で 評価する. 教員によっては演義以外の平常点(レポート、中間試験などによるもの)を参考にすることもある.詳細は授業中に説明する. 本科目の評価が不合格であった履修者のうち,一定の基準以上の成績の者は再試験を受験できる.再試験の概要は KULASIS で履修者に通知する.なお再試験は3月末に実施予定である. |
||||||
(教科書) |
担当教員毎に指示する.
|
||||||
(参考書等) |
授業中に紹介する
|
||||||
(授業外学習(予習・復習)等) | 予習,復習とともに,演習問題を積極的に解いてみることが必要である. | ||||||
(その他(オフィスアワー等)) | 同一クラスにおいて前期開講の微分積分学(講義・演義)Aとの連続した履修を推奨する.また線形代数学(講義・演義)B を並行して受講することが望ましい. |
||||||
微分積分学(講義・演義)B
1T2 (科目名)
Calculus with Exercises B
(英 訳)
|
|
||||||
(群) 自然 (分野(分類)) 数学(基礎) (使用言語) 日本語 | |||||||
(旧群) B群 (単位数) 3 単位 (週コマ数) 2 コマ (授業形態) 講義 | |||||||
(開講年度・ 開講期) 2025・後期 (配当学年) 主として1回生 (対象学生) 理系向 |
|||||||
(曜時限)
火1・水2 (教室) 1共02 |
|||||||
(授業の概要・目的)
微分積分学は,線形代数学と共に現代の科学技術を支える数学の根幹をなす.この科目では,将来の応用に必要な微分積分学の基礎を解説する.
微分積分学(講義・演義)Bでは,微分積分学(講義・演義)Aに続いて一変数関数の微分積分の理解をさらに深めた後に,多変数関数の微分積分について学ぶ. |
|||||||
(到達目標)
一変数および多変数関数の微分積分の理論的な基礎を理解すること,ならびに,それを用いた数学的解析の手法を修得して応用できるようになることを目標とする.
|
|||||||
(授業計画と内容)
この科目は講義と演義とが一体となって構成されている. 演義は原則として隔週で開講される.演義においては,受講者は問題練習や課題学習に積極的に取り組むことにより,それまでに講義で学んだ事柄の理解を深める. 以下に挙げるのは講義の計画・内容である.各項目には,受講者の理解の程度を確認しながら,【 】で指示した週数を充てる.各項目・小項目の講義の順序は固定したものではなく,担当者の講義方針と受講者の背景や理解の状況に応じて,講義担当者が適切に決める.講義の進め方については適宜,指示をして,受講者が予習をできるように十分に配慮する. 以下の内容を,フィードバック回を含め(試験週を除く)全15回にて行う. 1.級数【3〜5週】: 無限級数(収束の判定法,絶対収束と条件収束) べき級数(収束半径,項別微積分) 関数列・関数項級数*(一様収束,項別微積分) 2.平面および空間の点集合【2週】: 距離,点列の収束,開集合・閉集合 連続関数 3.多変数関数の微分法【4〜5週】: 偏微分,微分(全微分)可能性,一次近似,接平面,勾配ベクトル 合成関数の微分(連鎖律),ヤコビ行列,ヤコビ行列式 テイラーの定理,極値問題 条件付き極値問題(陰関数定理) 4.多変数関数の積分法【4〜5週】: 重積分,累次積分,変数変換公式,面積・体積 広義積分,ガンマ関数とベータ関数 アステリスク * はオプション |
|||||||
(履修要件)
特になし
|
|||||||
(成績評価の方法・観点及び達成度)
演義担当教員によって平常点(演習への参加状況,課題への取組状況など)から得られた演義成績(30 点満点)をもとに,講義担当教員が期末試験を用いて,演義成績以上,100 点以下の範囲で 評価する.
教員によっては演義以外の平常点(レポート、中間試験などによるもの)を参考にすることもある.詳細は授業中に説明する. 本科目の評価が不合格であった履修者のうち,一定の基準以上の成績の者は再試験を受験できる.再試験の概要は KULASIS で履修者に通知する.なお再試験は3月末に実施予定である. |
|||||||
(教科書)
担当教員毎に指示する.
|
|||||||
(参考書等)
授業中に紹介する
|
|||||||
(授業外学習(予習・復習)等)
予習,復習とともに,演習問題を積極的に解いてみることが必要である.
|
|||||||
(その他(オフィスアワー等))
同一クラスにおいて前期開講の微分積分学(講義・演義)Aとの連続した履修を推奨する.また線形代数学(講義・演義)B を並行して受講することが望ましい.
|
|||||||
授業の進捗状況や受講生の習熟度などによって「授業計画と内容」,「成績評価の方法」が変更になる場合があります。
(科目名) |
微分積分学(講義・演義)B 1T5
|
(英 訳) | Calculus with Exercises B | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
(担当教員) |
|
||||||||||||
(群) | 自然 | ||||||||||||
(分野(分類)) | 数学(基礎) | ||||||||||||
(使用言語) | 日本語 | ||||||||||||
(旧群) | B群 | ||||||||||||
(単位数) | 3 単位 | ||||||||||||
(週コマ数) | 2 コマ | ||||||||||||
(授業形態) | 講義 | ||||||||||||
(開講年度・開講期) | 2025・後期 | ||||||||||||
(配当学年) | 主として1回生 | ||||||||||||
(対象学生) | 理系向 | ||||||||||||
(曜時限) | 火1・水2 |
||||||||||||
(教室) | 共南21 | ||||||||||||
(授業の概要・目的) | 微分積分学は,線形代数学と共に現代の科学技術を支える数学の根幹をなす.この科目では,将来の応用に必要な微分積分学の基礎を解説する. 微分積分学(講義・演義)Bでは,微分積分学(講義・演義)Aに続いて一変数関数の微分積分の理解をさらに深めた後に,多変数関数の微分積分について学ぶ. |
||||||||||||
(到達目標) | 一変数および多変数関数の微分積分の理論的な基礎を理解すること,ならびに,それを用いた数学的解析の手法を修得して応用できるようになることを目標とする. | ||||||||||||
(授業計画と内容) | この科目は講義と演義とが一体となって構成されている. 演義は原則として隔週で開講される.演義においては,受講者は問題練習や課題学習に積極的に取り組むことにより,それまでに講義で学んだ事柄の理解を深める. 以下に挙げるのは講義の計画・内容である.各項目には,受講者の理解の程度を確認しながら,【 】で指示した週数を充てる.各項目・小項目の講義の順序は固定したものではなく,担当者の講義方針と受講者の背景や理解の状況に応じて,講義担当者が適切に決める.講義の進め方については適宜,指示をして,受講者が予習をできるように十分に配慮する. 以下の内容を,フィードバック回を含め(試験週を除く)全15回にて行う. 1.級数【3〜5週】: 無限級数(収束の判定法,絶対収束と条件収束) べき級数(収束半径,項別微積分) 関数列・関数項級数*(一様収束,項別微積分) 2.平面および空間の点集合【2週】: 距離,点列の収束,開集合・閉集合 連続関数 3.多変数関数の微分法【4〜5週】: 偏微分,微分(全微分)可能性,一次近似,接平面,勾配ベクトル 合成関数の微分(連鎖律),ヤコビ行列,ヤコビ行列式 テイラーの定理,極値問題 条件付き極値問題(陰関数定理) 4.多変数関数の積分法【4〜5週】: 重積分,累次積分,変数変換公式,面積・体積 広義積分,ガンマ関数とベータ関数 アステリスク * はオプション |
||||||||||||
(履修要件) |
特になし
|
||||||||||||
(成績評価の方法・観点及び達成度) | 演義担当教員によって平常点(演習への参加状況,課題への取組状況など)から得られた演義成績(30 点満点)をもとに,講義担当教員が期末試験を用いて,演義成績以上,100 点以下の範囲で 評価する. 教員によっては演義以外の平常点(レポート、中間試験などによるもの)を参考にすることもある.詳細は授業中に説明する. 本科目の評価が不合格であった履修者のうち,一定の基準以上の成績の者は再試験を受験できる.再試験の概要は KULASIS で履修者に通知する.なお再試験は3月末に実施予定である. |
||||||||||||
(教科書) |
担当教員毎に指示する.
|
||||||||||||
(参考書等) |
授業中に紹介する
|
||||||||||||
(授業外学習(予習・復習)等) | 予習,復習とともに,演習問題を積極的に解いてみることが必要である. | ||||||||||||
(その他(オフィスアワー等)) | 同一クラスにおいて前期開講の微分積分学(講義・演義)Aとの連続した履修を推奨する.また線形代数学(講義・演義)B を並行して受講することが望ましい. |
||||||||||||
微分積分学(講義・演義)B
1T5 (科目名)
Calculus with Exercises B
(英 訳)
|
|
|||||||||
(群) 自然 (分野(分類)) 数学(基礎) (使用言語) 日本語 | ||||||||||
(旧群) B群 (単位数) 3 単位 (週コマ数) 2 コマ (授業形態) 講義 | ||||||||||
(開講年度・ 開講期) 2025・後期 (配当学年) 主として1回生 (対象学生) 理系向 |
||||||||||
(曜時限)
火1・水2 (教室) 共南21 |
||||||||||
(授業の概要・目的)
微分積分学は,線形代数学と共に現代の科学技術を支える数学の根幹をなす.この科目では,将来の応用に必要な微分積分学の基礎を解説する.
微分積分学(講義・演義)Bでは,微分積分学(講義・演義)Aに続いて一変数関数の微分積分の理解をさらに深めた後に,多変数関数の微分積分について学ぶ. |
||||||||||
(到達目標)
一変数および多変数関数の微分積分の理論的な基礎を理解すること,ならびに,それを用いた数学的解析の手法を修得して応用できるようになることを目標とする.
|
||||||||||
(授業計画と内容)
この科目は講義と演義とが一体となって構成されている. 演義は原則として隔週で開講される.演義においては,受講者は問題練習や課題学習に積極的に取り組むことにより,それまでに講義で学んだ事柄の理解を深める. 以下に挙げるのは講義の計画・内容である.各項目には,受講者の理解の程度を確認しながら,【 】で指示した週数を充てる.各項目・小項目の講義の順序は固定したものではなく,担当者の講義方針と受講者の背景や理解の状況に応じて,講義担当者が適切に決める.講義の進め方については適宜,指示をして,受講者が予習をできるように十分に配慮する. 以下の内容を,フィードバック回を含め(試験週を除く)全15回にて行う. 1.級数【3〜5週】: 無限級数(収束の判定法,絶対収束と条件収束) べき級数(収束半径,項別微積分) 関数列・関数項級数*(一様収束,項別微積分) 2.平面および空間の点集合【2週】: 距離,点列の収束,開集合・閉集合 連続関数 3.多変数関数の微分法【4〜5週】: 偏微分,微分(全微分)可能性,一次近似,接平面,勾配ベクトル 合成関数の微分(連鎖律),ヤコビ行列,ヤコビ行列式 テイラーの定理,極値問題 条件付き極値問題(陰関数定理) 4.多変数関数の積分法【4〜5週】: 重積分,累次積分,変数変換公式,面積・体積 広義積分,ガンマ関数とベータ関数 アステリスク * はオプション |
||||||||||
(履修要件)
特になし
|
||||||||||
(成績評価の方法・観点及び達成度)
演義担当教員によって平常点(演習への参加状況,課題への取組状況など)から得られた演義成績(30 点満点)をもとに,講義担当教員が期末試験を用いて,演義成績以上,100 点以下の範囲で 評価する.
教員によっては演義以外の平常点(レポート、中間試験などによるもの)を参考にすることもある.詳細は授業中に説明する. 本科目の評価が不合格であった履修者のうち,一定の基準以上の成績の者は再試験を受験できる.再試験の概要は KULASIS で履修者に通知する.なお再試験は3月末に実施予定である. |
||||||||||
(教科書)
担当教員毎に指示する.
|
||||||||||
(参考書等)
授業中に紹介する
|
||||||||||
(授業外学習(予習・復習)等)
予習,復習とともに,演習問題を積極的に解いてみることが必要である.
|
||||||||||
(その他(オフィスアワー等))
同一クラスにおいて前期開講の微分積分学(講義・演義)Aとの連続した履修を推奨する.また線形代数学(講義・演義)B を並行して受講することが望ましい.
|
||||||||||
授業の進捗状況や受講生の習熟度などによって「授業計画と内容」,「成績評価の方法」が変更になる場合があります。
(科目名) |
微分積分学(講義・演義)B 1T17
|
(英 訳) | Calculus with Exercises B | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
(担当教員) |
|
||||||||||||
(群) | 自然 | ||||||||||||
(分野(分類)) | 数学(基礎) | ||||||||||||
(使用言語) | 日本語 | ||||||||||||
(旧群) | B群 | ||||||||||||
(単位数) | 3 単位 | ||||||||||||
(週コマ数) | 2 コマ | ||||||||||||
(授業形態) | 講義 | ||||||||||||
(開講年度・開講期) | 2025・後期 | ||||||||||||
(配当学年) | 主として1回生 | ||||||||||||
(対象学生) | 理系向 | ||||||||||||
(曜時限) | 火1・水2 |
||||||||||||
(教室) | 共西32 | ||||||||||||
(授業の概要・目的) | 微分積分学は,線形代数学と共に現代の科学技術を支える数学の根幹をなす.この科目では,将来の応用に必要な微分積分学の基礎を解説する. 微分積分学(講義・演義)Bでは,微分積分学(講義・演義)Aに続いて一変数関数の微分積分の理解をさらに深めた後に,多変数関数の微分積分について学ぶ. |
||||||||||||
(到達目標) | 一変数および多変数関数の微分積分の理論的な基礎を理解すること,ならびに,それを用いた数学的解析の手法を修得して応用できるようになることを目標とする. | ||||||||||||
(授業計画と内容) | この科目は講義と演義とが一体となって構成されている. 演義は原則として隔週で開講される.演義においては,受講者は問題練習や課題学習に積極的に取り組むことにより,それまでに講義で学んだ事柄の理解を深める. 以下に挙げるのは講義の計画・内容である.各項目には,受講者の理解の程度を確認しながら,【 】で指示した週数を充てる.各項目・小項目の講義の順序は固定したものではなく,担当者の講義方針と受講者の背景や理解の状況に応じて,講義担当者が適切に決める.講義の進め方については適宜,指示をして,受講者が予習をできるように十分に配慮する. 以下の内容を,フィードバック回を含め(試験週を除く)全15回にて行う. 1.級数【3〜5週】: 無限級数(収束の判定法,絶対収束と条件収束) べき級数(収束半径,項別微積分) 関数列・関数項級数*(一様収束,項別微積分) 2.平面および空間の点集合【2週】: 距離,点列の収束,開集合・閉集合 連続関数 3.多変数関数の微分法【4〜5週】: 偏微分,微分(全微分)可能性,一次近似,接平面,勾配ベクトル 合成関数の微分(連鎖律),ヤコビ行列,ヤコビ行列式 テイラーの定理,極値問題 条件付き極値問題(陰関数定理) 4.多変数関数の積分法【4〜5週】: 重積分,累次積分,変数変換公式,面積・体積 広義積分,ガンマ関数とベータ関数 アステリスク * はオプション |
||||||||||||
(履修要件) |
特になし
|
||||||||||||
(成績評価の方法・観点及び達成度) | 演義担当教員によって平常点(演習への参加状況,課題への取組状況など)から得られた演義成績(30 点満点)をもとに,講義担当教員が期末試験を用いて,演義成績以上,100 点以下の範囲で 評価する. 教員によっては演義以外の平常点(レポート、中間試験などによるもの)を参考にすることもある.詳細は授業中に説明する. 本科目の評価が不合格であった履修者のうち,一定の基準以上の成績の者は再試験を受験できる.再試験の概要は KULASIS で履修者に通知する.なお再試験は3月末に実施予定である. |
||||||||||||
(教科書) |
担当教員毎に指示する.
|
||||||||||||
(参考書等) |
授業中に紹介する
|
||||||||||||
(授業外学習(予習・復習)等) | 予習,復習とともに,演習問題を積極的に解いてみることが必要である. | ||||||||||||
(その他(オフィスアワー等)) | 同一クラスにおいて前期開講の微分積分学(講義・演義)Aとの連続した履修を推奨する.また線形代数学(講義・演義)B を並行して受講することが望ましい. |
||||||||||||
微分積分学(講義・演義)B
1T17 (科目名)
Calculus with Exercises B
(英 訳)
|
|
|||||||||
(群) 自然 (分野(分類)) 数学(基礎) (使用言語) 日本語 | ||||||||||
(旧群) B群 (単位数) 3 単位 (週コマ数) 2 コマ (授業形態) 講義 | ||||||||||
(開講年度・ 開講期) 2025・後期 (配当学年) 主として1回生 (対象学生) 理系向 |
||||||||||
(曜時限)
火1・水2 (教室) 共西32 |
||||||||||
(授業の概要・目的)
微分積分学は,線形代数学と共に現代の科学技術を支える数学の根幹をなす.この科目では,将来の応用に必要な微分積分学の基礎を解説する.
微分積分学(講義・演義)Bでは,微分積分学(講義・演義)Aに続いて一変数関数の微分積分の理解をさらに深めた後に,多変数関数の微分積分について学ぶ. |
||||||||||
(到達目標)
一変数および多変数関数の微分積分の理論的な基礎を理解すること,ならびに,それを用いた数学的解析の手法を修得して応用できるようになることを目標とする.
|
||||||||||
(授業計画と内容)
この科目は講義と演義とが一体となって構成されている. 演義は原則として隔週で開講される.演義においては,受講者は問題練習や課題学習に積極的に取り組むことにより,それまでに講義で学んだ事柄の理解を深める. 以下に挙げるのは講義の計画・内容である.各項目には,受講者の理解の程度を確認しながら,【 】で指示した週数を充てる.各項目・小項目の講義の順序は固定したものではなく,担当者の講義方針と受講者の背景や理解の状況に応じて,講義担当者が適切に決める.講義の進め方については適宜,指示をして,受講者が予習をできるように十分に配慮する. 以下の内容を,フィードバック回を含め(試験週を除く)全15回にて行う. 1.級数【3〜5週】: 無限級数(収束の判定法,絶対収束と条件収束) べき級数(収束半径,項別微積分) 関数列・関数項級数*(一様収束,項別微積分) 2.平面および空間の点集合【2週】: 距離,点列の収束,開集合・閉集合 連続関数 3.多変数関数の微分法【4〜5週】: 偏微分,微分(全微分)可能性,一次近似,接平面,勾配ベクトル 合成関数の微分(連鎖律),ヤコビ行列,ヤコビ行列式 テイラーの定理,極値問題 条件付き極値問題(陰関数定理) 4.多変数関数の積分法【4〜5週】: 重積分,累次積分,変数変換公式,面積・体積 広義積分,ガンマ関数とベータ関数 アステリスク * はオプション |
||||||||||
(履修要件)
特になし
|
||||||||||
(成績評価の方法・観点及び達成度)
演義担当教員によって平常点(演習への参加状況,課題への取組状況など)から得られた演義成績(30 点満点)をもとに,講義担当教員が期末試験を用いて,演義成績以上,100 点以下の範囲で 評価する.
教員によっては演義以外の平常点(レポート、中間試験などによるもの)を参考にすることもある.詳細は授業中に説明する. 本科目の評価が不合格であった履修者のうち,一定の基準以上の成績の者は再試験を受験できる.再試験の概要は KULASIS で履修者に通知する.なお再試験は3月末に実施予定である. |
||||||||||
(教科書)
担当教員毎に指示する.
|
||||||||||
(参考書等)
授業中に紹介する
|
||||||||||
(授業外学習(予習・復習)等)
予習,復習とともに,演習問題を積極的に解いてみることが必要である.
|
||||||||||
(その他(オフィスアワー等))
同一クラスにおいて前期開講の微分積分学(講義・演義)Aとの連続した履修を推奨する.また線形代数学(講義・演義)B を並行して受講することが望ましい.
|
||||||||||
授業の進捗状況や受講生の習熟度などによって「授業計画と内容」,「成績評価の方法」が変更になる場合があります。
(科目名) |
線形代数学(講義・演義)B 1T1
|
(英 訳) | Linear Algebra with Exercises B | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
(担当教員) |
|
||||||||||||
(群) | 自然 | ||||||||||||
(分野(分類)) | 数学(基礎) | ||||||||||||
(使用言語) | 日本語 | ||||||||||||
(旧群) | B群 | ||||||||||||
(単位数) | 3 単位 | ||||||||||||
(週コマ数) | 2 コマ | ||||||||||||
(授業形態) | 講義 | ||||||||||||
(開講年度・開講期) | 2025・後期 | ||||||||||||
(配当学年) | 主として1回生 | ||||||||||||
(対象学生) | 理系向 | ||||||||||||
(曜時限) | 火1・水2 |
||||||||||||
(教室) | 1共31 | ||||||||||||
(授業の概要・目的) | 線形代数学は,微分積分学と共に現代の科学技術を支える数学の根幹をなす.この科目では,将来の応用に必要な線形代数学の基礎を解説する. 線形代数学(講義・演義)Bでは,ベクトル空間,線形写像などの基礎概念を体系的に学ぶと共に,それらの概念を行列に応用してさらに理解を深める. |
||||||||||||
(到達目標) | ベクトル空間,線形写像などの抽象概念を体系的に理解すること,ならびにそれを通してベクトル,行列の理論的な基礎を固めることを目標とする.その際には,ベクトルや行列等のより進んだ取り扱いに習熟することも目指す. | ||||||||||||
(授業計画と内容) | この科目は講義と演義とが一体として構成されている. 演義は原則として隔週で開講される.演義においては,受講者は問題演習や課題学習に積極的に取り組むことにより,それまでに講義で学んだ事柄の理解を深める. 以下に挙げるのは講義の計画、内容である.各項目には,受講者の理解の程度を確認しながら,【 】で指示した週数を充てる.各項目・小項目の講義の順序は固定したものではなく,担当者の講義方針と受講者の背景や理解の状況に応じて,講義担当者が適切に決める.講義の進め方については適宜,指示をして,受講者が予習をできるように十分に配慮する. 以下の内容を,フィードバック回を含め(試験週を除く)全15回にて行う. 1. 抽象ベクトル空間【5〜6週】: 一次結合,一次独立,基底,次元,部分空間,線形写像,核と像 線形写像と行列,基底の変換,直和 2. 計量ベクトル空間【3〜4週】: 内積,正規直交基底,直交行列,ユニタリ行列,直交補空間 3. 固有値と行列の対角化【5〜6週】: 固有値と固有ベクトル,固有多項式,固有空間 行列の対角化,行列の上三角化,ケーリー.ハミルトンの定理 対称行列の直交行列による対角化 二次形式* エルミート行列のユニタリ行列による対角化* アステリスク * はオプション |
||||||||||||
(履修要件) |
特になし
|
||||||||||||
(成績評価の方法・観点及び達成度) | 演義担当教員によって平常点(演習への参加状況,課題への取組状況など)から得られた演義成績(30 点満点)をもとに,講義担当教員が期末試験を用いて,演義成績以上,100 点以下の範囲で 評価する. 教員によっては演義以外の平常点(レポート、中間試験などによるもの)を参考にすることもある.詳細は授業中に説明する. 本科目の評価が不合格であった履修者のうち,一定の基準以上の成績の者は再試験を受験できる.再試験の概要は KULASIS で履修者に通知する.なお再試験は3月末に実施予定である. |
||||||||||||
(教科書) |
担当教員毎に指示する.
|
||||||||||||
(参考書等) |
授業中に紹介する
|
||||||||||||
(授業外学習(予習・復習)等) | 予習,復習とともに,演習問題を積極的に解いてみることが必要である. | ||||||||||||
(その他(オフィスアワー等)) | 同一クラスにおいて前期開講の線形代数学(講義・演義)Aとの連続した履修を推奨する.また微分積分学(講義・演義)B を並行して受講することが望ましい. |
||||||||||||
線形代数学(講義・演義)B
1T1 (科目名)
Linear Algebra with Exercises B
(英 訳)
|
|
|||||||||
(群) 自然 (分野(分類)) 数学(基礎) (使用言語) 日本語 | ||||||||||
(旧群) B群 (単位数) 3 単位 (週コマ数) 2 コマ (授業形態) 講義 | ||||||||||
(開講年度・ 開講期) 2025・後期 (配当学年) 主として1回生 (対象学生) 理系向 |
||||||||||
(曜時限)
火1・水2 (教室) 1共31 |
||||||||||
(授業の概要・目的)
線形代数学は,微分積分学と共に現代の科学技術を支える数学の根幹をなす.この科目では,将来の応用に必要な線形代数学の基礎を解説する.
線形代数学(講義・演義)Bでは,ベクトル空間,線形写像などの基礎概念を体系的に学ぶと共に,それらの概念を行列に応用してさらに理解を深める. |
||||||||||
(到達目標)
ベクトル空間,線形写像などの抽象概念を体系的に理解すること,ならびにそれを通してベクトル,行列の理論的な基礎を固めることを目標とする.その際には,ベクトルや行列等のより進んだ取り扱いに習熟することも目指す.
|
||||||||||
(授業計画と内容)
この科目は講義と演義とが一体として構成されている. 演義は原則として隔週で開講される.演義においては,受講者は問題演習や課題学習に積極的に取り組むことにより,それまでに講義で学んだ事柄の理解を深める. 以下に挙げるのは講義の計画、内容である.各項目には,受講者の理解の程度を確認しながら,【 】で指示した週数を充てる.各項目・小項目の講義の順序は固定したものではなく,担当者の講義方針と受講者の背景や理解の状況に応じて,講義担当者が適切に決める.講義の進め方については適宜,指示をして,受講者が予習をできるように十分に配慮する. 以下の内容を,フィードバック回を含め(試験週を除く)全15回にて行う. 1. 抽象ベクトル空間【5〜6週】: 一次結合,一次独立,基底,次元,部分空間,線形写像,核と像 線形写像と行列,基底の変換,直和 2. 計量ベクトル空間【3〜4週】: 内積,正規直交基底,直交行列,ユニタリ行列,直交補空間 3. 固有値と行列の対角化【5〜6週】: 固有値と固有ベクトル,固有多項式,固有空間 行列の対角化,行列の上三角化,ケーリー.ハミルトンの定理 対称行列の直交行列による対角化 二次形式* エルミート行列のユニタリ行列による対角化* アステリスク * はオプション |
||||||||||
(履修要件)
特になし
|
||||||||||
(成績評価の方法・観点及び達成度)
演義担当教員によって平常点(演習への参加状況,課題への取組状況など)から得られた演義成績(30 点満点)をもとに,講義担当教員が期末試験を用いて,演義成績以上,100 点以下の範囲で 評価する.
教員によっては演義以外の平常点(レポート、中間試験などによるもの)を参考にすることもある.詳細は授業中に説明する. 本科目の評価が不合格であった履修者のうち,一定の基準以上の成績の者は再試験を受験できる.再試験の概要は KULASIS で履修者に通知する.なお再試験は3月末に実施予定である. |
||||||||||
(教科書)
担当教員毎に指示する.
|
||||||||||
(参考書等)
授業中に紹介する
|
||||||||||
(授業外学習(予習・復習)等)
予習,復習とともに,演習問題を積極的に解いてみることが必要である.
|
||||||||||
(その他(オフィスアワー等))
同一クラスにおいて前期開講の線形代数学(講義・演義)Aとの連続した履修を推奨する.また微分積分学(講義・演義)B を並行して受講することが望ましい.
|
||||||||||
授業の進捗状況や受講生の習熟度などによって「授業計画と内容」,「成績評価の方法」が変更になる場合があります。
(科目名) |
線形代数学(講義・演義)B 1T5
|
(英 訳) | Linear Algebra with Exercises B | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
(担当教員) |
|
||||||||||||
(群) | 自然 | ||||||||||||
(分野(分類)) | 数学(基礎) | ||||||||||||
(使用言語) | 日本語 | ||||||||||||
(旧群) | B群 | ||||||||||||
(単位数) | 3 単位 | ||||||||||||
(週コマ数) | 2 コマ | ||||||||||||
(授業形態) | 講義 | ||||||||||||
(開講年度・開講期) | 2025・後期 | ||||||||||||
(配当学年) | 主として1回生 | ||||||||||||
(対象学生) | 理系向 | ||||||||||||
(曜時限) | 火1・金1 |
||||||||||||
(教室) | 共南21 | ||||||||||||
(授業の概要・目的) | 線形代数学は,微分積分学と共に現代の科学技術を支える数学の根幹をなす.この科目では,将来の応用に必要な線形代数学の基礎を解説する. 線形代数学(講義・演義)Bでは,ベクトル空間,線形写像などの基礎概念を体系的に学ぶと共に,それらの概念を行列に応用してさらに理解を深める. |
||||||||||||
(到達目標) | ベクトル空間,線形写像などの抽象概念を体系的に理解すること,ならびにそれを通してベクトル,行列の理論的な基礎を固めることを目標とする.その際には,ベクトルや行列等のより進んだ取り扱いに習熟することも目指す. | ||||||||||||
(授業計画と内容) | この科目は講義と演義とが一体として構成されている. 演義は原則として隔週で開講される.演義においては,受講者は問題演習や課題学習に積極的に取り組むことにより,それまでに講義で学んだ事柄の理解を深める. 以下に挙げるのは講義の計画、内容である.各項目には,受講者の理解の程度を確認しながら,【 】で指示した週数を充てる.各項目・小項目の講義の順序は固定したものではなく,担当者の講義方針と受講者の背景や理解の状況に応じて,講義担当者が適切に決める.講義の進め方については適宜,指示をして,受講者が予習をできるように十分に配慮する. 以下の内容を,フィードバック回を含め(試験週を除く)全15回にて行う. 1. 抽象ベクトル空間【5〜6週】: 一次結合,一次独立,基底,次元,部分空間,線形写像,核と像 線形写像と行列,基底の変換,直和 2. 計量ベクトル空間【3〜4週】: 内積,正規直交基底,直交行列,ユニタリ行列,直交補空間 3. 固有値と行列の対角化【5〜6週】: 固有値と固有ベクトル,固有多項式,固有空間 行列の対角化,行列の上三角化,ケーリー.ハミルトンの定理 対称行列の直交行列による対角化 二次形式* エルミート行列のユニタリ行列による対角化* アステリスク * はオプション |
||||||||||||
(履修要件) |
特になし
|
||||||||||||
(成績評価の方法・観点及び達成度) | 演義担当教員によって平常点(演習への参加状況,課題への取組状況など)から得られた演義成績(30 点満点)をもとに,講義担当教員が期末試験を用いて,演義成績以上,100 点以下の範囲で 評価する. 教員によっては演義以外の平常点(レポート、中間試験などによるもの)を参考にすることもある.詳細は授業中に説明する. 本科目の評価が不合格であった履修者のうち,一定の基準以上の成績の者は再試験を受験できる.再試験の概要は KULASIS で履修者に通知する.なお再試験は3月末に実施予定である. |
||||||||||||
(教科書) |
担当教員毎に指示する.
|
||||||||||||
(参考書等) |
授業中に紹介する
|
||||||||||||
(授業外学習(予習・復習)等) | 予習,復習とともに,演習問題を積極的に解いてみることが必要である. | ||||||||||||
(その他(オフィスアワー等)) | 同一クラスにおいて前期開講の線形代数学(講義・演義)Aとの連続した履修を推奨する.また微分積分学(講義・演義)B を並行して受講することが望ましい. |
||||||||||||
線形代数学(講義・演義)B
1T5 (科目名)
Linear Algebra with Exercises B
(英 訳)
|
|
|||||||||
(群) 自然 (分野(分類)) 数学(基礎) (使用言語) 日本語 | ||||||||||
(旧群) B群 (単位数) 3 単位 (週コマ数) 2 コマ (授業形態) 講義 | ||||||||||
(開講年度・ 開講期) 2025・後期 (配当学年) 主として1回生 (対象学生) 理系向 |
||||||||||
(曜時限)
火1・金1 (教室) 共南21 |
||||||||||
(授業の概要・目的)
線形代数学は,微分積分学と共に現代の科学技術を支える数学の根幹をなす.この科目では,将来の応用に必要な線形代数学の基礎を解説する.
線形代数学(講義・演義)Bでは,ベクトル空間,線形写像などの基礎概念を体系的に学ぶと共に,それらの概念を行列に応用してさらに理解を深める. |
||||||||||
(到達目標)
ベクトル空間,線形写像などの抽象概念を体系的に理解すること,ならびにそれを通してベクトル,行列の理論的な基礎を固めることを目標とする.その際には,ベクトルや行列等のより進んだ取り扱いに習熟することも目指す.
|
||||||||||
(授業計画と内容)
この科目は講義と演義とが一体として構成されている. 演義は原則として隔週で開講される.演義においては,受講者は問題演習や課題学習に積極的に取り組むことにより,それまでに講義で学んだ事柄の理解を深める. 以下に挙げるのは講義の計画、内容である.各項目には,受講者の理解の程度を確認しながら,【 】で指示した週数を充てる.各項目・小項目の講義の順序は固定したものではなく,担当者の講義方針と受講者の背景や理解の状況に応じて,講義担当者が適切に決める.講義の進め方については適宜,指示をして,受講者が予習をできるように十分に配慮する. 以下の内容を,フィードバック回を含め(試験週を除く)全15回にて行う. 1. 抽象ベクトル空間【5〜6週】: 一次結合,一次独立,基底,次元,部分空間,線形写像,核と像 線形写像と行列,基底の変換,直和 2. 計量ベクトル空間【3〜4週】: 内積,正規直交基底,直交行列,ユニタリ行列,直交補空間 3. 固有値と行列の対角化【5〜6週】: 固有値と固有ベクトル,固有多項式,固有空間 行列の対角化,行列の上三角化,ケーリー.ハミルトンの定理 対称行列の直交行列による対角化 二次形式* エルミート行列のユニタリ行列による対角化* アステリスク * はオプション |
||||||||||
(履修要件)
特になし
|
||||||||||
(成績評価の方法・観点及び達成度)
演義担当教員によって平常点(演習への参加状況,課題への取組状況など)から得られた演義成績(30 点満点)をもとに,講義担当教員が期末試験を用いて,演義成績以上,100 点以下の範囲で 評価する.
教員によっては演義以外の平常点(レポート、中間試験などによるもの)を参考にすることもある.詳細は授業中に説明する. 本科目の評価が不合格であった履修者のうち,一定の基準以上の成績の者は再試験を受験できる.再試験の概要は KULASIS で履修者に通知する.なお再試験は3月末に実施予定である. |
||||||||||
(教科書)
担当教員毎に指示する.
|
||||||||||
(参考書等)
授業中に紹介する
|
||||||||||
(授業外学習(予習・復習)等)
予習,復習とともに,演習問題を積極的に解いてみることが必要である.
|
||||||||||
(その他(オフィスアワー等))
同一クラスにおいて前期開講の線形代数学(講義・演義)Aとの連続した履修を推奨する.また微分積分学(講義・演義)B を並行して受講することが望ましい.
|
||||||||||
授業の進捗状況や受講生の習熟度などによって「授業計画と内容」,「成績評価の方法」が変更になる場合があります。
(科目名) |
線形代数学(講義・演義)B 1T18
|
(英 訳) | Linear Algebra with Exercises B | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
(担当教員) |
|
||||||||||||
(群) | 自然 | ||||||||||||
(分野(分類)) | 数学(基礎) | ||||||||||||
(使用言語) | 日本語 | ||||||||||||
(旧群) | B群 | ||||||||||||
(単位数) | 3 単位 | ||||||||||||
(週コマ数) | 2 コマ | ||||||||||||
(授業形態) | 講義 | ||||||||||||
(開講年度・開講期) | 2025・後期 | ||||||||||||
(配当学年) | 主として1回生 | ||||||||||||
(対象学生) | 理系向 | ||||||||||||
(曜時限) | 火1・水2 |
||||||||||||
(教室) | 共東42 | ||||||||||||
(授業の概要・目的) | 線形代数学は,微分積分学と共に現代の科学技術を支える数学の根幹をなす.この科目では,将来の応用に必要な線形代数学の基礎を解説する. 線形代数学(講義・演義)Bでは,ベクトル空間,線形写像などの基礎概念を体系的に学ぶと共に,それらの概念を行列に応用してさらに理解を深める. |
||||||||||||
(到達目標) | ベクトル空間,線形写像などの抽象概念を体系的に理解すること,ならびにそれを通してベクトル,行列の理論的な基礎を固めることを目標とする.その際には,ベクトルや行列等のより進んだ取り扱いに習熟することも目指す. | ||||||||||||
(授業計画と内容) | この科目は講義と演義とが一体として構成されている. 演義は原則として隔週で開講される.演義においては,受講者は問題演習や課題学習に積極的に取り組むことにより,それまでに講義で学んだ事柄の理解を深める. 以下に挙げるのは講義の計画、内容である.各項目には,受講者の理解の程度を確認しながら,【 】で指示した週数を充てる.各項目・小項目の講義の順序は固定したものではなく,担当者の講義方針と受講者の背景や理解の状況に応じて,講義担当者が適切に決める.講義の進め方については適宜,指示をして,受講者が予習をできるように十分に配慮する. 以下の内容を,フィードバック回を含め(試験週を除く)全15回にて行う. 1. 抽象ベクトル空間【5〜6週】: 一次結合,一次独立,基底,次元,部分空間,線形写像,核と像 線形写像と行列,基底の変換,直和 2. 計量ベクトル空間【3〜4週】: 内積,正規直交基底,直交行列,ユニタリ行列,直交補空間 3. 固有値と行列の対角化【5〜6週】: 固有値と固有ベクトル,固有多項式,固有空間 行列の対角化,行列の上三角化,ケーリー.ハミルトンの定理 対称行列の直交行列による対角化 二次形式* エルミート行列のユニタリ行列による対角化* アステリスク * はオプション |
||||||||||||
(履修要件) |
特になし
|
||||||||||||
(成績評価の方法・観点及び達成度) | 演義担当教員によって平常点(演習への参加状況,課題への取組状況など)から得られた演義成績(30 点満点)をもとに,講義担当教員が期末試験を用いて,演義成績以上,100 点以下の範囲で 評価する. 教員によっては演義以外の平常点(レポート、中間試験などによるもの)を参考にすることもある.詳細は授業中に説明する. 本科目の評価が不合格であった履修者のうち,一定の基準以上の成績の者は再試験を受験できる.再試験の概要は KULASIS で履修者に通知する.なお再試験は3月末に実施予定である. |
||||||||||||
(教科書) |
担当教員毎に指示する.
|
||||||||||||
(参考書等) |
授業中に紹介する
|
||||||||||||
(授業外学習(予習・復習)等) | 予習,復習とともに,演習問題を積極的に解いてみることが必要である. | ||||||||||||
(その他(オフィスアワー等)) | 同一クラスにおいて前期開講の線形代数学(講義・演義)Aとの連続した履修を推奨する.また微分積分学(講義・演義)B を並行して受講することが望ましい. |
||||||||||||
線形代数学(講義・演義)B
1T18 (科目名)
Linear Algebra with Exercises B
(英 訳)
|
|
|||||||||
(群) 自然 (分野(分類)) 数学(基礎) (使用言語) 日本語 | ||||||||||
(旧群) B群 (単位数) 3 単位 (週コマ数) 2 コマ (授業形態) 講義 | ||||||||||
(開講年度・ 開講期) 2025・後期 (配当学年) 主として1回生 (対象学生) 理系向 |
||||||||||
(曜時限)
火1・水2 (教室) 共東42 |
||||||||||
(授業の概要・目的)
線形代数学は,微分積分学と共に現代の科学技術を支える数学の根幹をなす.この科目では,将来の応用に必要な線形代数学の基礎を解説する.
線形代数学(講義・演義)Bでは,ベクトル空間,線形写像などの基礎概念を体系的に学ぶと共に,それらの概念を行列に応用してさらに理解を深める. |
||||||||||
(到達目標)
ベクトル空間,線形写像などの抽象概念を体系的に理解すること,ならびにそれを通してベクトル,行列の理論的な基礎を固めることを目標とする.その際には,ベクトルや行列等のより進んだ取り扱いに習熟することも目指す.
|
||||||||||
(授業計画と内容)
この科目は講義と演義とが一体として構成されている. 演義は原則として隔週で開講される.演義においては,受講者は問題演習や課題学習に積極的に取り組むことにより,それまでに講義で学んだ事柄の理解を深める. 以下に挙げるのは講義の計画、内容である.各項目には,受講者の理解の程度を確認しながら,【 】で指示した週数を充てる.各項目・小項目の講義の順序は固定したものではなく,担当者の講義方針と受講者の背景や理解の状況に応じて,講義担当者が適切に決める.講義の進め方については適宜,指示をして,受講者が予習をできるように十分に配慮する. 以下の内容を,フィードバック回を含め(試験週を除く)全15回にて行う. 1. 抽象ベクトル空間【5〜6週】: 一次結合,一次独立,基底,次元,部分空間,線形写像,核と像 線形写像と行列,基底の変換,直和 2. 計量ベクトル空間【3〜4週】: 内積,正規直交基底,直交行列,ユニタリ行列,直交補空間 3. 固有値と行列の対角化【5〜6週】: 固有値と固有ベクトル,固有多項式,固有空間 行列の対角化,行列の上三角化,ケーリー.ハミルトンの定理 対称行列の直交行列による対角化 二次形式* エルミート行列のユニタリ行列による対角化* アステリスク * はオプション |
||||||||||
(履修要件)
特になし
|
||||||||||
(成績評価の方法・観点及び達成度)
演義担当教員によって平常点(演習への参加状況,課題への取組状況など)から得られた演義成績(30 点満点)をもとに,講義担当教員が期末試験を用いて,演義成績以上,100 点以下の範囲で 評価する.
教員によっては演義以外の平常点(レポート、中間試験などによるもの)を参考にすることもある.詳細は授業中に説明する. 本科目の評価が不合格であった履修者のうち,一定の基準以上の成績の者は再試験を受験できる.再試験の概要は KULASIS で履修者に通知する.なお再試験は3月末に実施予定である. |
||||||||||
(教科書)
担当教員毎に指示する.
|
||||||||||
(参考書等)
授業中に紹介する
|
||||||||||
(授業外学習(予習・復習)等)
予習,復習とともに,演習問題を積極的に解いてみることが必要である.
|
||||||||||
(その他(オフィスアワー等))
同一クラスにおいて前期開講の線形代数学(講義・演義)Aとの連続した履修を推奨する.また微分積分学(講義・演義)B を並行して受講することが望ましい.
|
||||||||||